# Multisequent Gentzen Deduction Systems for $B_{2}^{2}$-valued first-order logic 

Wei Li ${ }^{1}$, Yuefei Sui ${ }^{* 2,3}$<br>${ }^{1}$ State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing, China<br>${ }^{2}$ Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China<br>${ }^{3}$ College of Computer Science and Control, University of Chinese Academy of Sciences, Beijing, China

Received: December 14, 2017
DOI: 10.5430/air.v7n1p53

Accepted: March 5, 2018
URL: https://doi.org/10.5430/air.v7n1p53


#### Abstract

For the four-element Boolean algebra $\mathbf{B}_{2}^{2}$, a multisequent $\Gamma|\Delta| \Sigma \mid \Pi$ is a generalization of sequent $\Gamma \Rightarrow \Delta$ in traditional $\mathbf{B}_{2}$-valued first-order logic. By defining the truth-values of quantified formulas, a Gentzen deduction system $\mathbf{G}_{2}^{2}$ for $\mathbf{B}_{2}^{2}$-valued first-order logic will be built and its soundness and completeness theorems will be proved.


Key Words: Multisequent, Hypersequent, $\mathbf{B}_{2}^{2}$-valued semantics, Soundness theorem, Completeness theorem

## 1. INTRODUCTION

In traditional propositional logic, ${ }^{[1]}$ the negation connective $\neg$ is eliminated via the following rules in a Gentzen deduction system:

$$
\left(\neg^{L}\right) \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta} \quad\left(\neg^{R}\right) \frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}
$$

The truth-value of a sequent $\Gamma \Rightarrow \Delta$ under an assignment $v$ is defined by a condition of $(\exists \vee \exists)$-form, that is, either some formula $A$ in $\Gamma$ is false, or some formula $B$ in $\Delta$ is true.

In $\mathbf{B}_{2}^{2}$-valued first-order logic, where $\mathbf{B}_{2}^{2}=(\{t, \top$, $\perp, f\}, \cap, \cup)$ is the four-element Boolean algebra, a multisequent is a quandrupe $(\Gamma, \Delta, \Sigma, \Pi)$, where $\Gamma, \Delta, \Sigma, \Pi$ are sets of formulas. Multisequent $(\Gamma, \Delta, \Sigma, \Pi)$ is true in a model $M$ and an assignment $v$ if either

- some formula $A$ in $\Gamma$ has truth-value t , or
- some formula $B$ in $\Delta$ has truth-value $\top$, or
- some formula $C$ in $\Sigma$ has truth-value $\perp$, or
- some formula $D$ in $\Pi$ has truth-value $f$.

By the semantics, multisequents are different from hypersequents. ${ }^{[2,3]}$ A sequent $\Gamma \Rightarrow \Delta$ is taken as a multisequent $\Delta \mid \Gamma$.

Here, negation $\neg$ commutes $t$ with $f$ and $\top$ with $\perp$. Traditional deduction rules $\left(\neg^{L}\right)$ and $\left(\neg^{R}\right)$ do not work here.

For quantifiers, in traditional first-order logic, $\forall x A(x)$ is true if for each element $a, A(x / a)$ is true; and $\forall x A(x)$ is false if for some element $a, A(x / a)$ is false. In $\mathbf{B}_{2}^{2}$-valued first-order logic, we define that $\forall x A(x)$ has truth-value

- t if for each element $a, A(x / a)$ has truth-value t ;
- $\top$ if for some element $b, A(x / b)$ has truth-value $\top$, and for each element $a, A(x / a)$ has truth-value either t or $\top$;
- $\perp$ if for some element $b, A(x / b)$ has truth-value $\perp$, and for

[^0]each element $a, A(x / a)$ has truth-value either t or $\perp$;

- f if for some element $a, A(x / a)$ has truth-value f .


In this paper, we will give a sound and complete Gentzen deduction system $\mathbf{G}_{2}^{2[4-9]}$ for $\mathbf{B}_{2}^{2}$-valued first-order logic and prove soundness and completeness theorems for $\mathbf{B}_{2}^{2}$-valued first-order logic, that is, for any multisequent $\Gamma|\Delta| \Sigma \mid \Pi$,

- Soundness theorem: if $\Gamma|\Delta| \Sigma \mid \Pi$ is provable in $\mathbf{G}_{2}^{2}$ then $\Gamma|\Delta| \Sigma \mid \Pi$ is valid;
- Completeness theorem: if $\Gamma|\Delta| \Sigma \mid \Pi$ is valid then $\Gamma|\Delta| \Sigma \mid \Pi$ is provable in $\mathbf{G}_{2}^{2}$.
The paper is organized as follows: the next section gives basic definitions in $\mathbf{B}_{2}$-valued first-order logic; the third section gives basic definitions of $\mathbf{B}_{2}^{2}$-valued first-order logic; the fourth section gives Gentzen deduction system $\mathbf{G}_{2}^{2}$ for $\mathbf{B}_{2}^{2}$-valued first-order logic and prove soundness and completeness theorem; the fifth section discusses the different constructions of trees in the proof of completeness theorem, and the last section concluded the paper.


## 2. MULTISEQUENT DEDUCTION SYSTEM FOR $B_{2}$-VALUED FIRST-ORDER LOGIC

Let $L$ be a logical language of first-order logic which contains the following symbols:

- constant symbols: $c_{0}, c_{1}, \ldots$;
- variable symbols: $x_{0}, x_{1}, \ldots ;$
- function symbols: $f_{0}, f_{1}, \ldots ;$
- predicate symbol: $p_{0}, p_{1}, \ldots$; and
- logical connectives and quantifiers: $\neg, \wedge, \vee, \forall$.

A term $t$ is a string of the following forms:

$$
t::=c|x| f\left(t_{1}, \ldots, t_{n}\right)
$$

where $f$ is an $n$-ary function symbol.

A formula $A$ is a string of the following forms:

$$
A::=p\left(t_{1}, \ldots, t_{n}\right)\left|\neg A_{1}\right| A_{1} \wedge A_{2}\left|A_{1} \vee A_{2}\right| \forall x A_{1}(x)
$$

where $p$ is an $n$-ary predicate symbol.
Let $\mathbf{B}_{2}=(\{\mathrm{t}, \mathrm{f}\}, \neg, \cup, \cap)$ be the least Boolean algebra, where

|  | $\neg$ | $\cap$ | $t$ | $f$ | $U$ | $t$ | $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | $f$ |  | $t$ | $t$ | $f$ |  | $t$ |
| $f$ | $t$ | $t$ |  |  |  |  |  |
| $f$ | $f$ | $f$ | $f$ | $f$ | $t$ | $f$ |  |

A model $M$ is a pair $(U, I)$, where $U$ is a universe and $I$ is an interpretation such that for any constant symbol $c, I(c) \in U$; for any $n$-ary function symbol $f, I(f): U^{n} \rightarrow U$ is a function; and for any $n$-ary predicate symbol $p, I(p): U^{n} \rightarrow \mathbf{B}_{2}$ is a relation on $U$.

An assignment $v$ is a function from variables to $U$. The interpretation $t^{I, v}$ of $t$ in $(M, v)$ is

$$
t^{I, v}= \begin{cases}I(c) & \text { if } t=c \\ v(x) & \text { if } t=x \\ I(f)\left(t_{1}^{I, v}, \ldots, t_{n}^{I, v}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Given a formula $A$, define

$$
v(A)= \begin{cases}I(p)\left(t_{1}^{I, v}, \ldots, t_{n}^{I, v}\right) & \text { if } A=p\left(t_{1}, \ldots, t_{2}\right) \\ \neg\left(A_{1}^{I, v}\right) & \text { if } A=\neg A_{1} \\ v\left(A_{1}\right) \cap v\left(A_{2}\right) & \text { if } A=A_{1} \wedge A_{2} \\ v\left(A_{1}\right) \cup v\left(A_{2}\right) & \text { if } A=A_{1} \vee A_{2} \\ \min \left\{v_{x / a}\left(A_{1}(x)\right): a \in U\right\} & \text { if } A=\forall x A_{1}(x)\end{cases}
$$

where for any variable $y$,

$$
v_{x / a}(y)= \begin{cases}v(y) & \text { if } y \neq x \\ a & \text { otherwise }\end{cases}
$$

Hence,

$$
\begin{aligned}
& v\left(\forall x A_{1}(x)\right)=\mathrm{t} \text { iff } \mathbf{A} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\mathrm{t}\right) \\
& v\left(\forall x A_{1}(x)\right)=\mathrm{f} \text { iff } \mathbf{E} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\mathrm{f}\right)
\end{aligned}
$$

where in syntax, we use $\neg, \wedge, \rightarrow, \forall, \exists$ to denote logical connectives and quantifiers; and in semantics we use $\sim, \&$, $\Rightarrow, \mathbf{A}, \mathbf{E}$ to denote the corresponding connectives and quantifiers.

A formula $A$ is satisfied in $(I, v)$, denoted by $I, v \models A$, if $v(A)=\mathrm{t} ; A$ is valid in $I$, denoted by $I \models A$, if for any assignment $v, I, v \models A$; and $A$ is valid, denoted by $\models A$, if for any interpretation $I, I \models A$.

Let $\Delta, \Gamma$ be sets of formulas. A multisequent $\delta$ is of form $\Gamma \mid \Delta$. We say that $\delta$ is satisfied in an interpretation $I$ and an assignment $v$, denoted by $I, v \models \Gamma \mid \Delta$, if either $I, v \models \Gamma$, or $I, v \models \Delta$, where $I, v \models \Delta$ if $v(A)=\mathrm{t}$ for some $A \in \Delta$; and $I, v \models \Gamma$ if $v(B)=\mathrm{f}$ for some $B \in \Gamma$.
$\delta$ is satisfied in an interpretation $I$, denoted by $I \models \delta$ if $I, v \models \delta$ for any assignment $v$; and $\delta$ is valid, denoted by $\models \delta$, if $\delta$ is satisfied in any interpretation $I$.

Gentzen deduction system $\mathbf{G}_{2}$ contains the following axioms and deduction rules:

- Axioms:

$$
\frac{\Gamma \cap \Delta \neq \emptyset}{\Delta \mid \Gamma}(\mathbf{A})
$$

where $\Delta, \Gamma$ are sets of atomic formulas.

## - Deduction rules:

$$
\begin{array}{ll}
\left(\neg^{L}\right) \frac{\Delta \mid A, \Gamma}{\Delta, \neg A \mid \Gamma} & \left(\neg^{R}\right) \frac{\Delta, B \mid \Gamma}{\Delta \mid \neg B, \Gamma} \\
\left(\wedge^{L}\right) \frac{\Delta, A_{1}\left|\Gamma \Delta, A_{2}\right| \Gamma}{\Delta, A_{1} \wedge A_{2} \mid \Gamma} & \left(\wedge_{1}^{R}\right) \frac{\Delta \mid B_{1}, \Gamma}{\Delta \mid B_{1} \wedge B_{2}} \\
\left(\vee_{1}^{L}\right) \frac{\Delta, A_{1} \mid \Gamma}{\Delta, A_{1} \vee A_{2} \mid \Gamma} & \left(\wedge_{2}^{R}\right) \frac{\Delta \mid B_{2}, \Gamma}{\Delta \mid B_{1} \wedge B_{2}} \\
\left(\vee_{2}^{L}\right) \frac{\Delta\left|B_{1}, \Gamma \Delta\right| B_{2}, \Gamma}{\Delta \mid B_{1} \vee B_{2}}\left(\vee^{R}\right) \\
\left(\forall^{L}\right) \frac{\Delta, A_{1} \vee A_{2} \mid \Gamma}{\Delta, \forall(x) \mid \Gamma} & \left(\forall^{R}\right) \frac{\Delta \mid B(t), \Gamma}{\Delta \mid \forall x B(x), \Gamma}
\end{array}
$$

where $x$ is a new variable not occurring free in $\forall x A(x)$, and $t$ is a term.

Theorem 2.1 (Soundness theorem). For any multisequent $\Delta \mid \Gamma$, if $\vdash \Delta \mid \Gamma$ then $\models \Delta \mid \Gamma$.

Theorem 2.2 (Completeness theorem). For any multisequent $\Delta|\Gamma, \vdash \Delta| \Gamma$ only if $\models \Delta \mid \Gamma$.

## 3. $\mathbf{B}_{2}^{2}$-VALUED FIRST-ORDER LOGIC

Let $\mathbf{B}_{2}^{2}$ be a Boolean algebra $(\{\mathrm{t}, \top, \perp, \mathrm{f}\}, \neg, \cup, \cap)$, where

|  | $\neg$ | $\cap$ | t | $\top$ | $\perp$ | f |  | $\cup$ | t | T | $\perp$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | f |  |  |  |  |  |  |  |  |  |  |
| t | f | t | t | T | $\perp$ | f | t | t | t | t | t |
| T | $\perp$ | T | T | T | f | f | T | t | T | t | T |
| $\perp$ | $\top$ | $\perp$ | $\perp$ | f | $\perp$ | f | $\perp$ | t | t | $\perp$ | $\perp$ |
| f | t | f | f | f | f | f | f | t | T | $\perp$ | f |

A model $M$ is a pair $(U, I)$, where $U$ is a universe and $I$ is an interpretation such that for any constant symbol $c, I(c) \in U$; for any $n$-ary function symbol $f, I(f): U^{n} \rightarrow U$ is a function; and for any $n$-ary predicate symbol $p, I(p): U^{n} \rightarrow \mathbf{B}_{2}^{2}$ is a relation on $U$.

Given a formula $A$, define

$$
v(A)= \begin{cases}I(p)\left(t_{1}^{I, v}, \ldots, t_{n}^{I, v}\right) & \text { if } A=p\left(t_{1}, \ldots, t_{2}\right) \\ \neg\left(A_{1}^{I, v}\right) & \text { if } A=\neg A_{1} \\ v\left(A_{1}\right) \cap v\left(A_{2}\right) & \text { if } A=A_{1} \wedge A_{2} \\ v\left(A_{1}\right) \cup v\left(A_{2}\right) & \text { if } A=A_{1} \vee A_{2} \\ \text { defined below } & \text { if } A=\forall x A_{1}(x)\end{cases}
$$

where

$$
v\left(\forall x A_{1}(x)\right)= \begin{cases}\mathrm{t} & \text { if } \mathbf{A} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\mathrm{t}\right) \\ \top & \text { if } \mathbf{A} a \in U\left(v_{x / a}\left(A_{1}(x)\right) \in\{\mathrm{t}, \top\}\right) \& \mathbf{E} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\mathrm{\top}\right) \\ \perp & \text { if } \mathbf{A} a \in U\left(v_{x / a}\left(A_{1}(x)\right) \in\{\mathrm{t}, \perp\}\right) \& \mathbf{E} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\perp\right) \\ \mathrm{f} & \text { if } \mathbf{E} a \in U\left(v_{x / a}\left(A_{1}(x)\right)=\mathrm{f}\right)\end{cases}
$$

Let $\Gamma, \Delta, \Sigma, \Pi$ be sets of formulas. A multisequent $\delta$ is of form $\Gamma|\Delta| \Sigma \mid \Pi$. We say that $\delta$ is satisfied in $(I, v)$, denoted by $I, v \models \Gamma|\Delta| \Sigma \mid \Pi$, if either $I, v \models \Gamma, I, v \models \Delta, I, v \models \Sigma$, or $I, v \models \Pi$, where
$I, v \models \Delta$ if for some formula $A \in \Delta, v(A)=\mathrm{t} ;$
$I, v \models \Theta$ if for some formula $B \in \Theta, v(B)=\mathrm{\top}$;
$I, v \models \Gamma$ if for some formula $C \in \Theta, v(C)=\perp$; and
$I, v \models \Pi$ if for some formula $D \in \Pi, v(D)=\mathrm{f}$.
A multisequent $\Gamma|\Delta| \Sigma \mid \Pi$ is valid, denoted by $\models \Gamma|\Delta| \Sigma \mid \Pi$, if for any interpretation $I$ and assignment $v, I, v \models \Gamma|\Delta| \Sigma \mid \Pi$.

Proposition 3.1 Let $\Gamma, \Delta, \Sigma, \Pi$ be sets of atomic formulas. Then, $\Gamma|\Delta| \Sigma \mid \Pi$ is valid if and only if $\Gamma \cap \Delta \cap \Sigma \cap \Pi \neq \emptyset$.

Proof. Assume that $p \in \Gamma \cap \Delta \cap \Sigma \cap \Pi \neq \emptyset$. For any interpreation $I$ and assignment $v$, if $v(p)=\mathrm{t}$ then $I, v \models \Gamma$; if $v(p)=\top$ then $I, v \models \Delta$; if $v(p)=\perp$ then $I, v \models \Sigma$; otherwise, $v(p)=\mathrm{f}, I, v \models \Pi$. Hence, $I, v \models \Gamma|\Delta| \Sigma \mid \Pi$.
Conversely, assume that $\Gamma \cap \Delta \cap \Sigma \cap \Pi=\emptyset$. Let $U$ be the set of all the constants occurring in $\Gamma, \Delta, \Sigma$ or $\Pi$. Define $I$ and $v$ such that for any atomic formula $l$,

$$
v(l)= \begin{cases}*_{4} & \text { if } l=\Gamma_{*_{1}} \cap \Gamma_{*_{2}} \cap \Gamma_{*_{3}} \\ \star_{3} & \text { otherwise, if } l \in \Gamma_{\star_{1}} \cap \Gamma_{\star_{2}}-\bigcup_{*_{1}, *_{2}, *_{3}} \Gamma_{*_{1}} \cap \Gamma_{*_{2}} \cap \Gamma_{*_{3}} \\ f_{\neg}(\#) & \text { otherwise, if } l \in \Gamma_{\#}-\bigcup_{\star_{1}, \star_{2}} \Gamma_{\star_{1}} \cap \Gamma_{\star_{2}}\end{cases}
$$

where $\left\{*_{1}, *_{2}, *_{3}, *_{4}\right\}=\{\mathrm{t}, \top, \perp, \mathrm{f}\}$, and $\Gamma_{\mathrm{t}}=\Gamma, \Gamma_{\mathrm{T}}=$ where $\Gamma, \Delta, \Sigma, \Pi$ are sets of atomic formulas.
$\Delta, \Gamma_{\perp}=\Sigma, \Gamma_{\mathrm{f}}=\Pi ; *_{1} \neq *_{2} \neq \star_{3} \neq \star_{1} ; \star_{1} \neq \star_{2} \in \mathbf{B}_{2}^{2}$, and $\# \in \mathbf{B}_{2}^{2}$. Then, $I, v \notin \Gamma|\Delta| \Sigma \mid \Pi$.

## 4. GENTZEN DEDUCTION SYSTEM

Gentzen deduction system $\mathbf{G}_{2}^{2}$ contains the following axioms and deduction rules:

- Axioms:

$$
\text { (A) } \frac{\Pi \cap \Sigma \cap \Delta \cap \Gamma \neq \emptyset}{\Gamma|\Delta| \Sigma \mid \Pi},
$$

## - Deduction rules for binary logical connective $\wedge$ :

$$
\begin{aligned}
& \left(\wedge_{1}^{B}\right) \frac{\Gamma\left|\Delta, B_{1}\right| \Sigma|\Pi \Gamma| \Delta, B_{2}|\Sigma| \Pi}{\Gamma\left|\Delta, B_{1} \wedge B_{2}\right| \Sigma \mid \Pi} \\
& \left(\wedge_{2}^{B}\right) \frac{\Gamma, B_{1}|\Delta| \Sigma|\Pi| \Pi\left|\Delta, B_{2}\right| \Sigma \mid \Pi}{\Gamma\left|\Delta, B_{1} \wedge B_{2}\right| \Sigma \mid \Pi} \\
& \left(\wedge_{3}^{B}\right) \frac{\Gamma\left|\Delta, B_{1}\right| \Sigma\left|\Pi \Gamma, B_{2}\right| \Delta|\Sigma| \Pi}{\Gamma\left|\Delta, B_{1} \wedge B_{2}\right| \Sigma \mid \Pi} \\
& \left(\wedge_{1}^{D}\right) \frac{\Gamma|\Delta| \Sigma \mid D_{1}, \Pi}{\Gamma|\Delta| \Sigma \mid D_{1} \wedge D_{2}, \Pi} \\
& \left(\wedge_{2}^{D}\right) \frac{\Gamma|\Delta| \Sigma \mid D_{2}, \Pi}{\Gamma|\Delta| \Sigma \mid D_{1} \wedge D_{2}, \Pi} \\
& \left(\wedge_{3}^{D}\right) \frac{\Gamma \Delta, D_{1}|\Sigma| \Pi \Gamma|\Delta| \Sigma, D_{2}, \Pi}{\Gamma \Delta|\Sigma| D_{1} \wedge D_{2}, \Pi} \\
& \left(\wedge_{4}^{D}\right) \frac{\Gamma|\Delta| \Sigma, D_{1}|\Pi \Gamma| \Delta, D_{2}|\Sigma| \Pi}{\Gamma|\Delta| \Sigma \mid D_{1} \wedge D_{2}, \Pi}
\end{aligned}
$$

## - Deduction rules for binary logical connective $\vee$ :

$$
\begin{aligned}
& \left(\vee_{1}^{A}\right) \frac{\Gamma, A_{1}|\Delta| \Sigma \mid \Pi}{\Gamma, A_{1} \vee A_{2}|\Delta| \Sigma \mid \Pi} \\
& \left(\vee_{2}^{A}\right) \frac{\Gamma, A_{2}|\Delta| \Sigma \mid \Pi}{\Gamma, A_{1} \vee A_{2}|\Delta| \Sigma \mid \Pi} \\
& \left(\vee_{3}^{A}\right) \frac{\Gamma|\Delta| \Sigma, A_{1}|\Pi \Gamma| \Delta, A_{2}|\Sigma| \Pi}{\Gamma, A_{1} \vee A_{2}|\Delta| \Sigma \mid \Pi} \\
& \left(\vee_{4}^{A}\right) \frac{\Gamma\left|\Delta, A_{1}\right| \Sigma|\Pi \Gamma| \Delta\left|\Sigma, A_{2}\right| \Pi}{\Gamma, A_{1} \vee A_{2}|\Delta| \Sigma \mid \Pi} \\
& \left(\vee_{1}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C_{1}|\Pi \Gamma| \Delta\left|\Sigma, C_{2}\right| \Pi}{\Gamma|\Delta| \Sigma, C_{1} \vee C_{2} \mid \Pi} \\
& \left(\vee_{2}^{C}\right) \frac{\Gamma|\Delta| \Sigma\left|C_{1}, \Pi \Gamma\right| \Delta\left|\Sigma, C_{2}\right| \Pi}{\Gamma|\Delta| \Sigma, C_{1} \vee C_{2} \mid \Pi} \\
& \left(\vee_{3}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C_{1}|\Pi| \Delta|\Sigma| C_{2}, \Pi}{\Gamma|\Delta| \Sigma, C_{1} \vee C_{2} \mid \Pi}
\end{aligned}
$$

## - Deduction rules for quantifier $\forall$ :

$$
\begin{aligned}
& \left(\forall^{A}\right) \frac{\Gamma, A(x)|\Delta| \Sigma \mid \Pi}{\Gamma, \forall x A(x)|\Delta| \Sigma \mid \Pi} \\
& \left(\forall_{1}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C(t)|\Pi \Gamma, C(x)| \Delta|\Sigma| \Pi}{\Gamma|\forall x B(x), \Delta| \Sigma \mid \Pi} \\
& \left(\forall_{2}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C(t)|\Pi \Gamma| \Delta|\Sigma, C(x)| \Pi}{\Gamma|\Delta| \Sigma, \forall x C(x) \mid \Pi}
\end{aligned}
$$

where $t$ is a term and $x$ is a new variable not occurring free in $\Gamma, \Delta, \Sigma$ and $\Pi$.

Definition $4.1 \vdash \Gamma|\Delta| \Sigma \mid \Pi$ if there is a sequence $\left\{\Delta_{1}\left|\Theta_{1}\right| \Gamma_{1}\left|\Pi_{1}, \ldots, \Delta_{n}\right| \Theta_{n}\left|\Gamma_{n}\right| \Pi_{n}\right\}$ of multisequents such that $\Delta_{n}\left|\Theta_{n}\right| \Gamma_{n}\left|\Pi_{n}=\Gamma\right| \Delta|\Sigma| \Pi$, and for each $1 \leq i \leq$ $n, \Delta_{i}\left|\Theta_{i}\right| \Gamma_{i} \mid \Pi_{i}$ is deduced from the previous multisequents by one of the deduction rules in $\mathbf{G}_{2}^{2}$.

Theorem 4.2 For any multisequent $\Gamma|\Delta| \Sigma \mid \Pi$, if $\models \Gamma|\Delta| \Sigma \mid \Pi$ then $\vdash \Gamma|\Delta| \Sigma \mid \Pi$.

Proof. We prove that axioms are valid and deduction rules preserve validity. Fix an interpretation $I$.

To verify the validity of the axiom, assume that $\Gamma \cap \Delta \cap \Sigma \cap$ $\Pi \neq \emptyset$. Then, there is an atomic formula $l \in \Gamma \cap \Delta \cap \Sigma \cap \Pi$, and for any assignment $v$, if $v(l)=\mathrm{t}$ then $I, v \vDash \Gamma$; if $v(l)=\top$ then $I, v \models \Delta$, if $v(l)=\perp$ then $I, v \models \Sigma$, otherwise, $I, v \models \Pi$, and each of which implies $I, v \models \Gamma|\Delta| \Sigma \mid \Pi$.
To verify that $\left(\neg^{B}\right)$ preserves validity, assume that for any assignment $v, I, v \models \Gamma|\Delta| \Sigma, A \mid \Pi$. If $I, v \models \Gamma|\Delta| \Sigma \mid \Pi$ then $I, v \vDash \Gamma|\Delta, \neg A| \Sigma \mid \Pi$; otherwise, $v(A)=\perp$, and by the definition of $f_{\neg}, v(\neg A)=\top, I, v \models \Delta, \neg A$, and hence, $I, v \models \Gamma|\Delta, \neg A| \Sigma \mid \Pi$.

To verify that $\left(\wedge_{3}^{D}\right)$ preserves validity, assume that for any assignment $v$,

$$
\begin{aligned}
v & \models \Gamma\left|\Delta, D_{1}\right| \Sigma \mid \Pi, \\
v & \models \Gamma|\Delta| \Sigma, D_{2} \mid \Pi .
\end{aligned}
$$

For any assignment $v$, if $v \models \Gamma|\Delta| \Sigma \mid \Pi$ then $v \quad \models$ $\Gamma|\Delta| \Sigma \mid D_{1} \wedge D_{2}, \Pi$; otherwise, $v\left(D_{1}\right)=\top, v\left(D_{2}\right)=\perp$, and by the definition of $\cap, v\left(D_{1} \wedge D_{2}\right)=\mathrm{f}, v \models D_{1} \wedge D_{2}, \Pi$, and hence, $v \models \Gamma|\Delta| \Sigma \mid B_{1} \wedge B_{2}, \Pi$.
To verify that $\left(\vee_{4}^{A}\right)$ preserves validity, assume that for any assignment $v$,

$$
\begin{aligned}
v & =\Gamma\left|\Delta, A_{1}\right| \Sigma \mid \Pi \\
v & \models \Gamma|\Delta| \Sigma, A_{2} \mid \Pi .
\end{aligned}
$$

For any assignment $v$, if $v \models \Gamma|\Delta| \Sigma \mid \Pi$ then $v \models \Gamma, A_{1} \vee$ $A_{2}|\Delta| \Sigma \mid \Pi$; otherwise, $v\left(A_{1}\right)=\top, v\left(A_{2}\right)=\perp$, and by the definition of $\cup, v\left(A_{1} \vee A_{2}\right)=\mathrm{t}, v \models A_{1} \vee A_{2}, \Gamma$, and hence,
and
and

$$
\begin{cases}{\left[\begin{array}{ll}
\Gamma_{1}, A_{1}(c)\left|\Delta_{1}\right| \Sigma_{1} \mid \Pi_{1} \\
c \text { does not occur in current } T
\end{array}\right.} & \text { if } \Gamma_{1}, \forall x A_{1}(x)\left|\Delta_{1}\right| \Sigma_{1} \mid \Pi_{1} \in \xi \\
\left\{\begin{array} { l } 
{ [ \begin{array} { l } 
{ \Gamma _ { 1 } | \Delta _ { 1 } , B _ { 1 } ( t ) | \Sigma _ { 1 } | \Pi _ { 1 } } \\
{ \Gamma _ { 1 } , B _ { 1 } ( c ) | \Delta _ { 1 } | \Sigma _ { 1 } | \Pi _ { 1 } } \\
{ c \text { does not occur in current } T }
\end{array} } \\
{ \{ \begin{array} { l } 
{ \Gamma _ { 1 } | \Delta _ { 1 } , B _ { 1 } ( t ) | \Sigma _ { 1 } | \Pi _ { 1 } } \\
{ \Gamma _ { 1 } | \Delta _ { 1 } , B _ { 1 } ( c ) | \Sigma _ { 1 } | \Pi _ { 1 } } \\
{ c \text { does not occur in current } T }
\end{array} } \\
{ \{ \begin{array} { l } 
{ [ \begin{array} { l } 
{ \Gamma _ { 1 } | \Delta _ { 1 } | \Sigma _ { 1 } , C _ { 1 } ( t ) | \Pi _ { 1 } } \\
{ \Gamma _ { 1 } , C _ { 1 } ( c ) | \Delta _ { 1 } | \Sigma _ { 1 } | \Pi _ { 1 } } \\
{ c \text { does not occur in current } T } \\
{ \Gamma _ { 1 } | \Delta _ { 1 } | \Sigma _ { 1 } , C _ { 1 } ( t ) | \Pi _ { 1 } } \\
{ \Gamma _ { 1 } | \Delta _ { 1 } | \Sigma _ { 1 } , C _ { 1 } ( c ) | \Pi _ { 1 } } \\
{ c \text { does not occur in current } T }
\end{array} } \\
{ \Gamma _ { 1 } | \Delta _ { 1 } | \Sigma _ { 1 } | D _ { 1 } ( t ) , \Pi _ { 1 } }
\end{array} } \\
{ }
\end{array} \left\{\begin{array}{l}
\text { if } \Gamma_{1}\left|\Delta_{1}\right| \Sigma_{1}, \forall x C_{1}(x) \mid \Pi_{1} \in \xi
\end{array}\right.\right. \\
\left\{\begin{array}{l}
\text { if } \Gamma_{1}\left|\Delta_{1}\right| \Sigma_{1} \mid \forall x D_{1}(x), \Pi_{1} \in \xi
\end{array}\right.\end{cases}
$$

and

- for each $\Gamma_{2}\left|\Delta_{2}, B_{1}^{\prime}(t)\right| \Sigma_{2} \mid \Pi_{2} \in T$ such that $\Gamma_{2}\left|\Delta_{2}, B_{1}^{\prime}(t)\right| \Sigma_{2} \mid \Pi_{2}$ has not be applied to a constant $c$, and for each child node $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ of $\Gamma_{2}\left|\Delta_{2}, B_{1}^{\prime}(t)\right| \Sigma_{2} \mid \Pi_{2}$, let the child node of $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ contain sequent $\Gamma_{3}\left|\Delta_{3}, B_{1}^{\prime}(c)\right| \Sigma_{3} \mid \Pi_{3} ;$
- for each $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2}, C_{1}^{\prime}(t) \mid \Pi_{2} \in T$ such that $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2}, C_{1}^{\prime}(t) \mid \Pi_{2}$ has not be applied to a constant $c$, and for each child node $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ of $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2}, C_{1}^{\prime}(t) \mid \Pi_{2}$, let the child node of $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ contain sequent $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3}, C_{1}^{\prime}(c) \mid \Pi_{3} ;$
- for each $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2} \mid D_{1}^{\prime}(t), \Pi_{2} \in T$ such that $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2} \mid D_{1}^{\prime}(t), \Pi_{2}$ has not be applied to a constant $c$, and for each child node $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ of $\Gamma_{2}\left|\Delta_{2}\right| \Sigma_{2} \mid D_{1}^{\prime}(t), \Pi_{2}$, let the child node of $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid \Pi_{3}$ contain sequent $\Gamma_{3}\left|\Delta_{3}\right| \Sigma_{3} \mid D_{1}^{\prime}(c), \Pi_{3}$,
where $\left[\begin{array}{cl}\delta_{1} & \text { represents that } \delta_{1}, \delta_{2} \text { are at a same child node; } \\ \delta_{2} & \text { a }\end{array}\right.$ and $\left\{\begin{array}{l}\delta_{1} \\ \delta_{2}\end{array}\right.$ represents that $\delta_{1}, \delta_{2}$ are at different direct children nodes.
Lemma 4.4 If there is a branch $\xi \subseteq T$ such that each multisequent $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \xi$ is an axiom in $\mathbf{G}_{2}^{2}$ then $\xi$ is a proof of $\Gamma|\Delta| \Sigma \mid \Pi$.

Proof. By the definition of $T, T$ is a proof tree of $\Gamma|\Delta| \Sigma \mid \Pi$.
Lemma 4.5 For each branch $\xi \subseteq T$, there is a multisequent $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \xi$ is not an axiom in $\mathbf{G}_{2}^{2}$ then there is an assignment $v$ such that $v \not \models \Gamma|\Delta| \Sigma \mid \Pi$.

Proof. Let $\gamma$ be the set of all the atomic multisequents in $T$ which is not an axiom.

Let

$$
\begin{aligned}
& \mathbf{A}=\left\{l: l \in \Gamma^{\prime}, \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \gamma\right\}, \\
& \mathbf{B}=\left\{l: l \in \Delta^{\prime}, \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \gamma\right\}, \\
& \mathbf{C}=\left\{l: l \in \Sigma^{\prime}, \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \gamma\right\}, \\
& \mathbf{D}=\left\{l: l \in \Pi^{\prime}, \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \gamma\right\},
\end{aligned}
$$

and $U$ be the set of all the constants occurring in $\mathbf{A} \cup \mathbf{B} \cup$ $\mathbf{C} \cup \mathbf{D}$. Define an interpretation $I$ such that

$$
I\left(p\left(c_{1}, \ldots, c_{n}\right)\right)= \begin{cases}\mathrm{f} & \text { if } p\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{A} \\ \perp & \text { if } p\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{B} \\ \top & \text { if } p\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{C} \\ \mathrm{t} & \text { if } p\left(c_{1}, \ldots, c_{n}\right) \in \mathbf{D} \\ \mathrm{t} & \text { otherwise } .\end{cases}
$$

We proved by induction on tree that each $\xi \in T$ contains a multisequent $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime} \in \xi$ which is not satisfied by $v$.

Case 1. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime \prime}, \neg B\left|\Sigma^{\prime}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has a direct child node containing $\Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, B \mid \Pi^{\prime}$. By induction assumption, if $v \not \models \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, B \mid \Pi^{\prime}$, i.e., $v(B) \neq \perp$, then $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, \neg B\right| \Sigma^{\prime} \mid \Pi^{\prime}$.
Case 2. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime \prime}, A_{1} \wedge A_{2}\right| \Delta^{\prime}\left|\Sigma^{\prime}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has a direct child node containing $\Gamma^{\prime \prime}, A_{1}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ and $\Delta^{\prime \prime}, A_{2}\left|\Theta^{\prime}\right| \Gamma^{\prime}$. By induction assumption, if either $v \not \vDash$ $\Gamma^{\prime \prime}, A_{1}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$, or $v \not \models \Gamma^{\prime \prime}, A_{2}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ then $v \quad \neq$ $\Gamma^{\prime \prime}, A_{1} \wedge A_{2}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$.

Case 3. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime \prime}, B_{1} \wedge B_{2}\left|\Sigma^{\prime \prime}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has three direct children node containing

$$
\begin{aligned}
& \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}\right| \Sigma^{\prime}\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime \prime}, B_{2}\left|\Sigma^{\prime}\right| \Pi^{\prime} ; \\
& \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}\right| \Sigma^{\prime}\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime \prime}\left|\Sigma^{\prime}\right| \Pi^{\prime}, B_{2} \\
& \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}, B_{1}, \Gamma^{\prime}\right| \Delta^{\prime \prime}, B_{2}\left|\Sigma^{\prime}\right| \Pi^{\prime}
\end{aligned}
$$

respectively. By induction assumption, if
either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}\right| \Sigma^{\prime} \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{2}\right| \Sigma^{\prime} \mid \Pi^{\prime} ;$ either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}\right| \Sigma^{\prime} \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime} \mid B_{2}, \Pi^{\prime}$; either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime} \mid B_{1}, \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{2}\right| \Sigma^{\prime} \mid \Pi^{\prime} ;$
then $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1} \wedge B_{2}\right| \Sigma^{\prime} \mid \Pi^{\prime}$.
Case 4. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime \prime}, C_{1} \wedge C_{2}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has three direct children node containing

$$
\begin{aligned}
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{1}\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime \prime}, C_{2}\right| \Pi^{\prime} \\
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{1}\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime \prime}\right| \Pi^{\prime}, C_{2} \\
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}\left|\Pi^{\prime}, C_{1}, \Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime \prime}, C_{2}\right| \Pi^{\prime}
\end{aligned}
$$

respectively. By induction assumption, if
either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{1} \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{2} \mid \Pi^{\prime}$; either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{1} \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime} \mid C_{2}, \Pi^{\prime}$; either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime} \mid C_{1}, \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{2} \mid \Pi^{\prime}$;
then $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime \prime}, C_{1} \wedge C_{2} \mid \Pi^{\prime}$.
Case 5. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime}\right| D_{1} \wedge D_{2}, \Pi^{\prime \prime} \in \xi$. Then, $\xi$ has four direct children nodes containing one of the following multisequents:

$$
\begin{aligned}
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{1}, \Pi^{\prime \prime}, \\
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{2}, \Pi^{\prime \prime}, \\
& \Gamma^{\prime}\left|\Delta^{\prime}, D_{1}\right| \Sigma^{\prime}\left|\Pi^{\prime \prime} ; \Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime}, D_{2}\right| \Pi^{\prime \prime}, \\
& \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}, D_{1}\left|\Pi^{\prime \prime} ; \Gamma^{\prime}\right| \Delta^{\prime}, D_{2}\left|\Sigma^{\prime}\right| \Pi^{\prime \prime}
\end{aligned}
$$

By induction assumption,

$$
\begin{aligned}
& v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{1}, \Pi^{\prime \prime}, \\
& v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{2}, \Pi^{\prime \prime}, \\
& v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}, D_{1}\right| \Sigma^{\prime} \mid \Pi^{\prime \prime} ; \text { or } v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}, D_{2} \mid \Pi^{\prime \prime}, \\
& v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}, D_{1} \mid \Pi^{\prime \prime} ; \text { or } v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}, D_{2}\right| \Sigma^{\prime} \mid \Pi^{\prime \prime}
\end{aligned}
$$

Hence, $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{1} \wedge D_{2}, \Pi^{\prime \prime}$.
Case 6. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime \prime}, \forall x A_{1}(x)\right| \Delta^{\prime}\left|\Sigma^{\prime}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has a direct child node containing $\Gamma^{\prime \prime}, A_{1}(d)\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ for each constant $d$ occurring in $\xi$. By induction assumption, $v \not \vDash \Gamma^{\prime \prime}, A_{1}(d)\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ for some $d$ occurring in $\xi$, i.e., $v \notin \Gamma^{\prime \prime}, \forall x A_{1}(x)\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$.
Case 7. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime \prime}, \forall x B_{1}(x)\left|\Sigma^{\prime \prime}\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has two direct child nodes containing either

$$
\Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}(c)\right| \Sigma^{\prime}\left|\Pi^{\prime}, \Gamma^{\prime}, B_{1}(d)\right| \Delta^{\prime \prime}\left|\Sigma^{\prime}\right| \Pi^{\prime}
$$

for each $d$ occurring in $\xi$, or

$$
\Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}(c)\right| \Sigma^{\prime}\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime \prime}, B_{1}(d)\left|\Sigma^{\prime}\right| \Pi^{\prime}
$$

for each $d$ occurring in $\xi$. By induction assumption, (1) either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}(c)\right| \Sigma^{\prime} \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}, B_{1}(d)\left|\Delta^{\prime \prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ for some $d$; and (2) either $v \not \neq \Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}(c)\right| \Sigma^{\prime} \mid \Pi^{\prime}$, or $v \nmid=\Gamma^{\prime}\left|\Delta^{\prime \prime}, B_{1}(d)\right| \Sigma^{\prime} \mid \Pi^{\prime}$ for some $d$. Then $v \not \neq$ $\Gamma^{\prime}\left|\Delta^{\prime \prime}, \forall x B_{1}(x)\right| \Sigma^{\prime} \mid \Pi^{\prime}$.

Case 8. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime \prime}, \forall x C_{1}(x)\right| \Pi^{\prime} \in \xi$. Then, $\xi$ has two direct children nodes containing either

$$
\Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, C_{1}(c)\left|\Pi^{\prime}, \Gamma^{\prime}, C_{1}(d)\right| \Delta^{\prime \prime}\left|\Sigma^{\prime}\right| \Pi^{\prime}
$$

for each $d$ occurring in $\xi$, or

$$
\Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, C_{1}(c)\left|\Pi^{\prime}, \Gamma^{\prime}\right| \Delta^{\prime \prime}\left|\Sigma^{\prime}, C_{1}(d)\right| \Pi^{\prime}
$$

for each $d$ occurring in $\xi$. By induction assumption, (1) either $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, C_{1}(c) \mid \Pi^{\prime}$, or $v \not \vDash \Gamma^{\prime}, C_{1}(d)\left|\Delta^{\prime \prime}\right| \Sigma^{\prime} \mid \Pi^{\prime}$ for some $d$; and (2) either $v \not \neq \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, C_{1}(c) \mid \Pi^{\prime}$, or $v \not \neq \Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, C_{1}(d) \mid \Pi^{\prime}$ for some $d$. Then $v \not \vDash$ $\Gamma^{\prime}\left|\Delta^{\prime \prime}\right| \Sigma^{\prime}, \forall x C_{1}(x) \mid \Pi^{\prime}$.

Case 9. $\Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime}\left|\Pi^{\prime}=\Gamma^{\prime}\right| \Delta^{\prime}\left|\Sigma^{\prime}\right| \forall x D_{1}(x), \Pi^{\prime \prime} \in \xi$. Then, $\xi$ has a direct child node containing $\Gamma|\Delta| \Sigma \mid D_{1}(c)$, $\Pi$. By induction assumption, $v \not \neq \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid D_{1}(c), \Pi^{\prime \prime}$, and hence, $v \not \vDash \Gamma^{\prime}\left|\Delta^{\prime}\right| \Sigma^{\prime} \mid \forall x D_{1}(x), \Pi^{\prime \prime}$.

Similar for other cases.

## 5. DISCUSSION

In the proof of completeness theorem, given a sequent $\Gamma \Rightarrow \Delta$ to be proved and a deduction rule of form

where $P, Q, S$ are sequents, we decompose a node containing $S$ into two children nodes containg $P$ and $Q$, respectively:


Given a deduction rule of form

$$
\left[\begin{array}{l}
\frac{P}{S} \\
\frac{Q}{S}
\end{array}\right.
$$

we merge sequents $P$ and $Q$ into one sequent $P, Q$ :


In the end, we get a tree $T$ such that each sequent at the leaf node of $T$ is atomic. If each leaf has an axiom then $T$ is a proof tree; otherwise, there is a branch $\gamma$ of $T$ such that the leaf node of $\gamma$ contains no axiom. Then, we define an assignment $v$ in which the sequent $\Gamma \Rightarrow \Delta$ is not satisfied.

For multisequents, a node containing $S$ which has three de- a node containing $S$ has two children nodes containing $P$
duction rules

$$
\left\{\begin{array}{l}
\frac{P_{1} P_{2}}{{ }_{1}{ }^{S} Q_{2}} \\
\frac{R_{1}{ }^{S} R_{2}}{S}
\end{array}\right.
$$

has eight children nodes:


In another way, given a deduction rule

we merge sequents $P$ and $Q$ into one sequent $P, Q$ :


Given a deduction rule:

$$
\left\{\begin{array}{l}
\frac{P}{S} \\
\frac{Q}{S}
\end{array}\right.
$$

and $Q$, respectively:


In the end, we get a tree $T$ such that each sequent at the leaf node of $T$ is atomic. If there is a branch $\gamma$ such that each sequent at the leaf node of $\gamma$ is an axiom then $\gamma$ is a proof of $\Gamma \Rightarrow \Delta$; otherwise, for each leaf node $\xi$ of $T$, there is a sequent at $\xi$ is not an axiom. Then, we define an assignment $v$ in which the sequent $\Gamma \Rightarrow \Delta$ is not satisfied.
For multisequents, a node containing $S$ which has three deduction rules

$$
\left\{\begin{array}{l}
\frac{P_{1} P_{2}}{{ }^{S}{ }_{2}} \\
\frac{\underline{Q}_{1} Q_{2}}{S} \\
\frac{R_{1} R_{2}}{S}
\end{array}\right.
$$

has three children nodes:


Dually, for existential quantifier $\exists$ we have the following definition of truth-value:
and deduction rules:

$$
\begin{array}{ll}
\left(\exists^{A}\right) \frac{\Gamma, A(t)|\Delta| \Sigma \mid \Pi}{\Gamma, \exists x A(x)|\Delta| \Sigma \mid \Pi} & \left(\exists_{1}^{B}\right) \frac{\Gamma|\Delta, B(t)| \Sigma|\Pi \Gamma| \Delta|\Sigma| B(x), \Pi}{\Gamma|\exists x B(x), \Delta| \Sigma \mid \Pi} \\
& \left(\exists_{2}^{B}\right) \frac{\Gamma|\Delta, B(t)| \Sigma|\Pi \Gamma| \Delta, B(x)|\Sigma| \Pi}{\Gamma|\exists x B(x), \Delta| \Sigma \mid \Pi} \\
\left(\exists_{1}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C(t)|\Pi \Gamma| \Delta|\Sigma| C(x), \Pi}{\Gamma|\exists x C(x), \Delta| \Sigma \mid \Pi} & \left(\exists^{D}\right) \frac{\Gamma|\Delta| \Sigma \mid D(x), \Pi}{\Gamma|\Delta| \Sigma \mid \exists x D(x), \Pi} \\
\left(\exists_{2}^{C}\right) \frac{\Gamma|\Delta| \Sigma, C(t)|\Pi \Gamma \Gamma| \Delta|\Sigma, C(x)| \Pi}{\Gamma|\Delta| \Sigma, \exists x C(x) \mid \Pi} &
\end{array}
$$

where $t$ is a term and $x$ is a new variable not occurring free in $\Gamma, \Delta, \Sigma$ and $\Pi$.

## 6. CONCLUSION

A Gentzen deduction system for $\mathbf{B}_{2}^{2}$-valued first-order logic is given and soundness and completeness theorems are proved.
A future work will consider different choices for defining the truth-values of quantified formulas. One choice is as follows:

- $\forall x A(x)$ has truth-value t if for each element $a, A(x / a)$ has truth-value $t$;
- $\forall x A(x)$ has truth-value $\top$ if for each element $a, A(x / a)$ has truth-value $T$;
- $\forall x A(x)$ has truth-value $\perp$ if for each element $a, A(x / a)$ has truth-value $\perp$;
- $\forall x A(x)$ has truth-value f if for each element $a, A(x / a)$ has truth-value $f$.


## REFERENCES

[1] Li W. Mathematical Logic, Foundations for Information Science. Progress in Computer Science and Applied Logic, vol.25, Birkhauser, 2010.
[2] Gottwald S. A Treatise on Many-Valued Logics (Studies in Logic and Computation, vol. 9), Baldock: Research Studies Press Ltd., 2001.
[3] Hahnle R. Advanced many-valued logics, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic vol. 2, Dordrecht: Kluwer, 297-395, 2001.
[4] Lukasiewicz J, Selected Works L. Borkowski(ed.), Amsterdam: North-Holland and Warsaw: PWN, 1970.
[5] Malinowski G. Many-valued Logic and its Philosophy, in D. M. Gabbay and J. Woods (eds.), Handbook of the History of Logic, vol. 8,

The Many Valued and Nonmonotonic Turn in Logic, Elsevier, 2009.
[6] Novak V. A formal theory of intermediate quantiers. Fuzzy Sets and Systems. 2008; 159: 1229-1246. https://doi.org/10.1016/j. fss.2007.12.008
[7] Straccia U. Reasoning within fuzzy description logics. J. Artificial Intelligence Res. 2001; 14: 137-166.
[8] Urquhart A. Basic many-valued logic, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. 2 (2d edition), Dordrecht: Kluwer, 249-295, 2001.
[9] Wronski A. Remarks on a survey article on many valued logic by A. Urquhart, StudiaLogica. 1987; 46: 275-278. https://doi.org/10 . 1007/BF00372552


[^0]:    ${ }^{*}$ Correspondence: Yuefei Sui; Email: yfsui@ict.ac.cn; Address: Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, China.

