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ABSTRACT

For the four-element Boolean algebra B2
2, a multisequent Γ|∆|Σ|Π is a generalization of sequent Γ ⇒ ∆ in traditional B2-valued

first-order logic. By defining the truth-values of quantified formulas, a Gentzen deduction system G2
2 for B2

2-valued first-order
logic will be built and its soundness and completeness theorems will be proved.
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1. INTRODUCTION

In traditional propositional logic,[1] the negation connective
¬ is eliminated via the following rules in a Gentzen deduction
system:

(¬L) Γ⇒ A,∆
Γ,¬A⇒ ∆ (¬R) Γ, A⇒ ∆

Γ⇒ ¬A,∆ .

The truth-value of a sequent Γ⇒ ∆ under an assignment v
is defined by a condition of (∃∨∃)-form, that is, either some
formula A in Γ is false, or some formula B in ∆ is true.

In B2
2-valued first-order logic, where B2

2 = ({t,>,
⊥, f},∩,∪) is the four-element Boolean algebra, a multise-
quent is a quandrupe (Γ,∆,Σ,Π), where Γ,∆,Σ,Π are sets
of formulas. Multisequent (Γ,∆,Σ,Π) is true in a model M
and an assignment v if either

• some formula A in Γ has truth-value t, or

• some formula B in ∆ has truth-value >, or

• some formula C in Σ has truth-value ⊥, or

• some formula D in Π has truth-value f.

By the semantics, multisequents are different from hyper-
sequents.[2, 3] A sequent Γ ⇒ ∆ is taken as a multisequent
∆|Γ.

Here, negation ¬ commutes t with f and > with ⊥ . Tradi-
tional deduction rules (¬L) and (¬R) do not work here.

For quantifiers, in traditional first-order logic, ∀xA(x) is true
if for each element a,A(x/a) is true; and ∀xA(x) is false if
for some element a,A(x/a) is false. In B2

2-valued first-order
logic, we define that ∀xA(x) has truth-value

• t if for each element a,A(x/a) has truth-value t;

• > if for some element b, A(x/b) has truth-value>, and for
each element a,A(x/a) has truth-value either t or >;

• ⊥ if for some element b, A(x/b) has truth-value⊥, and for
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each element a,A(x/a) has truth-value either t or ⊥;

• f if for some element a,A(x/a) has truth-value f.

In this paper, we will give a sound and complete Gentzen
deduction system G2

2
[4–9] for B2

2-valued first-order logic and
prove soundness and completeness theorems for B2

2-valued
first-order logic, that is, for any multisequent Γ|∆|Σ|Π,

• Soundness theorem: if Γ|∆|Σ|Π is provable in G2
2 then

Γ|∆|Σ|Π is valid;

• Completeness theorem: if Γ|∆|Σ|Π is valid then Γ|∆|Σ|Π
is provable in G2

2.

The paper is organized as follows: the next section gives
basic definitions in B2-valued first-order logic; the third sec-
tion gives basic definitions of B2

2-valued first-order logic;
the fourth section gives Gentzen deduction system G2

2 for
B2

2-valued first-order logic and prove soundness and com-
pleteness theorem; the fifth section discusses the different
constructions of trees in the proof of completeness theorem,
and the last section concluded the paper.

2. MULTISEQUENT DEDUCTION SYSTEM
FOR B2-VALUED FIRST-ORDER LOGIC

Let L be a logical language of first-order logic which con-
tains the following symbols:

• constant symbols: c0, c1, ...;

• variable symbols: x0, x1, ...;

• function symbols: f0, f1, ...;

• predicate symbol: p0, p1, ...; and

• logical connectives and quantifiers: ¬,∧,∨,∀.

A term t is a string of the following forms:

t ::= c|x|f(t1, ..., tn),

where f is an n-ary function symbol.

A formula A is a string of the following forms:

A ::= p(t1, ..., tn)|¬A1|A1 ∧A2|A1 ∨A2|∀xA1(x),

where p is an n-ary predicate symbol.

Let B2 = ({t, f},¬,∪,∩) be the least Boolean algebra,
where

¬
t f
f t

∩ t f
t t f
f f f

∪ t f
t t t
f t f

A modelM is a pair (U, I), where U is a universe and I is an
interpretation such that for any constant symbol c, I(c) ∈ U ;
for any n-ary function symbol f, I(f) : Un → U is a func-
tion; and for any n-ary predicate symbol p, I(p) : Un → B2
is a relation on U.

An assignment v is a function from variables to U. The inter-
pretation tI,v of t in (M,v) is

tI,v =


I(c) if t = c

v(x) if t = x

I(f)(tI,v
1 , ..., tI,v

n ) if t = f(t1, ..., tn).

Given a formula A, define

v(A) =



I(p)(tI,v
1 , ..., tI,v

n ) if A = p(t1, ..., t2)
¬(AI,v

1 ) if A = ¬A1
v(A1) ∩ v(A2) if A = A1 ∧A2
v(A1) ∪ v(A2) if A = A1 ∨A2
min{vx/a(A1(x)) : a ∈ U} if A = ∀xA1(x)

where for any variable y,

vx/a(y) =
{
v(y) if y 6= x

a otherwise.

Hence,

v(∀xA1(x)) = t iff Aa ∈ U(vx/a(A1(x)) = t)
v(∀xA1(x)) = f iff Ea ∈ U(vx/a(A1(x)) = f),

where in syntax, we use ¬,∧,→,∀,∃ to denote logical con-
nectives and quantifiers; and in semantics we use ∼,&,
⇒,A,E to denote the corresponding connectives and quan-
tifiers.

A formula A is satisfied in (I, v), denoted by I, v |= A, if
v(A) = t; A is valid in I , denoted by I |= A, if for any
assignment v, I, v |= A; and A is valid, denoted by |= A, if
for any interpretation I, I |= A.

Let ∆,Γ be sets of formulas. A multisequent δ is of form
Γ|∆. We say that δ is satisfied in an interpretation I and an
assignment v, denoted by I, v |= Γ|∆, if either I, v |= Γ, or
I, v |= ∆, where I, v |= ∆ if v(A) = t for some A ∈ ∆;
and I, v |= Γ if v(B) = f for some B ∈ Γ.
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δ is satisfied in an interpretation I, denoted by I |= δ if
I, v |= δ for any assignment v; and δ is valid, denoted by
|= δ, if δ is satisfied in any interpretation I.

Gentzen deduction system G2 contains the following axioms
and deduction rules:

• Axioms:
Γ ∩∆ 6= ∅

∆|Γ (A),

where ∆,Γ are sets of atomic formulas.

• Deduction rules:

(¬L) ∆|A,Γ
∆,¬A|Γ (¬R) ∆, B|Γ

∆|¬B,Γ
(∧L) ∆, A1|Γ ∆, A2|Γ

∆, A1 ∧A2|Γ
(∧R

1 ) ∆|B1,Γ
∆|B1 ∧B2

(∧R
2 ) ∆|B2,Γ

∆|B1 ∧B2

(∨L
1 ) ∆, A1|Γ

∆, A1 ∨A2|Γ
(∨R) ∆|B1,Γ ∆|B2,Γ

∆|B1 ∨B2
(∨R)

(∨L
2 ) ∆, A2|Γ

∆, A1 ∨A2|Γ
(∀L) ∆, A(x)|Γ

∆,∀xA(x)|Γ (∀R) ∆|B(t),Γ
∆|∀xB(x),Γ

where x is a new variable not occurring free in ∀xA(x), and
t is a term.

Theorem 2.1 (Soundness theorem). For any multisequent
∆|Γ, if ` ∆|Γ then |= ∆|Γ.

Theorem 2.2 (Completeness theorem). For any multisequent
∆|Γ,` ∆|Γ only if |= ∆|Γ.

3. B2
2-VALUED FIRST-ORDER LOGIC

Let B2
2 be a Boolean algebra ({t,>,⊥, f},¬,∪,∩), where

¬
t f
> ⊥
⊥ >
f t

∩ t > ⊥ f
t t > ⊥ f
> > > f f
⊥ ⊥ f ⊥ f
f f f f f

∪ t > ⊥ f
t t t t t
> t > t >
⊥ t t ⊥ ⊥
f t > ⊥ f

A modelM is a pair (U, I), where U is a universe and I is an
interpretation such that for any constant symbol c, I(c) ∈ U ;
for any n-ary function symbol f, I(f) : Un → U is a func-
tion; and for any n-ary predicate symbol p, I(p) : Un → B2

2
is a relation on U.

Given a formula A, define

v(A) =



I(p)(tI,v
1 , ..., tI,v

n ) if A = p(t1, ..., t2)
¬(AI,v

1 ) if A = ¬A1
v(A1) ∩ v(A2) if A = A1 ∧A2
v(A1) ∪ v(A2) if A = A1 ∨A2
defined below if A = ∀xA1(x)

where

v(∀xA1(x)) =


t if Aa ∈ U(vx/a(A1(x)) = t)
> if Aa ∈ U(vx/a(A1(x)) ∈ {t,>})&Ea ∈ U(vx/a(A1(x)) = >)
⊥ if Aa ∈ U(vx/a(A1(x)) ∈ {t,⊥})&Ea ∈ U(vx/a(A1(x)) =⊥)
f if Ea ∈ U(vx/a(A1(x)) = f).

Let Γ,∆,Σ,Π be sets of formulas. A multisequent δ is of
form Γ|∆|Σ|Π. We say that δ is satisfied in (I, v), denoted
by I, v |= Γ|∆|Σ|Π, if either I, v |= Γ, I, v |= ∆, I, v |= Σ,
or I, v |= Π, where

I, v |= ∆ if for some formula A ∈ ∆, v(A) = t;
I, v |= Θ if for some formula B ∈ Θ, v(B) = >;
I, v |= Γ if for some formula C ∈ Θ, v(C) =⊥; and
I, v |= Π if for some formula D ∈ Π, v(D) = f.

A multisequent Γ|∆|Σ|Π is valid, denoted by |= Γ|∆|Σ|Π, if
for any interpretation I and assignment v, I, v |= Γ|∆|Σ|Π.

Proposition 3.1 Let Γ,∆,Σ,Π be sets of atomic formulas.
Then, Γ|∆|Σ|Π is valid if and only if Γ ∩∆ ∩ Σ ∩Π 6= ∅.

Proof. Assume that p ∈ Γ ∩ ∆ ∩ Σ ∩ Π 6= ∅. For any in-
terpreation I and assignment v, if v(p) = t then I, v |= Γ;
if v(p) = > then I, v |= ∆; if v(p) =⊥ then I, v |= Σ;
otherwise, v(p) = f, I, v |= Π. Hence, I, v |= Γ|∆|Σ|Π.

Conversely, assume that Γ ∩∆ ∩ Σ ∩Π = ∅. Let U be the
set of all the constants occurring in Γ,∆,Σ or Π. Define I
and v such that for any atomic formula l,

v(l) =


∗4 if l = Γ∗1 ∩ Γ∗2 ∩ Γ∗3

?3 otherwise, if l ∈ Γ?1 ∩ Γ?2 −
⋃
∗1,∗2,∗3

Γ∗1 ∩ Γ∗2 ∩ Γ∗3

f¬(#) otherwise, if l ∈ Γ# −
⋃

?1,?2
Γ?1 ∩ Γ?2
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where {∗1, ∗2, ∗3, ∗4} = {t,>,⊥, f}, and Γt = Γ,Γ> =
∆,Γ⊥ = Σ,Γf = Π; ∗1 6= ∗2 6= ?3 6= ?1; ?1 6= ?2 ∈ B2

2,

and # ∈ B2
2. Then, I, v 6|= Γ|∆|Σ|Π.

4. GENTZEN DEDUCTION SYSTEM
Gentzen deduction system G2

2 contains the following axioms
and deduction rules:

• Axioms:
(A) Π ∩ Σ ∩∆ ∩ Γ 6= ∅

Γ|∆|Σ|Π ,

where Γ,∆,Σ,Π are sets of atomic formulas.

• Deduction rules for unary logical connective ¬:

(¬A) Γ|∆|Σ|A,Π
Γ,¬A|∆|Σ|Π (¬B) Γ|∆|Σ, B|Π

Γ|∆,¬B|Σ|Π
(¬C) Γ|∆, C|Σ|Π

Γ|∆|Σ,¬C|Π (¬D) Γ, D|∆|Σ|Π
Γ|∆|Σ|¬D,Π

• Deduction rules for binary logical connective ∧:

(∧A) Γ, A1|∆|Σ|Π Γ, A2|∆|Σ|Π
Γ, A1 ∧A2|∆|Σ|Π

(∧B
1 ) Γ|∆, B1|Σ|Π Γ|∆, B2|Σ|Π

Γ|∆, B1 ∧B2|Σ|Π
(∧B

2 ) Γ, B1|∆|Σ|Π Γ|∆, B2|Σ|Π
Γ|∆, B1 ∧B2|Σ|Π

(∧B
3 ) Γ|∆, B1|Σ|Π Γ, B2|∆|Σ|Π

Γ|∆, B1 ∧B2|Σ|Π

(∧C
1 ) Γ|∆|Σ, C1|Π Γ|∆|Σ, C2|Π

Γ|∆|Σ, C1 ∧ C2|Π
(∧C

2 ) Γ, C1|∆|Σ|Π Γ|∆|Σ, C2|Π
Γ|∆|Σ, C1 ∧ C2|Π

(∧C
3 ) Γ|∆|Σ, C1|Π Γ, C2|∆|Σ|Π

Γ|∆|Σ, C1 ∧ C2|Π

(∧D
1 ) Γ|∆|Σ|D1,Π

Γ|∆|Σ|D1 ∧D2,Π
(∧D

2 ) Γ|∆|Σ|D2,Π
Γ|∆|Σ|D1 ∧D2,Π

(∧D
3 ) Γ|∆, D1|Σ|Π Γ|∆|Σ, D2,Π

Γ|∆|Σ|D1 ∧D2,Π
(∧D

4 ) Γ|∆|Σ, D1|Π Γ|∆, D2|Σ|Π
Γ|∆|Σ|D1 ∧D2,Π

• Deduction rules for binary logical connective ∨:

(∨A
1 ) Γ, A1|∆|Σ|Π

Γ, A1 ∨A2|∆|Σ|Π
(∨A

2 ) Γ, A2|∆|Σ|Π
Γ, A1 ∨A2|∆|Σ|Π

(∨A
3 ) Γ|∆|Σ, A1|Π Γ|∆, A2|Σ|Π

Γ, A1 ∨A2|∆|Σ|Π
(∨A

4 ) Γ|∆, A1|Σ|Π Γ|∆|Σ, A2|Π
Γ, A1 ∨A2|∆|Σ|Π

(∨B
1 ) Γ|∆, B1|Σ|Π Γ|∆, B2|Σ|Π

Γ|∆, B1 ∨B2|Σ|Π
(∨B

2 ) Γ|∆|Σ|B1,Π Γ|∆, B2|Σ|Π
Γ|∆, B1 ∨B2|Σ|Π

(∨B
3 ) Γ|∆, B1|Σ|Π Γ|∆|Σ|B2,Π

Γ|∆, B1 ∨B2|Σ|Π

(∨C
1 ) Γ|∆|Σ, C1|Π Γ|∆|Σ, C2|Π

Γ|∆|Σ, C1 ∨ C2|Π
(∨C

2 ) Γ|∆|Σ|C1,Π Γ|∆|Σ, C2|Π
Γ|∆|Σ, C1 ∨ C2|Π

(∨C
3 ) Γ|∆|Σ, C1|Π Γ|∆|Σ|C2,Π

Γ|∆|Σ, C1 ∨ C2|Π

(∨D) Γ|∆|Σ|D1,Π Γ|∆|Σ|D2,Π
Γ|∆|Σ|D1 ∨D2,Π

• Deduction rules for quantifier ∀:
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(∀A) Γ, A(x)|∆|Σ|Π
Γ,∀xA(x)|∆|Σ|Π (∀B

1 ) Γ|∆, B(t)|Σ|Π Γ, B(x)|∆|Σ|Π
Γ|∀xB(x),∆|Σ|Π

(∀B
2 ) Γ|∆, B(t)|Σ|Π Γ|∆, B(x)|Σ|Π

Γ|∀xB(x),∆|Σ|Π
(∀C

1 ) Γ|∆|Σ, C(t)|Π Γ, C(x)|∆|Σ|Π
Γ|∀xB(x),∆|Σ|Π (∀D) Γ|∆|Σ|D(t),Π

Γ|∆|Σ|∀xD(x),Π
(∀C

2 ) Γ|∆|Σ, C(t)|Π Γ|∆|Σ, C(x)|Π
Γ|∆|Σ,∀xC(x)|Π

where t is a term and x is a new variable not occurring free
in Γ,∆,Σ and Π.

Definition 4.1 ` Γ|∆|Σ|Π if there is a sequence
{∆1|Θ1|Γ1|Π1, ...,∆n|Θn|Γn|Πn} of multisequents such
that ∆n|Θn|Γn|Πn = Γ|∆|Σ|Π, and for each 1 ≤ i ≤
n,∆i|Θi|Γi|Πi is deduced from the previous multisequents
by one of the deduction rules in G2

2.

Theorem 4.2 For any multisequent Γ|∆|Σ|Π, if |= Γ|∆|Σ|Π
then ` Γ|∆|Σ|Π.

Proof. We prove that axioms are valid and deduction rules
preserve validity. Fix an interpretation I.

To verify the validity of the axiom, assume that Γ∩∆∩Σ∩
Π 6= ∅. Then, there is an atomic formula l ∈ Γ∩∆∩Σ∩Π,
and for any assignment v, if v(l) = t then I, v |= Γ; if
v(l) = > then I, v |= ∆, if v(l) =⊥ then I, v |= Σ, other-
wise, I, v |= Π, and each of which implies I, v |= Γ|∆|Σ|Π.

To verify that (¬B) preserves validity, assume that for any
assignment v, I, v |= Γ|∆|Σ, A|Π. If I, v |= Γ|∆|Σ|Π then
I, v |= Γ|∆,¬A|Σ|Π; otherwise, v(A) =⊥, and by the
definition of f¬, v(¬A) = >, I, v |= ∆,¬A, and hence,
I, v |= Γ|∆,¬A|Σ|Π.

To verify that (∧D
3 ) preserves validity, assume that for any

assignment v,
v |= Γ|∆, D1|Σ|Π,
v |= Γ|∆|Σ, D2|Π.

For any assignment v, if v |= Γ|∆|Σ|Π then v |=
Γ|∆|Σ|D1∧D2,Π; otherwise, v(D1) = >, v(D2) =⊥, and
by the definition of ∩, v(D1 ∧D2) = f, v |= D1 ∧D2,Π,
and hence, v |= Γ|∆|Σ|B1 ∧B2,Π.

To verify that (∨A
4 ) preserves validity, assume that for any

assignment v,
v |= Γ|∆, A1|Σ|Π,
v |= Γ|∆|Σ, A2|Π.

For any assignment v, if v |= Γ|∆|Σ|Π then v |= Γ, A1 ∨
A2|∆|Σ|Π; otherwise, v(A1) = >, v(A2) =⊥, and by the
definition of ∪, v(A1∨A2) = t, v |= A1∨A2,Γ, and hence,

v |= Γ, A1 ∨A2|∆|Σ|Π.

To verify that (∀B
1 ) preserves the validity, assume that for

any assignment v, I, v |= Γ|∆, B(t)|Σ|ΠΓ and I, v |=
Γ, B(x)|∆|Σ|Π. For any assignment v, if I, v |= Γ|∆|Σ|Π
then I, v |= Γ|∆,∀xB(x)|Σ|Π; otherwise, by induction
assumption, v(B(t)) = > or v(B(x)) = t, i.e., for any
a ∈ U, either v(B(t)) = > or vx/a(B(x)) = t, i.e.,
v(∀xB(x)) = >.

To verify that (∀B
2 ) preserves the validity, assume that for

any assignment v, I, v |= Γ|∆, B(t)|Σ|ΠΓ and I, v |=
Γ|∆, B(x)|Σ|Π. For any assignment v, if I, v |= Γ|∆|Σ|Π
then I, v |= Γ|∆,∀xB(x)|Σ|Π; otherwise, by induction as-
sumption, v(B(t)) = > or v(B(x)) = >, i.e., for any
a ∈ U, either v(B(t)) = > or vx/a(B(x)) = >, i.e.,
v(∀xB(x)) = >.

Similar for other deduction rules.

Theorem 4.3 For any multisequent Γ|∆|Σ|Π, if |= Γ|∆|Σ|Π
then ` Γ|∆|Σ|Π.

Proof. Given a multisequent Γ|∆|Σ|Π, we construct a tree
T such that either

(i) for each branch ξ of T, each multisequent Γ′|∆′|Σ′|Π′ at
the leaf of ξ is an axiom, or

(ii) there is an assignment v such that v 6|= Γ|∆|Σ|Π.

T is constructed as follows:

• the root of T is Γ|∆|Σ|Π;

• for a node ξ, if for each sequent Γ′|∆′|Σ′|Π′ at ξ,Γ′∪∆′∪
Σ′ ∪Π′ is a set of atomic formulas then the node is a leaf;

• otherwise, ξ has the direct child node containing the fol-
lowing multisequents:

Γ1|∆1|Σ1|A,Π1 if Γ1,¬A|∆1|Σ1|Π1 ∈ ξ
Γ1|∆1|Σ1, B|Π1 if Γ1|∆1,¬B|Σ1|Π1 ∈ ξ
Γ1|∆1|Σ1, C|Π1 if Γ1|∆1|Σ1,¬C|Π1 ∈ ξ
Γ1, D|∆1|Σ1|Π1 if Γ1|∆1|Σ1|¬D,Π1 ∈ ξ

and
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[
Γ1, A1|∆1|Σ1|Π1
Γ1, A2|∆1|Σ1|Π1

if Γ1, A1 ∧A2|∆1|Σ1|Π1 ∈ ξ

[
Γ1|∆1, B1|Σ1|Π1
Γ1|∆1, B2|Σ1|Π1[
Γ1, B1|∆1|Σ1|Π1
Γ1|∆1, B2|Σ1|Π1[
Γ1|∆1, B1|Σ1|Π1
Γ1, B2|∆1|Σ1|Π1

if Γ1|∆1, B1 ∧B2|Σ1|Π1 ∈ ξ



[
Γ1|∆1|Σ1, C1|Π1
Γ1|∆1|Σ1, C2|Π1[
Γ1, C1|∆1|Σ1|Π1
Γ1|∆1|Σ1, C2|Π1[
Γ1|∆1|Σ1, C1|Π1
Γ1, C2|∆1|Σ1|Π1

if Γ1|∆1|Σ1, C1 ∧ C2|Π1 ∈ ξ



Γ1|∆1|Σ1|D1,Π1
Γ1|∆1|Σ1|D2,Π1[

Γ1|∆1, D1|Σ1|Π1
Γ1|∆1|Σ1, D2|Π1[
Γ1|∆1|Σ1, D1|Π1
Γ1|∆1, D2|Σ1|Π1

if Γ1|∆1|Σ1|D1 ∧D2,Π1 ∈ ξ

and





Γ1, A1|∆1|Σ1|Π1
Γ1, A2|∆1|Σ1|Π1[

Γ1|∆1, A1|Σ1|Π1
Γ1|∆1|Σ1, A2|Π1[
Γ1|∆1|Σ1, A1|Π1
Γ1|∆1, A2|Σ1|Π1

if Γ1, A1 ∨A2|∆1|Σ1|Π1 ∈ ξ



[
Γ1|∆1, B1|Σ1|Π1
Γ1|∆1, B2|Σ1|Π1[
Γ1|∆1, B1|Σ1|Π1
Γ1|∆1|Σ1|Π1, B2[
Γ1|∆1|Σ1|Π1, B1
Γ1|∆1, B2|Σ1|Π1

if Γ1|∆1, B1 ∨B2|Σ1|Π1 ∈ ξ



[
Γ1|∆1|Σ1, C1|Π1
Γ1|∆1|Σ1, C2|Π1[
Γ1|∆1|Σ1, C1|Π1
Γ1|∆1|Σ1|Π1, C2[
Γ1|∆1|Σ1|Π1, C1
Γ1|∆1|Σ1, C2|Π1

if Γ1|∆1|Σ1, C1 ∨ C2|Π1 ∈ ξ

[
Γ1|∆1|Σ1|D1,Π1
Γ1|∆1|Σ1|D2,Π1

if Γ1|∆1|Σ1|D1 ∨D2,Π1 ∈ ξ

and
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[
Γ1, A1(c)|∆1|Σ1|Π1
c does not occur in current T

if Γ1,∀xA1(x)|∆1|Σ1|Π1 ∈ ξ

 Γ1|∆1, B1(t)|Σ1|Π1
Γ1, B1(c)|∆1|Σ1|Π1
c does not occur in current T Γ1|∆1, B1(t)|Σ1|Π1
Γ1|∆1, B1(c)|Σ1|Π1
c does not occur in current T

if Γ1|∆1,∀xB1(x)|Σ1|Π1 ∈ ξ



 Γ1|∆1|Σ1, C1(t)|Π1
Γ1, C1(c)|∆1|Σ1|Π1
c does not occur in current T Γ1|∆1|Σ1, C1(t)|Π1
Γ1|∆1|Σ1, C1(c)|Π1
c does not occur in current T

if Γ1|∆1|Σ1,∀xC1(x)|Π1 ∈ ξ

Γ1|∆1|Σ1|D1(t),Π1 if Γ1|∆1|Σ1|∀xD1(x),Π1 ∈ ξ

and

• for each Γ2|∆2, B
′
1(t)|Σ2|Π2 ∈ T such that

Γ2|∆2, B
′
1(t)|Σ2|Π2 has not be applied to a constant c, and

for each child node Γ3|∆3|Σ3|Π3 of Γ2|∆2, B
′
1(t)|Σ2|Π2,

let the child node of Γ3|∆3|Σ3|Π3 contain sequent
Γ3|∆3, B

′
1(c)|Σ3|Π3;

• for each Γ2|∆2|Σ2, C
′
1(t)|Π2 ∈ T such that

Γ2|∆2|Σ2, C
′
1(t)|Π2 has not be applied to a constant c, and

for each child node Γ3|∆3|Σ3|Π3 of Γ2|∆2|Σ2, C
′
1(t)|Π2,

let the child node of Γ3|∆3|Σ3|Π3 contain sequent
Γ3|∆3|Σ3, C

′
1(c)|Π3;

• for each Γ2|∆2|Σ2|D′1(t),Π2 ∈ T such that
Γ2|∆2|Σ2|D′1(t),Π2 has not be applied to a constant c, and
for each child node Γ3|∆3|Σ3|Π3 of Γ2|∆2|Σ2|D′1(t),Π2,

let the child node of Γ3|∆3|Σ3|Π3 contain sequent
Γ3|∆3|Σ3|D′1(c),Π3,

where
[
δ1
δ2

represents that δ1, δ2 are at a same child node;

and
{
δ1
δ2

represents that δ1, δ2 are at different direct chil-

dren nodes.

Lemma 4.4 If there is a branch ξ ⊆ T such that each multi-
sequent Γ′|∆′|Σ′|Π′ ∈ ξ is an axiom in G2

2 then ξ is a proof
of Γ|∆|Σ|Π.

Proof. By the definition of T, T is a proof tree of Γ|∆|Σ|Π.

Lemma 4.5 For each branch ξ ⊆ T, there is a multisequent
Γ′|∆′|Σ′|Π′ ∈ ξ is not an axiom in G2

2 then there is an
assignment v such that v 6|= Γ|∆|Σ|Π.

Proof. Let γ be the set of all the atomic multisequents in T
which is not an axiom.

Let
A = {l : l ∈ Γ′,Γ′|∆′|Σ′|Π′ ∈ γ},
B = {l : l ∈ ∆′,Γ′|∆′|Σ′|Π′ ∈ γ},
C = {l : l ∈ Σ′,Γ′|∆′|Σ′|Π′ ∈ γ},
D = {l : l ∈ Π′,Γ′|∆′|Σ′|Π′ ∈ γ},

and U be the set of all the constants occurring in A ∪B ∪
C ∪D. Define an interpretation I such that

I(p(c1, ..., cn)) =



f if p(c1, ..., cn) ∈ A
⊥ if p(c1, ..., cn) ∈ B
> if p(c1, ..., cn) ∈ C
t if p(c1, ..., cn) ∈ D
t otherwise.

We proved by induction on tree that each ξ ∈ T contains a
multisequent Γ′|∆′|Σ′|Π′ ∈ ξ which is not satisfied by v.

Case 1. Γ′|∆′|Σ′|Π′ = Γ′|∆′′,¬B|Σ′|Π′ ∈ ξ. Then, ξ has
a direct child node containing Γ′|∆′′|Σ′, B|Π′. By induction
assumption, if v 6|= Γ′|∆′′|Σ′, B|Π′, i.e., v(B) 6=⊥, then
v 6|= Γ′|∆′′,¬B|Σ′|Π′.

Case 2. Γ′|∆′|Σ′|Π′ = Γ′′, A1 ∧ A2|∆′|Σ′|Π′ ∈ ξ. Then,
ξ has a direct child node containing Γ′′, A1|∆′|Σ′|Π′ and
∆′′, A2|Θ′|Γ′. By induction assumption, if either v 6|=
Γ′′, A1|∆′|Σ′|Π′, or v 6|= Γ′′, A2|∆′|Σ′|Π′ then v 6|=
Γ′′, A1 ∧A2|∆′|Σ′|Π′.

Case 3. Γ′|∆′|Σ′|Π′ = Γ′|∆′′, B1 ∧B2|Σ′′|Π′ ∈ ξ. Then, ξ
has three direct children node containing

Γ′|∆′′, B1|Σ′|Π′,Γ′|∆′′, B2|Σ′|Π′;
Γ′|∆′′, B1|Σ′|Π′,Γ′|∆′′|Σ′|Π′, B2;
Γ′|∆′′|Σ′|Π′, B1,Γ′|∆′′, B2|Σ′|Π′;
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respectively. By induction assumption, if

either v 6|= Γ′|∆′′, B1|Σ′|Π′, or v 6|= Γ′|∆′′, B2|Σ′|Π′;
either v 6|= Γ′|∆′′, B1|Σ′|Π′, or v 6|= Γ′|∆′′|Σ′|B2,Π′;
either v 6|= Γ′|∆′′|Σ′|B1,Π′, or v 6|= Γ′|∆′′, B2|Σ′|Π′;

then v 6|= Γ′|∆′′, B1 ∧B2|Σ′|Π′.

Case 4. Γ′|∆′|Σ′|Π′ = Γ′|∆′|Σ′′, C1 ∧ C2|Π′ ∈ ξ. Then, ξ
has three direct children node containing

Γ′|∆′|Σ′′, C1|Π′,Γ′|∆′|Σ′′, C2|Π′;
Γ′|∆′|Σ′′, C1|Π′,Γ′|∆′|Σ′′|Π′, C2;
Γ′|∆′|Σ′′|Π′, C1,Γ′|∆′|Σ′′, C2|Π′;

respectively. By induction assumption, if

either v 6|= Γ′|∆′|Σ′′, C1|Π′, or v 6|= Γ′|∆′|Σ′′, C2|Π′;
either v 6|= Γ′|∆′|Σ′′, C1|Π′, or v 6|= Γ′|∆′|Σ′′|C2,Π′;
either v 6|= Γ′|∆′|Σ′′|C1,Π′, or v 6|= Γ′|∆′|Σ′′, C2|Π′;

then v 6|= Γ′|∆′|Σ′′, C1 ∧ C2|Π′.

Case 5. Γ′|∆′|Σ′|Π′ = Γ′|∆′|Σ′|D1 ∧D2,Π′′ ∈ ξ. Then, ξ
has four direct children nodes containing one of the following
multisequents:

Γ′|∆′|Σ′|D1,Π′′,
Γ′|∆′|Σ′|D2,Π′′,
Γ′|∆′, D1|Σ′|Π′′; Γ′|∆′|Σ′, D2|Π′′,
Γ′|∆′|Σ′, D1|Π′′; Γ′|∆′, D2|Σ′|Π′′

By induction assumption,

v 6|= Γ′|∆′|Σ′|D1,Π′′,
v 6|= Γ′|∆′|Σ′|D2,Π′′,
v 6|= Γ′|∆′, D1|Σ′|Π′′; or v 6|= Γ′|∆′|Σ′, D2|Π′′,
v 6|= Γ′|∆′|Σ′, D1|Π′′; or v 6|= Γ′|∆′, D2|Σ′|Π′′

Hence, v 6|= Γ′|∆′|Σ′|D1 ∧D2,Π′′.

Case 6. Γ′|∆′|Σ′|Π′ = Γ′′,∀xA1(x)|∆′|Σ′|Π′ ∈ ξ. Then,
ξ has a direct child node containing Γ′′, A1(d)|∆′|Σ′|Π′ for
each constant d occurring in ξ. By induction assumption,
v 6|= Γ′′, A1(d)|∆′|Σ′|Π′ for some d occurring in ξ, i.e.,
v 6|= Γ′′,∀xA1(x)|∆′|Σ′|Π′.

Case 7. Γ′|∆′|Σ′|Π′ = Γ′|∆′′,∀xB1(x)|Σ′′|Π′ ∈ ξ. Then,
ξ has two direct child nodes containing either

Γ′|∆′′, B1(c)|Σ′|Π′,Γ′, B1(d)|∆′′|Σ′|Π′

for each d occurring in ξ, or

Γ′|∆′′, B1(c)|Σ′|Π′,Γ′|∆′′, B1(d)|Σ′|Π′

for each d occurring in ξ. By induction assumption, (1) ei-
ther v 6|= Γ′|∆′′, B1(c)|Σ′|Π′, or v 6|= Γ′, B1(d)|∆′′|Σ′|Π′
for some d; and (2) either v 6|= Γ′|∆′′, B1(c)|Σ′|Π′,
or v 6|= Γ′|∆′′, B1(d)|Σ′|Π′ for some d. Then v 6|=
Γ′|∆′′,∀xB1(x)|Σ′|Π′.

Case 8. Γ′|∆′|Σ′|Π′ = Γ′|∆′|Σ′′,∀xC1(x)|Π′ ∈ ξ. Then, ξ
has two direct children nodes containing either

Γ′|∆′′|Σ′, C1(c)|Π′,Γ′, C1(d)|∆′′|Σ′|Π′

for each d occurring in ξ, or

Γ′|∆′′|Σ′, C1(c)|Π′,Γ′|∆′′|Σ′, C1(d)|Π′

for each d occurring in ξ. By induction assumption, (1) ei-
ther v 6|= Γ′|∆′′|Σ′, C1(c)|Π′, or v 6|= Γ′, C1(d)|∆′′|Σ′|Π′
for some d; and (2) either v 6|= Γ′|∆′′|Σ′, C1(c)|Π′,
or v 6|= Γ′|∆′′|Σ′, C1(d)|Π′ for some d. Then v 6|=
Γ′|∆′′|Σ′,∀xC1(x)|Π′.

Case 9. Γ′|∆′|Σ′|Π′ = Γ′|∆′|Σ′|∀xD1(x),Π′′ ∈ ξ. Then,
ξ has a direct child node containing Γ|∆|Σ|D1(c),Π. By
induction assumption, v 6|= Γ′|∆′|Σ′|D1(c),Π′′, and hence,
v 6|= Γ′|∆′|Σ′|∀xD1(x),Π′′.

Similar for other cases.

5. DISCUSSION
In the proof of completeness theorem, given a sequent
Γ⇒ ∆ to be proved and a deduction rule of form

P Q

S

where P,Q, S are sequents, we decompose a node containing
S into two children nodes containg P and Q, respectively:

Given a deduction rule of form
P

S
Q

S

we merge sequents P and Q into one sequent P,Q:

In the end, we get a tree T such that each sequent at the leaf
node of T is atomic. If each leaf has an axiom then T is
a proof tree; otherwise, there is a branch γ of T such that
the leaf node of γ contains no axiom. Then, we define an
assignment v in which the sequent Γ⇒ ∆ is not satisfied.
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For multisequents, a node containing S which has three de-
duction rules 

P1 P2

S
Q1 Q2

S
R1 R2

S

has eight children nodes:

In another way, given a deduction rule

P Q

S

we merge sequents P and Q into one sequent P,Q:

Given a deduction rule: 
P

S
Q

S

a node containing S has two children nodes containing P
and Q, respectively:

In the end, we get a tree T such that each sequent at the leaf
node of T is atomic. If there is a branch γ such that each
sequent at the leaf node of γ is an axiom then γ is a proof
of Γ ⇒ ∆; otherwise, for each leaf node ξ of T , there is a
sequent at ξ is not an axiom. Then, we define an assignment
v in which the sequent Γ⇒ ∆ is not satisfied.

For multisequents, a node containing S which has three de-
duction rules 

P1 P2

S
Q1 Q2

S
R1 R2

S

has three children nodes:

Dually, for existential quantifier ∃ we have the following
definition of truth-value:

v(∃xA1(x)) =


t if Ea ∈ U(vx/a(A1(x)) = t)
> if Aa ∈ U(vx/a(A1(x)) ∈ {f,>})&Ea ∈ U(vx/a(A1(x)) = >)
⊥ if Aa ∈ U(vx/a(A1(x)) ∈ {f,⊥})&Ea ∈ U(vx/a(A1(x)) =⊥)
f if Aa ∈ U(vx/a(A1(x)) = f).

and deduction rules:

(∃A) Γ, A(t)|∆|Σ|Π
Γ,∃xA(x)|∆|Σ|Π (∃B

1 ) Γ|∆, B(t)|Σ|Π Γ|∆|Σ|B(x),Π
Γ|∃xB(x),∆|Σ|Π

(∃B
2 ) Γ|∆, B(t)|Σ|Π Γ|∆, B(x)|Σ|Π

Γ|∃xB(x),∆|Σ|Π
(∃C

1 ) Γ|∆|Σ, C(t)|Π Γ|∆|Σ|C(x),Π
Γ|∃xC(x),∆|Σ|Π (∃D) Γ|∆|Σ|D(x),Π

Γ|∆|Σ|∃xD(x),Π
(∃C

2 ) Γ|∆|Σ, C(t)|Π Γ|∆|Σ, C(x)|Π
Γ|∆|Σ,∃xC(x)|Π
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where t is a term and x is a new variable not occurring free
in Γ,∆,Σ and Π.

6. CONCLUSION
A Gentzen deduction system for B2

2-valued first-order logic
is given and soundness and completeness theorems are
proved.

A future work will consider different choices for defining the
truth-values of quantified formulas. One choice is as follows:

• ∀xA(x) has truth-value t if for each element a,A(x/a)
has truth-value t;

• ∀xA(x) has truth-value > if for each element a,A(x/a)
has truth-value >;

• ∀xA(x) has truth-value ⊥ if for each element a,A(x/a)
has truth-value ⊥;

• ∀xA(x) has truth-value f if for each element a,A(x/a)
has truth-value f.
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