ORIGINAL RESEARCH

Multisequent Gentzen Deduction Systems for B_2^2 -valued first-order logic

Wei Li¹, Yuefei Sui*^{2,3}

¹State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing, China ²Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

³ College of Computer Science and Control, University of Chinese Academy of Sciences, Beijing, China

Received: December 14, 2017	Accepted: March 5, 2018	Online Published: March 21, 2018
DOI: 10.5430/air.v7n1p53	URL: https://doi.org/10.5430/air.v7n	n1p53

ABSTRACT

For the four-element Boolean algebra \mathbf{B}_2^2 , a multisequent $\Gamma |\Delta|\Sigma|\Pi$ is a generalization of sequent $\Gamma \Rightarrow \Delta$ in traditional \mathbf{B}_2 -valued first-order logic. By defining the truth-values of quantified formulas, a Gentzen deduction system \mathbf{G}_2^2 for \mathbf{B}_2^2 -valued first-order logic will be built and its soundness and completeness theorems will be proved.

Key Words: Multisequent, Hypersequent, B₂²-valued semantics, Soundness theorem, Completeness theorem

1. INTRODUCTION

In traditional propositional logic,^[1] the negation connective \neg is eliminated via the following rules in a Gentzen deduction system:

$$(\neg^{L}) \ \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \qquad \qquad (\neg^{R}) \ \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}.$$

The truth-value of a sequent $\Gamma \Rightarrow \Delta$ under an assignment v is defined by a condition of $(\exists \lor \exists)$ -form, that is, either some formula A in Γ is false, or some formula B in Δ is true.

In \mathbf{B}_2^2 -valued first-order logic, where $\mathbf{B}_2^2 = (\{\mathbf{t}, \top, \bot, \mathbf{f}\}, \cap, \cup)$ is the four-element Boolean algebra, a multisequent is a quandrupe $(\Gamma, \Delta, \Sigma, \Pi)$, where $\Gamma, \Delta, \Sigma, \Pi$ are sets of formulas. Multisequent $(\Gamma, \Delta, \Sigma, \Pi)$ is true in a model Mand an assignment v if either

- some formula A in Γ has truth-value t, or
- some formula B in Δ has truth-value \top , or

- some formula C in Σ has truth-value \bot , or
- some formula D in Π has truth-value f.

By the semantics, multisequents are different from hypersequents.^[2,3] A sequent $\Gamma \Rightarrow \Delta$ is taken as a multisequent $\Delta | \Gamma$.

Here, negation \neg commutes t with f and \top with \bot . Traditional deduction rules (\neg^L) and (\neg^R) do not work here.

For quantifiers, in traditional first-order logic, $\forall x A(x)$ is true if for each element a, A(x/a) is true; and $\forall x A(x)$ is false if for some element a, A(x/a) is false. In **B**₂²-valued first-order logic, we define that $\forall x A(x)$ has truth-value

- t if for each element a, A(x/a) has truth-value t;
- \top if for some element b, A(x/b) has truth-value \top , and for each element a, A(x/a) has truth-value either t or \top ;
- \perp if for some element b, A(x/b) has truth-value \perp , and for

^{*}Correspondence: Yuefei Sui; Email: yfsui@ict.ac.cn; Address: Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, China.

each element a, A(x/a) has truth-value either t or \bot ;

• f if for some element a, A(x/a) has truth-value f.

In this paper, we will give a sound and complete Gentzen deduction system $\mathbf{G}_2^{2[4-9]}$ for \mathbf{B}_2^2 -valued first-order logic and prove soundness and completeness theorems for \mathbf{B}_2^2 -valued first-order logic, that is, for any multisequent $\Gamma |\Delta| \Sigma |\Pi$,

- Soundness theorem: if $\Gamma |\Delta|\Sigma|\Pi$ is provable in \mathbf{G}_2^2 then $\Gamma |\Delta|\Sigma|\Pi$ is valid;
- Completeness theorem: if $\Gamma |\Delta|\Sigma|\Pi$ is valid then $\Gamma |\Delta|\Sigma|\Pi$ is provable in \mathbf{G}_2^2 .

The paper is organized as follows: the next section gives basic definitions in \mathbf{B}_2 -valued first-order logic; the third section gives basic definitions of \mathbf{B}_2^2 -valued first-order logic; the fourth section gives Gentzen deduction system \mathbf{G}_2^2 for \mathbf{B}_2^2 -valued first-order logic and prove soundness and completeness theorem; the fifth section discusses the different constructions of trees in the proof of completeness theorem, and the last section concluded the paper.

2. MULTISEQUENT DEDUCTION SYSTEM FOR B₂-valued first-order logic

Let L be a logical language of first-order logic which contains the following symbols:

- constant symbols: $c_0, c_1, ...;$
- variable symbols: $x_0, x_1, ...;$
- function symbols: $f_0, f_1, ...;$
- predicate symbol: $p_0, p_1, ...;$ and
- logical connectives and quantifiers: $\neg, \land, \lor, \forall$.

A term t is a string of the following forms:

$$t ::= c |x| f(t_1, ..., t_n),$$

where f is an n-ary function symbol.

A formula A is a string of the following forms:

$$A ::= p(t_1, ..., t_n) |\neg A_1| A_1 \land A_2 | A_1 \lor A_2 | \forall x A_1(x),$$

where p is an n-ary predicate symbol.

Let $\mathbf{B}_2=(\{\mathtt{t},\mathtt{f}\},\neg,\cup,\cap)$ be the least Boolean algebra, where

	_	\cap	t	f	U	t	f
t	f				t	t	t
f	t	f	f	f	f	t	f

A model M is a pair (U, I), where U is a universe and I is an interpretation such that for any constant symbol $c, I(c) \in U$; for any n-ary function symbol $f, I(f) : U^n \to U$ is a function; and for any n-ary predicate symbol $p, I(p) : U^n \to \mathbf{B}_2$ is a relation on U.

An assignment v is a function from variables to U. The interpretation $t^{I,v}$ of t in (M, v) is

$$t^{I,v} = \begin{cases} I(c) & \text{if } t = c \\ v(x) & \text{if } t = x \\ I(f)(t_1^{I,v}, \dots, t_n^{I,v}) & \text{if } t = f(t_1, \dots, t_n). \end{cases}$$

Given a formula A, define

$$\nu(A) = \begin{cases} I(p)(t_1^{I,v}, ..., t_n^{I,v}) & \text{if } A = p(t_1, ..., t_2) \\ \neg(A_1^{I,v}) & \text{if } A = \neg A_1 \\ v(A_1) \cap v(A_2) & \text{if } A = A_1 \land A_2 \\ v(A_1) \cup v(A_2) & \text{if } A = A_1 \lor A_2 \\ \min\{v_{x/a}(A_1(x)) : a \in U\} & \text{if } A = \forall x A_1(x) \end{cases}$$

where for any variable y,

$$v_{x/a}(y) = \begin{cases} v(y) & \text{if } y \neq x \\ a & \text{otherwise.} \end{cases}$$

Hence,

$$v(\forall x A_1(x)) = \mathbf{t} \text{ iff } \mathbf{A}a \in U(v_{x/a}(A_1(x)) = \mathbf{t})$$
$$v(\forall x A_1(x)) = \mathbf{f} \text{ iff } \mathbf{E}a \in U(v_{x/a}(A_1(x)) = \mathbf{f})$$

where in syntax, we use $\neg, \land, \rightarrow, \forall, \exists$ to denote logical connectives and quantifiers; and in semantics we use $\sim, \&, \Rightarrow, \mathbf{A}, \mathbf{E}$ to denote the corresponding connectives and quantifiers.

A formula A is satisfied in (I, v), denoted by $I, v \models A$, if v(A) = t; A is valid in I, denoted by $I \models A$, if for any assignment $v, I, v \models A$; and A is valid, denoted by $\models A$, if for any interpretation $I, I \models A$.

Let Δ , Γ be sets of formulas. A multisequent δ is of form $\Gamma | \Delta$. We say that δ is satisfied in an interpretation I and an assignment v, denoted by $I, v \models \Gamma | \Delta$, if either $I, v \models \Gamma$, or $I, v \models \Delta$, where $I, v \models \Delta$ if v(A) = t for some $A \in \Delta$; and $I, v \models \Gamma$ if v(B) = t for some $B \in \Gamma$.

 $\models \delta$, if δ is satisfied in any interpretation *I*.

Gentzen deduction system G_2 contains the following axioms and deduction rules:

• Axioms:

$$\frac{\Gamma \cap \Delta \neq \emptyset}{\Delta | \Gamma} (\mathbf{A}),$$

where Δ, Γ are sets of atomic formulas.

• Deduction rules:

$$\begin{array}{ll} (\neg^{L}) \ \frac{\Delta|A,\Gamma}{\Delta, \neg A|\Gamma} & (\neg^{R}) \ \frac{\Delta,B|\Gamma}{\Delta|\neg B,\Gamma} \\ (\wedge^{L}) \ \frac{\Delta,A_{1}|\Gamma \ \Delta,A_{2}|\Gamma}{\Delta,A_{1} \wedge A_{2}|\Gamma} & (\wedge^{R}_{1}) \ \frac{\Delta|B_{1},\Gamma}{\Delta|B_{1} \wedge B_{2}} \\ & (\wedge^{R}_{2}) \ \frac{\Delta|B_{2},\Gamma}{\Delta|B_{1} \wedge B_{2}} \\ (\vee^{L}_{1}) \ \frac{\Delta,A_{1}|\Gamma}{\Delta,A_{1} \vee A_{2}|\Gamma} & (\vee^{R}) \ \frac{\Delta|B_{1},\Gamma \ \Delta|B_{2},\Gamma}{\Delta|B_{1} \vee B_{2}} (\vee^{R}) \\ (\vee^{L}_{2}) \ \frac{\Delta,A_{2}|\Gamma}{\Delta,A_{1} \vee A_{2}|\Gamma} \\ (\forall^{L}) \ \frac{\Delta,A(x)|\Gamma}{\Delta,\forall xA(x)|\Gamma} & (\forall^{R}) \ \frac{\Delta|B(t),\Gamma}{\Delta|\forall xB(x),\Gamma} \end{array}$$

where x is a new variable not occurring free in $\forall x A(x)$, and t is a term.

where

$$v(\forall x A_1(x)) = \begin{cases} \mathsf{t} & \text{if } \mathbf{A} a \in U(v_{x/a}(A_1(x)) = \mathsf{t}) \\ \top & \text{if } \mathbf{A} a \in U(v_{x/a}(A_1(x)) \in \{\mathsf{t}, \top\}) \& \mathbf{E} a \in U(v_{x/a}(A_1(x)) = \top) \\ \bot & \text{if } \mathbf{A} a \in U(v_{x/a}(A_1(x)) \in \{\mathsf{t}, \bot\}) \& \mathbf{E} a \in U(v_{x/a}(A_1(x)) = \bot) \\ \mathsf{f} & \text{if } \mathbf{E} a \in U(v_{x/a}(A_1(x)) = \mathsf{f}). \end{cases}$$

Let $\Gamma, \Delta, \Sigma, \Pi$ be sets of formulas. A multisequent δ is of form $\Gamma |\Delta|\Sigma|\Pi$. We say that δ is satisfied in (I, v), denoted by $I, v \models \Gamma |\Delta|\Sigma|\Pi$, if either $I, v \models \Gamma, I, v \models \Delta, I, v \models \Sigma$, or $I, v \models \Pi$, where

 $I, v \models \Delta$ if for some formula $A \in \Delta, v(A) = t$; $I, v \models \Theta$ if for some formula $B \in \Theta, v(B) = \top$; $I, v \models \Gamma$ if for some formula $C \in \Theta, v(C) = \bot$; and $I, v \models \Pi$ if for some formula $D \in \Pi, v(D) = f$.

A multisequent $\Gamma |\Delta|\Sigma|\Pi$ is valid, denoted by $\models \Gamma |\Delta|\Sigma|\Pi$, if for any interpretation I and assignment $v, I, v \models \Gamma |\Delta| \Sigma |\Pi$.

 $\Delta | \Gamma, \text{ if } \vdash \Delta | \Gamma \text{ then } \models \Delta | \Gamma.$

Theorem 2.2 (Completeness theorem). For any multisequent $\Delta | \Gamma, \vdash \Delta | \Gamma$ only if $\models \Delta | \Gamma$.

3. B_2^2 -VALUED FIRST-ORDER LOGIC

Let \mathbf{B}_2^2 be a Boolean algebra $(\{t, \top, \bot, f\}, \neg, \cup, \cap)$, where

	¬										
t	f ⊥	t	t	Т	\perp	f	t	t	t	t	t
Т		\top	Т	Т	f	f	Т	t	Т	t	Т
\perp	T	\perp		f	\perp	f	\perp	t	t	\perp	\perp
f	⊤ t	f	f	f	f	f	f	t	Т	\perp	f

A model M is a pair (U, I), where U is a universe and I is an interpretation such that for any constant symbol $c, I(c) \in U$; for any *n*-ary function symbol $f, I(f) : U^n \to U$ is a function; and for any *n*-ary predicate symbol $p, I(p) : U^n \to \mathbf{B}_2^2$ is a relation on U.

Given a formula A, define

$$v(A) = \begin{cases} I(p)(t_1^{I,v}, ..., t_n^{I,v}) & \text{if } A = p(t_1, ..., t_2) \\ \neg(A_1^{I,v}) & \text{if } A = \neg A_1 \\ v(A_1) \cap v(A_2) & \text{if } A = A_1 \land A_2 \\ v(A_1) \cup v(A_2) & \text{if } A = A_1 \lor A_2 \\ \text{defined below} & \text{if } A = \forall x A_1(x) \end{cases}$$

Proposition 3.1 Let Γ , Δ , Σ , Π be sets of atomic formulas. Then, $\Gamma |\Delta|\Sigma|\Pi$ is valid if and only if $\Gamma \cap \Delta \cap \Sigma \cap \Pi \neq \emptyset$.

Proof. Assume that $p \in \Gamma \cap \Delta \cap \Sigma \cap \Pi \neq \emptyset$. For any interpreation I and assignment v, if v(p) = t then $I, v \models \Gamma$; if $v(p) = \top$ then $I, v \models \Delta$; if $v(p) = \bot$ then $I, v \models \Sigma$; otherwise, $v(p) = \mathbf{f}, I, v \models \Pi$. Hence, $I, v \models \Gamma |\Delta|\Sigma|\Pi$.

Conversely, assume that $\Gamma \cap \Delta \cap \Sigma \cap \Pi = \emptyset$. Let U be the set of all the constants occurring in Γ, Δ, Σ or Π . Define I and v such that for any atomic formula l,

$$v(l) = \begin{cases} *_4 & \text{if } l = \Gamma_{*_1} \cap \Gamma_{*_2} \cap \Gamma_{*_3} \\ *_3 & \text{otherwise, if } l \in \Gamma_{\star_1} \cap \Gamma_{\star_2} - \bigcup_{*_1, *_2, *_3} \Gamma_{*_1} \cap \Gamma_{*_2} \cap \Gamma_{*_3} \\ f_{\neg}(\#) & \text{otherwise, if } l \in \Gamma_{\#} - \bigcup_{\star_1, \star_2} \Gamma_{\star_1} \cap \Gamma_{\star_2} \end{cases}$$

where $\{*_1, *_2, *_3, *_4\} = \{t, \top, \bot, f\}$, and $\Gamma_t = \Gamma, \Gamma_\top =$ where $\Gamma, \Delta, \Sigma, \Pi$ are sets of atomic formulas. $\Delta, \Gamma_{\perp} = \Sigma, \Gamma_{f} = \Pi; *_{1} \neq *_{2} \neq *_{3} \neq *_{1}; *_{1} \neq *_{2} \in \mathbf{B}_{2}^{2},$ • Deduction rules for unary logical connective \neg : and $\# \in \mathbf{B}_2^2$. Then, $I, v \not\models \Gamma |\Delta| \Sigma | \Pi$.

4. GENTZEN DEDUCTION SYSTEM

Gentzen deduction system \mathbf{G}_2^2 contains the following axioms and deduction rules:

• Axioms:

$$(\mathbf{A}) \ \frac{\Pi \cap \Sigma \cap \Delta \cap \Gamma \neq \emptyset}{\Gamma |\Delta| \Sigma |\Pi},$$

$$\begin{array}{ll} (\neg^{A}) \ \frac{\Gamma |\Delta|\Sigma|A,\Pi}{\Gamma,\neg A |\Delta|\Sigma|\Pi} & (\gamma^{B}) \ \frac{\Gamma |\Delta|\Sigma,B|\Pi}{\Gamma |\Delta,\neg B|\Sigma|\Pi} \\ (\neg^{C}) \ \frac{\Gamma |\Delta,C|\Sigma|\Pi}{\Gamma |\Delta|\Sigma,\neg C|\Pi} & (\gamma^{D}) \ \frac{\Gamma,D |\Delta|\Sigma|\Pi}{\Gamma |\Delta|\Sigma|\neg D,\Pi} \end{array}$$

$$(\wedge^{A}) \frac{\Gamma, A_{1}|\Delta|\Sigma|\Pi \ \Gamma, A_{2}|\Delta|\Sigma|\Pi}{\Gamma, A_{1} \wedge A_{2}|\Delta|\Sigma|\Pi}$$

$$\begin{array}{l} (\wedge_1^C) \ \frac{\Gamma |\Delta|\Sigma, C_1|\Pi \ \Gamma |\Delta|\Sigma, C_2|\Pi}{\Gamma |\Delta|\Sigma, C_1 \wedge C_2|\Pi} \\ (\wedge_2^C) \ \frac{\Gamma, C_1|\Delta|\Sigma|\Pi \ \Gamma |\Delta|\Sigma, C_2|\Pi}{\Gamma |\Delta|\Sigma, C_1 \wedge C_2|\Pi} \\ (\wedge_3^C) \ \frac{\Gamma |\Delta|\Sigma, C_1|\Pi \ \Gamma, C_2|\Delta|\Sigma|\Pi}{\Gamma |\Delta|\Sigma, C_1 \wedge C_2|\Pi} \end{array}$$

$$\begin{split} & (\wedge_1^B) \; \frac{\Gamma |\Delta, B_1|\Sigma|\Pi \; \Gamma |\Delta, B_2|\Sigma|\Pi}{\Gamma |\Delta, B_1 \wedge B_2|\Sigma|\Pi} \\ & (\wedge_2^B) \; \frac{\Gamma, B_1|\Delta|\Sigma|\Pi \; \Gamma |\Delta, B_2|\Sigma|\Pi}{\Gamma |\Delta, B_1 \wedge B_2|\Sigma|\Pi} \\ & (\wedge_3^B) \; \frac{\Gamma |\Delta, B_1|\Sigma|\Pi \; \Gamma, B_2|\Delta|\Sigma|\Pi}{\Gamma |\Delta, B_1 \wedge B_2|\Sigma|\Pi} \\ & (\wedge_1^D) \; \frac{\Gamma |\Delta|\Sigma|D_1, \Pi}{\Gamma |\Delta|\Sigma|D_1, \Pi} \\ & (\wedge_2^D) \; \frac{\Gamma |\Delta|\Sigma|D_1, \Lambda D_2, \Pi}{\Gamma |\Delta|\Sigma|D_1 \wedge D_2, \Pi} \\ & (\wedge_3^D) \; \frac{\Gamma |\Delta, D_1|\Sigma|\Pi \; \Gamma |\Delta|\Sigma, D_2, \Pi}{\Gamma |\Delta|\Sigma|D_1 \wedge D_2, \Pi} \\ & (\wedge_3^D) \; \frac{\Gamma |\Delta|\Sigma|D_1 \wedge D_2, \Pi}{\Gamma |\Delta|\Sigma|D_1 \wedge D_2, \Pi} \\ & (\wedge_3^D) \; \frac{\Gamma |\Delta|\Sigma|D_1 \wedge D_2, \Pi}{\Gamma |\Delta|\Sigma, D_1|\Pi \; \Gamma |\Delta, D_2|\Sigma|\Pi} \end{split}$$

$$(\wedge_4^D) \xrightarrow{\Gamma} [\Delta|\Sigma|D_1 \wedge D_2, \Pi]$$

• Deduction rules for binary logical connective \lor :

$$\begin{split} & (\vee_{1}^{A}) \frac{\Gamma, A_{1} |\Delta| \Sigma |\Pi}{\Gamma, A_{1} \vee A_{2} |\Delta| \Sigma |\Pi} \\ & (\vee_{2}^{A}) \frac{\Gamma, A_{2} |\Delta| \Sigma |\Pi}{\Gamma, A_{1} \vee A_{2} |\Delta| \Sigma |\Pi} \\ & (\vee_{1}^{B}) \frac{\Gamma |\Delta, B_{1} |\Sigma| \Pi \Gamma |\Delta, B_{2} |\Sigma| \Pi}{\Gamma |\Delta, B_{1} |\Sigma| \Pi \Gamma |\Delta, B_{2} |\Sigma| \Pi} \\ & (\vee_{3}^{A}) \frac{\Gamma |\Delta| \Sigma, A_{1} |\Pi \Gamma |\Delta, A_{2} |\Sigma| \Pi}{\Gamma |\Delta, A_{1} |\Sigma| \Pi \Gamma |\Delta, A_{2} |\Sigma| \Pi} \\ & (\vee_{4}^{A}) \frac{\Gamma |\Delta, A_{1} |\Sigma| \Pi \Gamma |\Delta, A_{2} |\Sigma| \Pi}{\Gamma, A_{1} \vee A_{2} |\Delta| \Sigma |\Pi} \\ & (\vee_{4}^{B}) \frac{\Gamma |\Delta, B_{1} \vee B_{2} |\Sigma| \Pi}{\Gamma |\Delta, B_{1} \vee B_{2} |\Sigma| \Pi} \\ & (\vee_{3}^{B}) \frac{\Gamma |\Delta, B_{1} \vee B_{2} |\Sigma| \Pi}{\Gamma |\Delta, B_{1} \vee B_{2} |\Sigma| \Pi} \\ & (\vee_{3}^{C}) \frac{\Gamma |\Delta| \Sigma, C_{1} |\Pi \Gamma |\Delta| \Sigma |D_{2}, \Pi}{\Gamma |\Delta| \Sigma |C_{1}, \Pi \Gamma |\Delta| \Sigma, C_{2} |\Pi} \\ & (\vee_{3}^{C}) \frac{\Gamma |\Delta| \Sigma |D_{1}, \Pi \Gamma |\Delta| \Sigma |D_{2}, \Pi}{\Gamma |\Delta| \Sigma |C_{1}, \Pi \Gamma |\Delta| \Sigma |D_{2}, \Pi} \\ & (\vee_{3}^{C}) \frac{\Gamma |\Delta| \Sigma |D_{1}, \Pi \Gamma |\Delta| \Sigma |D_{2}, \Pi}{\Gamma |\Delta| \Sigma |D_{1} \vee D_{2}, \Pi} \end{split}$$

• Deduction rules for quantifier \forall :

$$(\forall^A) \; \frac{\Gamma, A(x) |\Delta|\Sigma|\Pi}{\Gamma, \forall x A(x) |\Delta|\Sigma|\Pi}$$

$$\begin{array}{l} (\forall^B_1) \; \frac{\Gamma | \Delta, B(t) | \Sigma | \Pi \; \Gamma, B(x) | \Delta | \Sigma | \Pi \; }{\Gamma | \forall x B(x), \Delta | \Sigma | \Pi \; } \\ (\forall^B_2) \; \frac{\Gamma | \Delta, B(t) | \Sigma | \Pi \; \Gamma | \Delta, B(x) | \Sigma | \Pi \; }{\Gamma | \forall x B(x), \Delta | \Sigma | \Pi \; } \\ (\forall^D) \; \frac{\Gamma | \Delta | \Sigma | D(t), \Pi \; }{\Gamma | \Delta | \Sigma | \forall x D(x), \Pi \; } \end{array}$$

where t is a term and x is a new variable not occurring free $v \models \Gamma, A_1 \lor A_2 |\Delta| \Sigma |\Pi.$ in Γ, Δ, Σ and Π .

Definition 4.1 $\vdash \Gamma |\Delta|\Sigma|\Pi$ if there is a sequence $\{\Delta_1|\Theta_1|\Gamma_1|\Pi_1,...,\Delta_n|\Theta_n|\Gamma_n|\Pi_n\}$ of multisequents such that $\Delta_n |\Theta_n| \Gamma_n |\Pi_n = \Gamma |\Delta| \Sigma |\Pi$, and for each $1 \leq i \leq i$ $n, \Delta_i |\Theta_i| \Gamma_i |\Pi_i$ is deduced from the previous multisequents by one of the deduction rules in \mathbf{G}_{2}^{2} .

Theorem 4.2 For any multisequent $\Gamma |\Delta|\Sigma|\Pi$, if $\models \Gamma |\Delta|\Sigma|\Pi$ then $\vdash \Gamma |\Delta|\Sigma|\Pi$.

Proof. We prove that axioms are valid and deduction rules preserve validity. Fix an interpretation I.

To verify the validity of the axiom, assume that $\Gamma \cap \Delta \cap \Sigma \cap$ $\Pi \neq \emptyset$. Then, there is an atomic formula $l \in \Gamma \cap \Delta \cap \Sigma \cap \Pi$, and for any assignment v, if v(l) = t then $I, v \models \Gamma$; if $v(l) = \top$ then $I, v \models \Delta$, if $v(l) = \bot$ then $I, v \models \Sigma$, otherwise, $I, v \models \Pi$, and each of which implies $I, v \models \Gamma |\Delta|\Sigma|\Pi$.

To verify that (\neg^B) preserves validity, assume that for any assignment $v, I, v \models \Gamma | \Delta | \Sigma, A | \Pi$. If $I, v \models \Gamma | \Delta | \Sigma | \Pi$ then $I, v \models \Gamma | \Delta, \neg A | \Sigma | \Pi$; otherwise, $v(A) = \bot$, and by the definition of $f_{\neg}, v(\neg A) = \top, I, v \models \Delta, \neg A$, and hence, $I, v \models \Gamma | \Delta, \neg A | \Sigma | \Pi.$

To verify that (\wedge_3^D) preserves validity, assume that for any assignment v,

$$v \models \Gamma | \Delta, D_1 | \Sigma | \Pi,$$
$$v \models \Gamma | \Delta | \Sigma, D_2 | \Pi.$$

For any assignment v, if $v \models \Gamma |\Delta|\Sigma|\Pi$ then $v \models$ $\Gamma |\Delta| \Sigma |D_1 \wedge D_2, \Pi$; otherwise, $v(D_1) = \top, v(D_2) = \bot$, and by the definition of \cap , $v(D_1 \wedge D_2) = \mathbf{f}, v \models D_1 \wedge D_2, \Pi$, and hence, $v \models \Gamma |\Delta| \Sigma |B_1 \wedge B_2, \Pi$.

To verify that (\vee_4^A) preserves validity, assume that for any assignment v,

$$v \models \Gamma | \Delta, A_1 | \Sigma | \Pi,$$
$$v \models \Gamma | \Delta | \Sigma, A_2 | \Pi.$$

For any assignment v, if $v \models \Gamma |\Delta|\Sigma|\Pi$ then $v \models \Gamma, A_1 \lor$ $A_2|\Delta|\Sigma|\Pi$; otherwise, $v(A_1) = \top, v(A_2) = \bot$, and by the definition of \cup , $v(A_1 \lor A_2) = t$, $v \models A_1 \lor A_2$, Γ , and hence,

Published by Sciedu Press

To verify that (\forall_1^B) preserves the validity, assume that for any assignment $v, I, v \models \Gamma | \Delta, B(t) | \Sigma | \Pi \Gamma$ and $I, v \models$ $\Gamma, B(x)|\Delta|\Sigma|\Pi$. For any assignment v, if $I, v \models \Gamma|\Delta|\Sigma|\Pi$ then $I, v \models \Gamma | \Delta, \forall x B(x) | \Sigma | \Pi$; otherwise, by induction assumption, $v(B(t)) = \top$ or v(B(x)) = t, i.e., for any $a \in U$, either $v(B(t)) = \top$ or $v_{x/a}(B(x)) = t$, i.e., $v(\forall x B(x)) = \top.$

To verify that (\forall_2^B) preserves the validity, assume that for any assignment $v, I, v \models \Gamma | \Delta, B(t) | \Sigma | \Pi \Gamma$ and $I, v \models$ $\Gamma |\Delta, B(x)|\Sigma|\Pi$. For any assignment v, if $I, v \models \Gamma |\Delta|\Sigma|\Pi$ then $I, v \models \Gamma | \Delta, \forall x B(x) | \Sigma | \Pi$; otherwise, by induction assumption, $v(B(t)) = \top$ or $v(B(x)) = \top$, i.e., for any $a \in U$, either $v(B(t)) = \top$ or $v_{x/a}(B(x)) = \top$, i.e., $v(\forall x B(x)) = \top.$

Similar for other deduction rules.

Theorem 4.3 For any multisequent $\Gamma |\Delta|\Sigma|\Pi$, if $\models \Gamma |\Delta|\Sigma|\Pi$ then $\vdash \Gamma |\Delta|\Sigma|\Pi$.

Proof. Given a multisequent $\Gamma |\Delta|\Sigma|\Pi$, we construct a tree T such that either

(i) for each branch ξ of T, each multisequent $\Gamma' |\Delta'| \Sigma' |\Pi'$ at the leaf of ξ is an axiom, or

(ii) there is an assignment v such that $v \not\models \Gamma |\Delta| \Sigma |\Pi$.

T is constructed as follows:

• the root of T is $\Gamma |\Delta| \Sigma |\Pi;$

• for a node ξ , if for each sequent $\Gamma' |\Delta'| \Sigma' |\Pi'|$ at $\xi, \Gamma' \cup \Delta' \cup$ $\Sigma' \cup \Pi'$ is a set of atomic formulas then the node is a leaf;

• otherwise, ξ has the direct child node containing the following multisequents:

$$\left\{ \begin{array}{ll} \Gamma_1 |\Delta_1| \Sigma_1 |A, \Pi_1 & \text{if } \Gamma_1, \neg A |\Delta_1| \Sigma_1 |\Pi_1 \in \xi \\ \Gamma_1 |\Delta_1| \Sigma_1, B |\Pi_1 & \text{if } \Gamma_1 |\Delta_1, \neg B |\Sigma_1 |\Pi_1 \in \xi \\ \Gamma_1 |\Delta_1| \Sigma_1, C |\Pi_1 & \text{if } \Gamma_1 |\Delta_1| \Sigma_1, \neg C |\Pi_1 \in \xi \\ \Gamma_1, D |\Delta_1| \Sigma_1 |\Pi_1 & \text{if } \Gamma_1 |\Delta_1| \Sigma_1 |\neg D, \Pi_1 \in \xi \end{array} \right.$$

and

$ \left[\begin{array}{c} \Gamma_1, A_1 \Delta_1 \Sigma_1 \Pi_1 \\ \Gamma_1, A_2 \Delta_1 \Sigma_1 \Pi_1 \end{array} \right] $	$\text{if }\Gamma_1,A_1\wedge A_2 \Delta_1 \Sigma_1 \Pi_1\in\xi\\$
$ \left\{ \begin{array}{c} \Gamma_1 \Delta_1, B_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1, B_2 \Sigma_1 \Pi_1 \\ \Gamma_1, B_1 \Delta_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1, B_2 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1, B_1 \Sigma_1 \Pi_1 \\ \end{array} \right. $	$\text{if } \Gamma_1 \Delta_1, B_1 \wedge B_2 \Sigma_1 \Pi_1 \in \xi$
$ \left\{ \begin{array}{c} \left[\begin{array}{c} \Gamma_1, B_2 \Delta_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, C_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, C_2 \Pi_1 \\ \left[\begin{array}{c} \Gamma_1, C_1 \Delta_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, C_2 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, C_1 \Pi_1 \\ \Gamma_1, C_2 \Delta_1 \Sigma_1 \Pi_1 \end{array} \right] \right\} $	$\text{if}\ \Gamma_1 \Delta_1 \Sigma_1,C_1\wedge C_2 \Pi_1\in\xi$
$\left\{\begin{array}{c} \Gamma_{1} \Delta_{1} \Sigma_{1} D_{1},\Pi_{1}\\ \Gamma_{1} \Delta_{1} \Sigma_{1} D_{2},\Pi_{1}\\ \Gamma_{1} \Delta_{1} \Sigma_{1} D_{2},\Pi_{1}\\ \Gamma_{1} \Delta_{1},D_{1} \Sigma_{1} \Pi_{1}\\ \Gamma_{1} \Delta_{1} \Sigma_{1},D_{2} \Pi_{1}\\ \Gamma_{1} \Delta_{1} \Sigma_{1},D_{1} \Pi_{1}\\ \Gamma_{1} \Delta_{1},D_{2} \Sigma_{1} \Pi_{1}\end{array}\right.$	$\text{if}\ \Gamma_1 \Delta_1 \Sigma_1 D_1\wedge D_2, \Pi_1\in\xi$

and

$ \left\{ \begin{array}{l} \Gamma_1, A_1 \Delta_1 \Sigma_1 \Pi_1 \\ \Gamma_1, A_2 \Delta_1 \Sigma_1 \Pi_1 \\ \left[\begin{array}{c} \Gamma_1 \Delta_1, A_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, A_2 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, A_1 \Pi_1 \\ \Gamma_1 \Delta_1, A_2 \Sigma_1 \Pi_1 \end{array} \right. $	$\text{if } \Gamma_1, A_1 \vee A_2 \Delta_1 \Sigma_1 \Pi_1 \in \xi$
$ \left\{ \begin{array}{c} \Gamma_1 \Delta_1, B_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1, B_2 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1, B_1 \Sigma_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1 \Pi_1, B_2 \\ \Gamma_1 \Delta_1 \Sigma_1 \Pi_1, B_1 \\ \Gamma_1 \Delta_1, B_2 \Sigma_1 \Pi_1 \end{array} \right. $	$\text{if } \Gamma_1 \Delta_1, B_1 \vee B_2 \Sigma_1 \Pi_1 \in \xi$
$\begin{cases} \begin{bmatrix} \Gamma_1 \Delta_1 \Sigma_1, C_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1, C_2 \Pi_1 \\ \\ \Gamma_1 \Delta_1 \Sigma_1, C_1 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1 \Pi_1, C_2 \\ \\ \\ \Gamma_1 \Delta_1 \Sigma_1 \Pi_1, C_1 \\ \\ \\ \Gamma_1 \Delta_1 \Sigma_1, C_2 \Pi_1 \end{cases} \end{cases}$	$\text{if } \Gamma_1 \Delta_1 \Sigma_1, C_1 \vee C_2 \Pi_1 \in \xi$
$ \left\{ \begin{array}{c} \Gamma_1 \Delta_1 \Delta_1 D_1, \Theta_2 \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1 D_1, \Pi_1 \\ \Gamma_1 \Delta_1 \Sigma_1 D_2, \Pi_1 \end{array} \right. $	$\text{if }\Gamma_1 \Delta_1 \Sigma_1 D_1\vee D_2,\Pi_1\in\xi\\$

$$\left\{ \begin{array}{ll} \left[\begin{array}{c} \Gamma_{1}, A_{1}(c) |\Delta_{1}|\Sigma_{1}|\Pi_{1} & \text{if } \Gamma_{1}, \forall x A_{1}(x) |\Delta_{1}|\Sigma_{1}|\Pi_{1} \in \xi \\ c \text{ does not occur in current } T & \text{if } \Gamma_{1}, \forall x A_{1}(x) |\Delta_{1}|\Sigma_{1}|\Pi_{1} \in \xi \\ \\ \left\{ \begin{array}{c} \left[\begin{array}{c} \Gamma_{1} |\Delta_{1}, B_{1}(t)|\Sigma_{1}|\Pi_{1} & \\ \Gamma_{1}, B_{1}(c)|\Delta_{1}|\Sigma_{1}|\Pi_{1} & \\ c \text{ does not occur in current } T & \\ \Gamma_{1} |\Delta_{1}, B_{1}(c)|\Sigma_{1}|\Pi_{1} & \\ c \text{ does not occur in current } T & \\ \\ \left\{ \begin{array}{c} \Gamma_{1} |\Delta_{1}|\Sigma_{1}, C_{1}(t)|\Pi_{1} & \\ \Gamma_{1}, C_{1}(c)|\Delta_{1}|\Sigma_{1}|\Pi_{1} & \\ c \text{ does not occur in current } T & \\ \\ \Gamma_{1} |\Delta_{1}|\Sigma_{1}, C_{1}(t)|\Pi_{1} & \\ \Gamma_{1} |\Delta_{1}|\Sigma_{1}, C_{1}(c)|\Pi_{1} & \\ \Gamma_{1} |\Delta_{1}|\Sigma_{1}, C_{1}(c)|\Pi_{1} & \\ c \text{ does not occur in current } T & \\ \\ \Gamma_{1} |\Delta_{1}|\Sigma_{1}, C_{1}(c)|\Pi_{1} & \\ c \text{ does not occur in current } T & \\ \\ \Gamma_{1} |\Delta_{1}|\Sigma_{1}, D_{1}(t), \Pi_{1} & \\ \end{array} \right. & \text{if } \Gamma_{1} |\Delta_{1}|\Sigma_{1}|\forall x D_{1}(x), \Pi_{1} \in \xi \end{array} \right.$$

and

• for each $\Gamma_2|\Delta_2, B'_1(t)|\Sigma_2|\Pi_2 \in T$ such that $\Gamma_2|\Delta_2, B'_1(t)|\Sigma_2|\Pi_2$ has not be applied to a constant c, and for each child node $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ of $\Gamma_2|\Delta_2, B'_1(t)|\Sigma_2|\Pi_2$, let the child node of $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ contain sequent $\Gamma_{3}|\Delta_{3}, B_{1}'(c)|\Sigma_{3}|\Pi_{3};$

• for each $\Gamma_2|\Delta_2|\Sigma_2, C'_1(t)|\Pi_2 \in T$ such that $\Gamma_2|\Delta_2|\Sigma_2, C'_1(t)|\Pi_2$ has not be applied to a constant c, and for each child node $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ of $\Gamma_2|\Delta_2|\Sigma_2, C'_1(t)|\Pi_2$, let the child node of $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ contain sequent $\Gamma_{3}|\Delta_{3}|\Sigma_{3}, C_{1}'(c)|\Pi_{3};$

• for each $\Gamma_2|\Delta_2|\Sigma_2|D_1'(t), \Pi_2 \in T$ such that $\Gamma_2|\Delta_2|\Sigma_2|D_1'(t), \Pi_2$ has not be applied to a constant c, and for each child node $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ of $\Gamma_2|\Delta_2|\Sigma_2|D'_1(t),\Pi_2$, let the child node of $\Gamma_3|\Delta_3|\Sigma_3|\Pi_3$ contain sequent $\Gamma_3|\Delta_3|\Sigma_3|D_1'(c),\Pi_3,$

where $\begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$ represents that δ_1, δ_2 are at a same child node; and $\begin{cases} \delta_1 \\ \delta_2 \end{bmatrix}$ represents that δ_1, δ_2 are at different direct chil-

dren nodes.

Lemma 4.4 If there is a branch $\xi \subseteq T$ such that each multisequent $\Gamma'|\Delta'|\Sigma'|\Pi' \in \xi$ is an axiom in \mathbf{G}_2^2 then ξ is a proof of $\Gamma |\Delta| \Sigma |\Pi$.

Proof. By the definition of T, T is a proof tree of $\Gamma |\Delta|\Sigma|\Pi$.

Lemma 4.5 For each branch $\xi \subseteq T$, there is a multisequent $\Gamma'|\Delta'|\Sigma'|\Pi' \in \xi$ is not an axiom in \mathbf{G}_2^2 then there is an assignment v such that $v \not\models \Gamma |\Delta| \Sigma |\Pi$.

Proof. Let γ be the set of all the atomic multisequents in Twhich is not an axiom.

Let

$$\begin{split} \mathbf{A} &= \{l: l \in \Gamma', \Gamma' | \Delta' | \Sigma' | \Pi' \in \gamma\}, \\ \mathbf{B} &= \{l: l \in \Delta', \Gamma' | \Delta' | \Sigma' | \Pi' \in \gamma\}, \\ \mathbf{C} &= \{l: l \in \Sigma', \Gamma' | \Delta' | \Sigma' | \Pi' \in \gamma\}, \\ \mathbf{D} &= \{l: l \in \Pi', \Gamma' | \Delta' | \Sigma' | \Pi' \in \gamma\}, \end{split}$$

and U be the set of all the constants occurring in $\mathbf{A} \cup \mathbf{B} \cup$ $\mathbf{C} \cup \mathbf{D}$. Define an interpretation *I* such that

$$I(p(c_1,...,c_n)) = \begin{cases} f & \text{if } p(c_1,...,c_n) \in \mathbf{A} \\ \bot & \text{if } p(c_1,...,c_n) \in \mathbf{B} \\ \top & \text{if } p(c_1,...,c_n) \in \mathbf{C} \\ t & \text{if } p(c_1,...,c_n) \in \mathbf{D} \\ t & \text{otherwise.} \end{cases}$$

We proved by induction on tree that each $\xi \in T$ contains a multisequent $\Gamma' | \Delta' | \Sigma' | \Pi' \in \xi$ which is not satisfied by v.

Case 1. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'', \neg B|\Sigma'|\Pi' \in \xi$. Then, ξ has a direct child node containing $\Gamma' | \Delta'' | \Sigma', B | \Pi'$. By induction assumption, if $v \not\models \Gamma' | \Delta'' | \Sigma', B | \Pi'$, i.e., $v(B) \neq \bot$, then $v \not\models \Gamma' | \Delta'', \neg B | \Sigma' | \Pi'.$

Case 2. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'', A_1 \wedge A_2|\Delta'|\Sigma'|\Pi' \in \xi$. Then, ξ has a direct child node containing $\Gamma'', A_1|\Delta'|\Sigma'|\Pi'$ and $\Delta'', A_2 |\Theta'| \Gamma'$. By induction assumption, if either $v \not\models$ $\Gamma'', A_1|\Delta'|\Sigma'|\Pi', \text{ or } v \not\models \Gamma'', A_2|\Delta'|\Sigma'|\Pi' \text{ then } v \not\models$ $\Gamma'', A_1 \wedge A_2 |\Delta'| \Sigma' |\Pi'.$

Case 3. $\Gamma' |\Delta'| \Sigma' |\Pi' = \Gamma' |\Delta'', B_1 \wedge B_2 |\Sigma''| \Pi' \in \xi$. Then, ξ has three direct children node containing

$$\begin{split} & \Gamma'|\Delta'',B_1|\Sigma'|\Pi',\Gamma'|\Delta'',B_2|\Sigma'|\Pi';\\ & \Gamma'|\Delta'',B_1|\Sigma'|\Pi',\Gamma'|\Delta''|\Sigma'|\Pi',B_2;\\ & \Gamma'|\Delta''|\Sigma'|\Pi',B_1,\Gamma'|\Delta'',B_2|\Sigma'|\Pi'; \end{split}$$

respectively. By induction assumption, if

either
$$v \not\models \Gamma'|\Delta'', B_1|\Sigma'|\Pi'$$
, or $v \not\models \Gamma'|\Delta'', B_2|\Sigma'|\Pi'$;
either $v \not\models \Gamma'|\Delta'', B_1|\Sigma'|\Pi'$, or $v \not\models \Gamma'|\Delta''|\Sigma'|B_2, \Pi'$;
either $v \not\models \Gamma'|\Delta''|\Sigma'|B_1, \Pi'$, or $v \not\models \Gamma'|\Delta'', B_2|\Sigma'|\Pi'$;

then $v \not\models \Gamma' | \Delta'', B_1 \wedge B_2 | \Sigma' | \Pi'$.

Case 4. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'|\Sigma'', C_1 \wedge C_2|\Pi' \in \xi$. Then, ξ has three direct children node containing

```
 \begin{split} \Gamma'|\Delta'|\Sigma'',C_1|\Pi',\Gamma'|\Delta'|\Sigma'',C_2|\Pi';\\ \Gamma'|\Delta'|\Sigma'',C_1|\Pi',\Gamma'|\Delta'|\Sigma''|\Pi',C_2;\\ \Gamma'|\Delta'|\Sigma''|\Pi',C_1,\Gamma'|\Delta'|\Sigma'',C_2|\Pi'; \end{split}
```

respectively. By induction assumption, if

either $v \not\models \Gamma'|\Delta'|\Sigma'', C_1|\Pi', \text{ or } v \not\models \Gamma'|\Delta'|\Sigma'', C_2|\Pi';$ either $v \not\models \Gamma'|\Delta'|\Sigma'', C_1|\Pi', \text{ or } v \not\models \Gamma'|\Delta'|\Sigma''|C_2, \Pi';$ either $v \not\models \Gamma'|\Delta'|\Sigma''|C_1, \Pi', \text{ or } v \not\models \Gamma'|\Delta'|\Sigma'', C_2|\Pi';$

then $v \not\models \Gamma' | \Delta' | \Sigma'', C_1 \wedge C_2 | \Pi'.$

Case 5. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'|\Sigma'|D_1 \wedge D_2, \Pi'' \in \xi$. Then, ξ has four direct children nodes containing one of the following multisequents:

$$\begin{split} & \Gamma'|\Delta'|\Sigma'|D_1,\Pi'',\\ & \Gamma'|\Delta'|\Sigma'|D_2,\Pi'',\\ & \Gamma'|\Delta',D_1|\Sigma'|\Pi'';\Gamma'|\Delta'|\Sigma',D_2|\Pi'',\\ & \Gamma'|\Delta'|\Sigma',D_1|\Pi'';\Gamma'|\Delta',D_2|\Sigma'|\Pi'' \end{split}$$

By induction assumption,

$$v \not\models \Gamma'|\Delta'|\Sigma'|D_1, \Pi'', v \not\models \Gamma'|\Delta'|\Sigma'|D_2, \Pi'', v \not\models \Gamma'|\Delta', D_1|\Sigma'|\Pi''; \text{ or } v \not\models \Gamma'|\Delta'|\Sigma', D_2|\Pi'', v \not\models \Gamma'|\Delta'|\Sigma', D_1|\Pi''; \text{ or } v \not\models \Gamma'|\Delta', D_2|\Sigma'|\Pi''$$

Hence, $v \not\models \Gamma' |\Delta'| \Sigma' |D_1 \wedge D_2, \Pi''$.

Case 6. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'', \forall x A_1(x)|\Delta'|\Sigma'|\Pi' \in \xi$. Then, ξ has a direct child node containing $\Gamma'', A_1(d)|\Delta'|\Sigma'|\Pi'$ for each constant d occurring in ξ . By induction assumption, $v \not\models \Gamma'', A_1(d)|\Delta'|\Sigma'|\Pi'$ for some d occurring in ξ , i.e., $v \not\models \Gamma'', \forall x A_1(x)|\Delta'|\Sigma'|\Pi'$.

Case 7. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'', \forall x B_1(x)|\Sigma''|\Pi' \in \xi$. Then, ξ has two direct child nodes containing either

$$\Gamma'|\Delta'', B_1(c)|\Sigma'|\Pi', \Gamma', B_1(d)|\Delta''|\Sigma'|\Pi'$$

for each d occurring in ξ , or

$$\Gamma'|\Delta'', B_1(c)|\Sigma'|\Pi', \Gamma'|\Delta'', B_1(d)|\Sigma'|\Pi'$$

for each d occurring in ξ . By induction assumption, (1) either $v \not\models \Gamma'|\Delta'', B_1(c)|\Sigma'|\Pi'$, or $v \not\models \Gamma', B_1(d)|\Delta''|\Sigma'|\Pi'$ for some d; and (2) either $v \not\models \Gamma'|\Delta'', B_1(c)|\Sigma'|\Pi'$, or $v \not\models \Gamma'|\Delta'', B_1(d)|\Sigma'|\Pi'$ for some d. Then $v \not\models \Gamma'|\Delta'', \forall x B_1(x)|\Sigma'|\Pi'$. Case 8. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'|\Sigma'', \forall xC_1(x)|\Pi' \in \xi$. Then, ξ has two direct children nodes containing either

$$\Gamma'|\Delta''|\Sigma', C_1(c)|\Pi', \Gamma', C_1(d)|\Delta''|\Sigma'|\Pi'$$

for each d occurring in ξ , or

 $\Gamma'|\Delta''|\Sigma', C_1(c)|\Pi', \Gamma'|\Delta''|\Sigma', C_1(d)|\Pi'$

for each d occurring in ξ . By induction assumption, (1) either $v \not\models \Gamma' | \Delta'' | \Sigma', C_1(c) | \Pi'$, or $v \not\models \Gamma', C_1(d) | \Delta'' | \Sigma' | \Pi'$ for some d; and (2) either $v \not\models \Gamma' | \Delta'' | \Sigma', C_1(c) | \Pi'$, or $v \not\models \Gamma' | \Delta'' | \Sigma', C_1(d) | \Pi'$ for some d. Then $v \not\models \Gamma' | \Delta'' | \Sigma', \forall x C_1(x) | \Pi'$.

Case 9. $\Gamma'|\Delta'|\Sigma'|\Pi' = \Gamma'|\Delta'|\Sigma'|\forall x D_1(x), \Pi'' \in \xi$. Then, ξ has a direct child node containing $\Gamma|\Delta|\Sigma|D_1(c), \Pi$. By induction assumption, $v \not\models \Gamma'|\Delta'|\Sigma'|D_1(c), \Pi''$, and hence, $v \not\models \Gamma'|\Delta'|\Sigma'|\forall x D_1(x), \Pi''$.

Similar for other cases.

5. DISCUSSION

In the proof of completeness theorem, given a sequent $\Gamma \Rightarrow \Delta$ to be proved and a deduction rule of form

$$\frac{P}{S}$$
 Q

where P, Q, S are sequents, we decompose a node containing S into two children nodes containg P and Q, respectively:

Given a deduction rule of form

we merge sequents P and Q into one sequent P, Q:

In the end, we get a tree T such that each sequent at the leaf node of T is atomic. If each leaf has an axiom then T is a proof tree; otherwise, there is a branch γ of T such that the leaf node of γ contains no axiom. Then, we define an assignment v in which the sequent $\Gamma \Rightarrow \Delta$ is not satisfied. duction rules

$$\left\{\begin{array}{c} \frac{P_1 \quad P_2}{Q_1 \quad Q_2}\\ \frac{Q_1 \quad Q_2}{R_1 \quad R_2}\\ \frac{R_1 \quad R_2}{S} \end{array}\right.$$

has eight children nodes:

In another way, given a deduction rule

$$\frac{P \qquad Q}{S}$$

we merge sequents P and Q into one sequent P, Q:

$$P, Q$$
 $|$
 S

Given a deduction rule:

$$\left\{\begin{array}{c}
\frac{P}{S}\\
\frac{Q}{S}
\end{array}\right.$$

For multisequents, a node containing S which has three de- a node containing S has two children nodes containing Pand Q, respectively:

In the end, we get a tree T such that each sequent at the leaf node of T is atomic. If there is a branch γ such that each sequent at the leaf node of γ is an axiom then γ is a proof of $\Gamma \Rightarrow \Delta$; otherwise, for each leaf node ξ of T, there is a sequent at ξ is not an axiom. Then, we define an assignment v in which the sequent $\Gamma \Rightarrow \Delta$ is not satisfied.

For multisequents, a node containing S which has three deduction rules -

$$\left\{\begin{array}{c} \frac{P_1 \quad P_2}{S}\\ \frac{Q_1 \quad Q_2}{R_1 \quad R_2}\\ \frac{R_1 \quad R_2}{S}\end{array}\right.$$

has three children nodes:

Dually, for existential quantifier \exists we have the following definition of truth-value:

$$v(\exists x A_1(x)) = \begin{cases} \mathsf{t} & \text{if } \mathbf{E}a \in U(v_{x/a}(A_1(x)) = \mathsf{t}) \\ \top & \text{if } \mathbf{A}a \in U(v_{x/a}(A_1(x)) \in \{\mathsf{f}, \top\}) \& \mathbf{E}a \in U(v_{x/a}(A_1(x)) = \top) \\ \bot & \text{if } \mathbf{A}a \in U(v_{x/a}(A_1(x)) \in \{\mathsf{f}, \bot\}) \& \mathbf{E}a \in U(v_{x/a}(A_1(x)) = \bot) \\ \mathsf{f} & \text{if } \mathbf{A}a \in U(v_{x/a}(A_1(x)) = \mathsf{f}). \end{cases}$$

and deduction rules:

$$(\exists^{A}) \frac{\Gamma, A(t)|\Delta|\Sigma|\Pi}{\Gamma, \exists x A(x)|\Delta|\Sigma|\Pi} (\exists^{B}_{1}) \frac{\Gamma|\Delta, B(t)|\Sigma|\Pi}{\Gamma|\exists x B(x), \Delta|\Sigma|\Pi} (\exists^{B}_{2}) \frac{\Gamma|\Delta, B(t)|\Sigma|\Pi}{\Gamma|\exists x B(x), \Delta|\Sigma|\Pi} (\exists^{B}_{2}) \frac{\Gamma|\Delta, B(t)|\Sigma|\Pi}{\Gamma|\Delta, B(x)|\Sigma|\Pi} (\exists^{B}_{2}) \frac{\Gamma|\Delta, B(t)|\Sigma|\Pi}{\Gamma|\Delta, B(t)|\Sigma|\Pi} (\Xi^{B}_{2}) \frac{\Gamma|\Delta, B(t)|\Sigma|\Pi}{\Gamma} (\Xi^{B}_{2}) \frac{\Gamma|\Delta, B(t)$$

where t is a term and x is a new variable not occurring free in Γ, Δ, Σ and Π .

6. CONCLUSION

A Gentzen deduction system for \mathbf{B}_2^2 -valued first-order logic is given and soundness and completeness theorems are proved.

A future work will consider different choices for defining the truth-values of quantified formulas. One choice is as follows:

• $\forall x A(x)$ has truth-value t if for each element a, A(x/a) has truth-value t;

• $\forall x A(x)$ has truth-value \top if for each element a, A(x/a) has truth-value \top ;

• $\forall x A(x)$ has truth-value \perp if for each element a, A(x/a) has truth-value \perp ;

• $\forall x A(x)$ has truth-value f if for each element a, A(x/a) has truth-value f.

REFERENCES

- Li W. Mathematical Logic, Foundations for Information Science. Progress in Computer Science and Applied Logic, vol.25, Birkhauser, 2010.
- [2] Gottwald S. A Treatise on Many-Valued Logics (Studies in Logic and Computation, vol. 9), Baldock: Research Studies Press Ltd., 2001.
- [3] Hahnle R. Advanced many-valued logics, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic vol. 2, Dordrecht: Kluwer, 297-395, 2001.
- [4] Lukasiewicz J, Selected Works L. Borkowski(ed.), Amsterdam: North-Holland and Warsaw: PWN, 1970.
- [5] Malinowski G. Many-valued Logic and its Philosophy, in D. M. Gabbay and J. Woods (eds.), Handbook of the History of Logic, vol. 8,

The Many Valued and Nonmonotonic Turn in Logic, Elsevier, 2009.

- [6] Novak V. A formal theory of intermediate quantiers. Fuzzy Sets and Systems. 2008; 159: 1229-1246. https://doi.org/10.1016/j. fss.2007.12.008
- [7] Straccia U. Reasoning within fuzzy description logics. J. Artificial Intelligence Res. 2001; 14: 137-166.
- [8] Urquhart A. Basic many-valued logic, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 2 (2d edition), Dordrecht: Kluwer, 249-295, 2001.
- Wronski A. Remarks on a survey article on many valued logic by A. Urquhart, StudiaLogica. 1987; 46: 275-278. https://doi.org/10 .1007/BF00372552