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ABSTRACT

Comparing classifier performances may seem a banal affair but makes a side show in machine learning. Usually the paired t-test
is used. It requires that two classifiers were run simultaneously or this was simulated. This is not always possible and then
entails creating a superstructure only for that purpose. However, the utility of t-test in the given context is altogether doubted.
The literature on alternatives is much involved. This does not measure up to the scale of the issue. In this paper the topics in
connection with accuracy calculation are surveyed once more, emphasizing the result variation. The known technique of multifold
cross-validation is exemplified. A simplified methodology for comparison of classifier performances is proposed. It is based on
the accuracy mean and variance and calculating differences between objects defined in these terms. It is being applied to the naive
Bayesian and decision tree classifiers implemented on different platforms. The lazy learning approach, applicable to decision
trees in discrete domains, is closely followed with an imposition of how it can be improved. Examples are given from the field of
health diagnostics.
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1. INTRODUCTION

1.1 Resampling using equally-sized folds

Resampling from existing data forms the basis of many meth-
ods of classifier accuracy estimation.[1–3] Multi-fold cross-
validation (MFCV) is a resampling plan which provides a
series of training and test sets to ascertain the accuracy of
predictions. In N -fold cross-validation the data-set of size M
is partitioned into N segments, or folds, of q or q+1 length by
the number of instances, with q lower-approximating M/N.
Each time the classifier is trained on an aggregate of N -1
folds and tested on the remaining one. The accuracy is the
mean of average successes across all folds.[1, 2, 4] If the num-
ber of folds is large enough, the training sets differ by little
from one another and approach the size of the data, so the
whole exercise can be viewed as if the classifier was trained
and tested on the same data and yet the training and test

sets are independent of each other. If N=2 there is just one
fold against the other. The number of instances per fold is
at its maximum and no data is shared by the training sets.
This may appear to be the least biased scenario. Of course,
only two measurements of accuracy can be obtained. It is
however altogether a different setting, adjacent to the con-
ventional, ‘all-but-one’ MFCV. If M is exceedingly large,
the accuracy can be estimated by the fold rotation.[2] That
is, the classifier is trained on one of the folds and then tested
on all others in turn. Respectively, N·(N-1) unique measure-
ments of accuracy can be obtained - a substantial array even
with a relatively small N. By contrast, only N besides partial
accuracy readings are obtained in the conventional MFCV.
The ‘two-up’ MFCV by rotation seems straightforward but
is sketchily described in the literature.

Theoretically, there is just one sample representing the data
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concept.[1, 4] Even if the sample is big, or there is more to
it - all that is known about the population is contained in
the collection of instances emerged so far. It is important
to realize that the sample is not an arbitrary one. A sample
can truly represent a data concept if only it was randomly
drawn from the population. Naturally occurring samples are
variably biased from one batch of data to the next but grow
random the more is drawn.

Stratification is a known statistical technique based on the
assumption that probabilities of different kinds of data oc-
curring in a population are fixed, and so proportions of them
present in a sample, randomly drawn from the population, do
not change when it is scaled up or down.[1] Stratification is
known to lessen variability of results of cross-validation.[2]

So, in the case of MFCV, each fold is apportioned about the
same relative amount of class data as in the original data-
set. This makes accuracy estimation from test sets more
reliable. However, when N approaches M implementing
stratification becomes less and less feasible or even possible.
Nonetheless, in the all-but-one MFCV this impacts training
sets in the opposite manner as more and more they resem-
ble the whole data, and so no stratification is required. The
leave-one-out cross-validation (LOOCV) is a variant of the
all-but-one MFCV where the number of folds equates the
number of instances.[1, 2] Withholding one instance has a
negligible impact on the corresponding training set. How-
ever, it is altogether impossible to perform the rotation, as
whatever little information is provided in a fold - is for one
class only, and so the classifier cannot be trained to recognize
other classes. Neither the rotation is feasible of folds that are
statistically small.

The fold size and how the fold content is obtained matter not
only in connection with stratification. Firstly, subsampling
from a representative set, even though in random, is not the
same as sampling from the population directly. Secondly,
the less is sampled, the less is known about the data. It is
not possible to estimate the accuracy reliably from a fold. In
the case of LOOCV any estimate of accuracy from a fold is
either 0% or 100%, so the result variability is huge. There
can be a different take on all this. It makes more sense to
understand the accuracy differently - not as measured for
individual folds but the one obtained from all data. While
the perspective is often given that N measurements of ac-
curacy are obtained in a single pass through the data, from
the point of view of all-but-one MFCV there is a merit in
simply counting the number of successes across all data and
dividing the result by the number of instances M - after all,
averaging the accuracy across all folds is the same. This
interpretation does not apply to the two-up MFCV where a
fold is essentially a data-set of its own, that is to say, there

is a series of samples of about the same size rather than one
sample so subdivided.

The parity of training and test sets is important. It holds for
the two-up MFCV, and virtually for LOOCV, but only to
a degree for the all-but-one MFCV in general. Of course,
maintaining the parity is economical as it optimizes the data
availability for both training and testing. Also, having more
of the same is appropriate statistically. Nevertheless, while
the accuracy is generally understood as a result of testing of
a classifier on a sample of data, the cross-validation actually
subjects a classifier to a double-take whereby its ability to
analyze and then to infer is tested. The same set could have
been used to do both, but the impartiality requires that sets
for training and testing were separate. In the absence of
parity a correction is required when expressing full effects
of the respective sources of influence on the result.

In MFCV instances are randomly assigned to folds. Be-
cause this determines the content of training and test sets,
the accuracy readings may differ from one assignment to
the next. For certainty, the procedure should be repeated.
The by-fold accuracy estimation may give the impression
that multiple readings are obtained in a single application of
the procedure, and so repeating it is unnecessary. This may
hold for the two-up MFCV but does not exclude additional
passes. However, how many repetitions are possible? Even
if to ignore the requirement for proportional representation
of data classes in folds - and this is less consequential for the
all-but-one than two-up MFCV - there is a limited number of
ways the data can be assigned to folds. The master sample is
limited - so are the possibilities. This number is certainly less
than M ! which includes recurring folds. The randomness of
data allocation to folds would prevent from folds recurring
serially in the repeated MFCV. However, the proportion of
recurring content is high. Even if current folds were simply
renumbered - accounts for N! subdivisions. This should be
avoided or corrected for. Repeating LOOCV does not make
sense at all as all folds get reproduced the second time.

Nonetheless, the problem of recurring content only exists
because of how in principle the subdivision of data into folds
is approached. Segmenting the sample randomly is not the
same as circumnavigating all possible unique combinations
of instances in folds over a course of repeated subdivisions.
This would define the search space for the repeated MFCV.[2]

This should be so as the procedure simulates sampling from
population. As there are too many instances in a popula-
tion, it is guaranteed that the content of any sample drawn
is unique. Of course, the procedure can only draw instances
from a representative sample of the population, not directly
from it. For a fold-sized sample its uniqueness at the instance
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level will only hold for N draws. In repeated subdivisions
only uniqueness at the fold level is feasible. This will still
drive the result change by fold, although its range will be
reduced, reflecting the limited ability of a single sample to
represent population. With the view that it is the average
across all folds that counts in the all-but-one MFCV, it is
possible to relax the requirement as to the fold content even
further by allowing repeating folds, so long each subdivision
is unique (up to N-2 folds may repeat). Needless to say, this
will further reduce the result variability. Extending the search
space like this is neither conventional nor necessary as it is
already large enough. Besides, the extension would not be
right by the two-up MFCV.

If all possibilities of subdivision into folds are exhausted
- this is known as complete enumeration.[2] In this sense
LOOCV is complete after a single pass. Generally, if M=q·
N, M!/(M-q)!/q! unique folds of size q can be generated.
Assuming they can be assembled to complement each other,
this number divided by N gives the number of possible sub-
divisions. From here, the smaller are the folds, the more
likely their content will replicate in random subdivisions,
explaining LOOCV. Note, the requirement for proportional
distribution of class data into folds further reduces the num-
ber of possibilities; the above calculation has to be done by
class and the results multiplied, to be precise. If M is large
and N moderate, the number of possibilities is huge, nonethe-
less. It is a futile exercise encompassing them all even if
this would prevent from the recurring content. Ideally, there
should be measures in place, if not rendering the recurrence
altogether impossible, then voiding random subdivision vari-
ants with previously encountered fold content, or at least
making them a second choice.

1.2 Asymptotic success rate and its variance for large
samples

The classification accuracy depends on the training set size.
It increases with the amount of training data. Eventually, it
reaches its asymptotic rate.[5] The pattern of approach to
the asymptote is approximately linear with the inverse of the
amount of training data.[5, 6] This circumstance can be used
to project the accuracy to a larger sample having obtained
several readings for different sample sizes from available
data.[7] However, the normal course of action in accuracy
testing is actually the other way around. There are two sides
to classifier performance: the accuracy and the speed. How a
classifier performs on all available data is important for tak-
ing stock of its abilities. If the accuracy is high enough, the
amount of training data can be reduced in order to expedite
the performance.

In view of the above, the sample size should be fixed if the

accuracy was deemed to be a constant and not a variable in
the deterministic sense. Therefore, in order that the ground
for classifier comparison was level, the number of folds for
MFCV N has to be fixed. It is worth nothing that the overall
number of instances M should be the same in comparison
too, although usually this is a non-issue as there is only one
representative sample of data.

In the conventional MFCV framework, if a classifier makes
instance-wise the same predictions regardless of how data
is redistributed between folds, the classifier is said to be sta-
ble.[2] A stable classifier reduces the accuracy variance to
zero, as far as the repeated MFCV is concerned. Classifiers
perform more consistently as training sets get bigger in size.
However, the side effect of this occurring to a classifier when
N → M is that the training set content variability becomes
compromised. The stability of classifiers under LOOCV is
altogether artificial because any redistribution of instances
is going to produce the same folds. Yet, training sets there
get increased to the maximum. While for a stable classifier
reporting only the mean accuracy makes sense, for LOOCV
the variance is simply unknown. Reaching the stability under
the repeated all-but-one MFCV would attest to its propen-
sity for underestimation of the accuracy variance due to the
intensity of single sample data recycling. Generally, local
methods, like DT-s, that base their decisions on subsets of
training data, even though purposefully selected, would be
exposed to result variation more than global ones, like NB,
making use of all of the training set.

Many classifiers end up with a model of data concept af-
ter examining a particular set of instances. If the model is
adopted for universal use, such a classifier is stable on any
data sourced from the population.[4] The classification can
then be viewed as a set of Bernoulli trials with the accuracy
aB being the true success rate, and the error (1− aB) being
that of failure. The accuracy on a sample represents then
a random variable resulting from joint distribution of M
i.i.d. (independently and identically distributed) Bernoulli
variables.[1, 2] The accuracy as a sum of such variables is
therefore binomially distributed. Drawing parallels with the
M Bernoulli trials, the sum is the number of successes en-
countered in a sample of that size, but having averaged over
all instances, the true mean and variance (as squared quantity)
of the sample accuracy aM are expressed as in Eq.1.[1, 2]

āM = aB

ã2
M = aB · (1− aB)/M (1)

From Eq.1 the estimated accuracy is bound to vary less and
less as the sample grows, and not only because of the size
but also improvement in the predictive ability.
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In accuracy variability analysis the rate of correct predic-
tions is often assumed to be distributed normally. This is
admissible since at large M the binomial distribution be-
haves more and more like the normal one.[1] To be precise,
all the accuracy values are actually found between 0% and
100% marks. Also, the distribution, while unimodal, is not
symmetric, and the higher the mean, the more it is shifted
to the right.[8] However, the left tail is thin, and more of
the right tail emerges when instances are added to the sam-
ple, so indeed it becomes bell-shaped for large enough M
with quickly vanishing tails, which is typical of the normal
distribution.

The above analysis requires that the classifier was stable,
and applicable to MFCV this spells zero variance. Yet, at
large M this result does not contradict Eq.1 and is expected
since repeating the procedure can only underestimate the
variance. However, this is controversial: a classifier rather
not to be stable as only then the accuracy variance can be
measured by the repeated MFCV (with specifics in the two-
up case). Also, instability would mean larger variance. Will
the assumption of normality of accuracy distribution hold?
It still may because limiting a population to a single sample
instead reduces the variance. The consolation is found in
using larger training sets – they stabilize classifiers. That
would be in agreement with the requirement for M to be
large so that Eq.1 could apply. Of course, any training set is
only a subset of the master sample. Therefore, for the all-but-
one MFCV larger N are preferable, whereas for the two-up
MFCV smaller N are preferable. To resolve the controversy
properly, though, one should look for the innate connection
between classifier training and testing on the same data that
intuitively exists. Then, treating the training and test set pair
as a unit can give a rough idea of the sample size in terms of
Eq.1. Note that in the repeated all-but-one MFCV the test
set is fragmented but amounts to all of the data, and at large
N the difference in size between the training set and the all
data can be neglected.

To compare performances of two classifiers on the same data,
usually the paired t-test is used.[1, 9] This involves obtaining
the accuracy for exactly the same fold by both methods and
taking the difference. The resulting statistic, aggregating the
differences across all folds in all passes through the data,
is then Student t-distributed. The statistic generally has the
form t = (m − µ)/(s/k1/2) where m is the sample of dif-
ferences mean, s is the sample standard deviation, and k is
the sample size. A qualification is required as to the data
the t-test actually handles: it is not the differences as such
but their mean. Therefore, µ is the population mean of these
means. The population variance is 1/k of the variance of
underlying differences, approximated in the expression for t-

statistic with s2/k. For that reason it is unimportant how the
differences are actually distributed – their mean and so t will
tend to be distributed normally with k → ∞ according to
the central limit theorem.[8] The sample size determines the
degrees of freedom - a parameter in the Student’s probability
density function (equal to k-1 the divisor in calculating s2).
The distribution approaches the normal one (with zero mean
and unit variance) with more degrees of freedom in store.

In the given context, the true mean µ (of the accuracy dif-
ference size k sample means) is hypothesized to be zero
and then, based on the value of the statistic, this is either
accepted or rejected. The t-test result, or p-value, has to be
small enough for the ‘null’ hypothesis to be rejected, as the
divergence is then said to be statistically significant.

While using the t-test and its variations is widespread, there
is a growing opinion that it is not ideal for the classifier per-
formance comparison.[9] The main point is that it does not
directly measure the probability of the null hypothesis or of
its alternative. Indeed, the probability it estimates is that of
occurrence of the aforementioned statistic absolute values
as found or higher, conditional on the null hypothesis being
true. Also, the test result is difficult to interpret as it does not
translate to how the underlying accuracies of two methods
are different.

An added convenience of the t-test is that it obviates the
need to know the true variance, but this may be its weak
point when k is small. In this connection, the fact that the
accuracies are distributed approximately normally is impor-
tant because the mean of their differences (given classifier
independence of one another) is then also approximately
normal, voiding the requirement for k to be large. Yet, the
‘hypothetical’ mean µ in the t-test is assumed to be known.
It is set to zero in the paired t-test applicable to classifier
comparison; however, this ignores that this value may much
differ from the sample mean m. Can the test be relied on at
high absolute values of the statistic?

On the implementation side, the pairing for the t-test requires
exactly the same fold configuration in two algorithms being
compared. Random folds cannot be reproduced, so a spe-
cial set-up is in order, but this may be too much ado if the
algorithms cannot be run outside their platforms.

LOOCV results are usually reported without any mention of
variance. This is understandable since the fold content cannot
be refreshed. Some alteration is required to test variability of
the result under this approach. For example, instances can be
withheld in turn with the procedure run on the rest of the data.
Where classifiers are compared, with the accuracy obtained
by MFCV, usually only the p-value is reported, or simply a
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statement is made about the statistical significance of the dif-
ference in results. Sometimes, however, classification results
include the variance alongside their mean. Knowing both for
accuracy or error is useful for comparison with other pub-
lished results or testing of new algorithms. Comparing two
objects instead of two numbers has its challenges, though.
How to approximately compare two probability distributions
is described in the section on methods.

1.3 Lazy learners

In terms of computations some classification methods would
be advantaged and others disadvantaged from using MFCV
for their accuracy estimation. Some methods are ‘eager’ and
others are ‘lazy’.[1] The eager classifiers train before testing,
the lazy ones test immediately. Both types make use of the
training data, though. Yet, while the former try to ‘learn’
from it, the latter just ‘mine’ it. Albeit, these are the polari-
ties and there can be approaches treading the middle ground.
The decision tree (DT) variety generally belongs to eager
methods; the nearest neighbor - to lazy methods.[1] Also,
there are flavors: a DT can be run in lazy mode by working
out only the branch that leads to the test instance; and a near-
est neighbor in eager mode by reducing the training data to
a set of critical instances before testing. The Naive Bayes
(NB) classifier,[1] due to its simplicity, can be implemented
as either eager or lazy method. Essentially, the choice be-
tween ‘eager’ and ‘lazy’ is driven by the application of either
inductive or deductive reasoning. The inductive, or eager,
methods produce a model of data - a compact description
of the data concept. Therefore, with these methods MFCV
can be very fast – all instances in a set get tested against the
same model. The deductive, or lazy, methods have to mine
for answers time and again, from one test instance to the
next, although this is presumed being easily done and with
added flexibility as to how. Yet, eager methods may come to
a grinding halt on LOOCV due to effectively being forced
into the lazy mode (while not being simple nor flexible).

In this work a DT is compared with a lazy variant
thereof.[10, 11] Also this is done across different platforms.
The eager DT is J48 from WEKA[1, 12] (implementing
C4.5[10]) and the lazy DT is one proposed here and to be
described. Additionally, the NB algorithm from WEKA is
compared with another NB developed by own means. WEKA
provides for the all-but-one MFCV but does not have an op-
tion to apply it repeatedly; however, this can be managed
by reordering data instances anew, for which a utility exists
(‘Randomize’ among unsupervised filters), before invoking
the procedure. The partial results then need to be grossed up.

1.4 Lazy decision trees
DT-s can be run in lazy mode.[11] The design upholds the
general principles of C4.5. However, since not all of the
tree is required, the reckoning can be much simpler. Firstly,
only the path leading to the instance in question has to be
laid. In all-discrete domains the path is determined by certain
attribute values and these are known from the instance, so
only the attributes have to be selected. Secondly, no prun-
ing is required since creating the model (whole tree) is not
on the agenda, so no need to hone it. Thirdly, treating any
missing values is easy - the attributes with missing values in
the test instance are simply ignored. The last consideration
brings to the fore that there can be better ways than relying
on the same model (or a part of it) all the time. Creators of
Lazy-DT[11] note that the Information Gain (IG) criterion
for branch propagation, one attribute a time, in C4.5-like
trees uses the averaged information pertaining to data in
the current node, whereas a particular value of an attribute,
otherwise nondescript, can be highly predictive in context.

Shorter trees are generally known to be more robust than
more developed ones.[13] The strong attributes are usually
taken up at the beginning, and the rest are not necessarily
strong in subsets. Also, information dissipates down the
branches (using the inverted tree / river system construct).
The main limitation of the conventional DT-s is that they
are univariate, that is, the decisions of how to dissect the
data, although step-wise optimal, are based on a single se-
lected feature.[14] This limitation manifests in a number of
ways. Particularly, the loss of information is largely due
to the “hill climbing” - a search strategy whereby the best
path immediately in view is taken without the ability to
backtrack to explore other options, also known as ‘greedy’
search.[1, 11] As the sub-optimal decisions previously taken
compound any subsequent ones, the information clatter in-
tensifies. Contributors of dissipating information in DT-s are
also the phenomena of fragmentation and replication.[11, 14]

The fragmentation brings about smaller subsets of data with
reduced choices for decision making. Particularly, the abil-
ity to calculate IG precisely wanes as the branches become
‘thinner’. It is a direct consequence of tree propagation. The
replication is secondary to fragmentation in eager DT-s. It
is often caused by the occurrence of independently strong
attributes.[10, 11] Since only one can be chosen at any particu-
lar time, a previously undervalued attribute becomes split-on
in a number of nodes across the tree structure. Such a tree
is wasteful in the form, and so according to the minimum
description length principle[1] is not optimal.

The perspective of added flexibility is a major reason to opt
for the lazy mode. This should not be missed where possible.
For example, the Decision Branch (DB) algorithm exercised
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by us previously[15] simply utilizes IG. The Lazy-DT, though,
replaces the IG criterion with an entropy reduction one de-
pending on attribute value in the test instance.[11] So much
so, the dissipation of information remains a big problem with
any DT. It has been observed that a DT is better off with
data that has many interrelated features, none of them espe-
cially strong, than with data made of independently strong
features.[10, 11] Dissipation of information in continuous do-
mains is offset by dissecting ranges in context, not once and
for all, and also dichotomizing them instead of multiply di-
viding.[10] Prediscretizing data exacerbates the problem as
a feature once selected cannot be split on the second time,
thus limiting choices for narrowing the selection down.[10, 15]

Previously, parallels were drawn between DB and the Info-
Neighbor - a nearest neighbor algorithm that weights features
by IG.[15] Since nearest neighbor algorithms draw their con-
clusions from observing multiple features, this prompts a
compatible hybridization of DB which calculations are oth-
erwise based on a limited number although selected features.

2. METHODS

2.1 Distribution of data into folds
More formally, data-set D is subdivided into folds Fn (n =
1 · · ·N ). Classifier C assigns instance xm (m = 1 · · ·M )
to one of the applicable data classes, which can be either
successful or not, with the target class being ym. If instance
xm is in Fn classifier C is trained on D \Fn. The procedure
is run R times with different subdivisions of data into folds.
The accuracy estimate in run r is given by Eq.2.

ar = 1
M

M∑
m=1

I[Cr(xm) = ym] (2)

In Eq.2 I[·] is the identifier function (also indicator function,
also Kronecker delta) taking values 1 when its argument
is true and 0 when it is false. The accuracy mean, second
moment, and variance over R runs are defined as in Eq.3.

(3)

Similar to a running total, the quantities from Eq.3 can be
obtained by updating from one run to the next as specified in
Eq.4.

(4)

In Eq.4 the values of mean, second moment, and variance
for run r + 1 are updated from the values thereof for run
r. The reference to accuracy a is omitted for brevity. Of
course m1 = a1, s1 = a2

1, and v1 = 0 (inconsequentially
for r > 1).

Instead of the class-indiscriminate accuracy in Eq.2 other
objectives can be pursued such as individual class accuracies
and their mean. The expression in Eq.2 has to be reformed
appropriately. In the case of class-specific accuracies the
summation is done over instances of a particular class and
the result is divided by their number instead of M .

The above describes cross-validation schematics applicable
to the all-but-one MFCV which this paper is mainly about.
Changes that are required to fit in the two-up MFCV follow
from the fact that each fold in this type is a representative
sample of data in its own right and gets tested from one other
fold, not the rest of the data. Formally, if instance xm is in
fold Fn1 then classifier C is trained on fold Fn2(n2 6= n1).
The summation in Eq.2 is therefore performed over instances
in Fn1 and the result is normalized with their number instead
of M . Since testing of each fold n1 = 1 · · ·N is conducted
against all other folds n2 = 1 · · ·N in turn, the number of
accuracy readings is N · (N − 1) ·R not R and so Eq.3 has
to be changed to that effect, although Eq.4 can be used as is.

Subdividing data-set into N folds R times can be arranged
for as follows.

Repeated random allocation of class instances to evenly sized
folds

Firstly, the instances have to be distributed into folds ran-
domly in each subdivision, while fulfilling the requirement
for proportional class representation in each fold. Towards
this aim, each instance is supplied with N counters of place-
ment into respective folds. Also, each fold is provided with a
counter of all instances distributed into it so far, irrespective
of class. Then, separately by class, each instance is randomly
distributed into one of the folds with the same minimum
number of placements altogether, and within that range into
a fold for which the minimum number of placements holds
pertaining to the instance.

Secondly, to identify folds and guarantee uniqueness of their
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content in subsequent subdivisions a reservation can be made
as follows. For each data class randomly select k+1 instances,
with k upper-approximating R/N , and assign them to fold 1.
Repeat for folds 2 through to N . These controlling instances
in each fold and class within fold are numbered from 0 to k.
Instances with such index 0 never leave their fold. Instances
with index k are rotated (unrelated to elsewhere in the text)
from one subdivision to the next by shifting into the next
fold, with instances in fold N sent to fold 1. Up to the index
k− 1 the instances remain static. Once instances k are going
to return to their initial locations, they are released (become
ordinary) and instances indexed k − 1 commence rotating.

The placement of instances in the first procedure promotes
even distribution of data between folds with the proportional
or so representation of classes. It is so set up that the novel
content could appear early in consecutive runs. However,
this is similar to stratification and simply guarantees what the
random distribution is set to achieve in the long run. The ma-
nipulation involving the small number of reserved instances
in the second procedure prevents from the same content reap-
pearing in the same or a different fold, as previously noted.
Although, for large M and moderate N which is often the
case, steps in the second procedure are only precautionary.

The first procedure overcommits instances if N = 2 result-
ing in idle content swapping between the folds one and two.
To remedy this, the algorithm can be run with N = 4 and

pairing folds one way or another before evaluating the accu-
racy. This may seem an artefact due to the constraint limiting
affiliation of instances with same folds. However, while the
previously encountered content is the least probable when
N = 2, it is inevitable when N = 1 same as when N = M -
the transition accounts for another half of the data-set.

Neither the main procedure nor the preventive measures
against recurring fold content are implementable when N
approaches M . Particularly, it may be impossible to stratify
the data by fold. Not that small folds are acceptable in the
two-up MFCV. For the all-but-one MFCV, while it is feasi-
ble in the second procedure to draw instances irrespective
of class, perhaps it is better to draw folds in random from
the space of all possible combinations of q instances so as
to complement the instances already drawn until all are ac-
counted for. This would provide for one subdivision of data
into folds. Needless to say, once selected, a fold becomes un-
available, particularly in subsequent cycles. When N = M

the space of folds is that of instances, which is exactly the
basis for LOOCV.

2.2 Classifier performance comparison
2.2.1 Probability densities
The two, assumed normal, accuracy distributions arising
from two different classifiers from the same data will over-
lap, as illustrated in Figure 1.

Figure 1. Two classification accuracy (%) normal probability densities (means ± standard deviations: 89.0±1.5 and
90.0±0.5), their intersection with individual contributions
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In this connection, the primary goal is to establish where the
probability density functional graphs intersect. The normally
distributed random variable X taking values x has generally
the probability density function p(x) given by Eq.5.[8]

(5)

It is positive, bell-shaped, centered at µ - the mean value
of X; with the symmetrical, vanishing at infinity, spread to
either side controlled by σ2 - the variance of X(see Eq.5 and
Figure 1). The statement of normality of data distribution
is often written as X ∼ N(µ, σ2) in the aforementioned
terms. The property of any probability density function is
that over the universe of discourse of values of its argument
it integrates to 1 (total probability) which is the area under
its graph. It is implicit that σ > 0 although the limit when
σ → 0 can be considered. By expansion, setting σ = 0 turns
p(x) into a delta-function: it is zero everywhere except at µ
where it is infinite, and yet it integrates to 1 over all x.

The profiles of two normal probability density functions are
bound to intersect a number of times from the above depic-
tion of their shapes. Suppose X0 ∼ N(µ0, σ

2
0) with density

p0 and X1 ∼ N(µ1, σ
2
1) with density p1 then it is required

to solve p0(x) = p1(x) for x. Noting that quantities on both
sides of this equation are positive and taking the natural log-
arithm allows to reduce the full expression in terms of Eq.5
to the form in Eq.6.

(6)

Clearly, Eq.6 represents a quadratic equation with up to two
real roots. In the standard form the equation and its solution
are written as in Eq.7.

a · x2 + b · x+ c1 = c0

a = 0
x = (µ0 + µ1)/2

a 6= 0

x = (−b±
√
d)/(2 · a)

d = b2 − 4 · a · (c1 − c0) (7)

The solution of Eq.7 depends on whether a = 0 or not (un-
related to ‘accuracy’). When a = 0 the equation is not
quadratic but linear. The symbols in Eq.7 have denomina-
tions as per Eq.8.

(8)

For the quadratic equation, the solution discriminant d in
Eq.7 can be reduced to the form in Eq.9.

(9)

One can verify that d ≥ 0 due to both multipliers in the
last term of Eq.9 having the same sign. The discriminant
turns into zero if σ0 = 0 or σ1 = 0 or both µ0 = µ1 and
σ0 = σ1. Nothing of the three is attainable, which is down
to σ > 0 generally, and σ0 6= σ1 due to a = 0 representing
the special case (see Eq.8). So conditioned, the two graphs
then intersect precisely in two points. Because σ · ln(σ)→ 0
when σ → 0 appropriate limits in Eq.7 can be considered.
When one σ = 0 but not the other the solution is unique, it
is µ with the matching index. When both σ = 0 the solution
is undetermined. In this case the two delta-functions inter-
sect everywhere but the two points determined by µ values
that have to be different. Note that small non-zero σ value
handling, when the two are different, is precision demanding
- the probability density function slope steepness makes area
calculations in the next section sensitive to small errors in x,
especially when µ values are close (see Figure 1).

2.2.2 Likeness in results
Surely any two numbers are either different or not. This
corresponds to the case when both σ = 0. Although this case
is exotic, the fact that two classification methods perform
differently or exactly the same can be established directly
from comparing their (mean) accuracies. Sometimes, the
variance is simply omitted, and then comparing the means is
the only option left, but the question should be asked whether
the variances are same or different.

Generally, when comparing two waveforms, the degree to
which their profiles overlap would give the answer to how
they are different (see Figure 1). With this approach it is
immediately clear that if the accuracy means as well as vari-
ances match then both classification methods perform equally
well, in other words, they are 100% or totally similar. By
contrast, the similarity would diminish and be 0% at the in-
finity when the accuracy mean values become more distant.
Nonetheless, in the special case of one σ = 0 but not the
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other, the two methods are 0% similar (totally dissimilar)
regardless of µ values. To visualise the second, the two in-
tersection points in Figure 1 become closer as the higher
waveform grows thinner (σ → 0) and taller vertically, while
squatter horizontally, so the shaded area where the two pro-
files intersect vanishes.

For arbitrary µ values and non-zero σ values following steps
can be taken to calculate the similarity:

Probabilistic similarity between normally distributed popu-
lations via T-z approximation

1. Obtain the one or two points of intersection of p0(x) with
p1(x) using Eq.7 and order them by value if applicable.

2. Calculate the probability in tails of each probability den-
sity function on left and right of each intersection point.

3. Obtain the probability between intersection points for each
density function by subtracting the values for appropriate two
left or right tails. It is zero if there is only one intersection
point.

4. Add up minimums of probabilities between the two dis-
tributions on the left of the first / single intersection point,
on the right of the second / single intersection point, and be-
tween them if this applies (use Figure 1 for guidance). This
is the value of the criterion, small as 0, high as 1; or 0% and
100% respectively.

In fact, the similarity criterion represents a distance between
populations - like measure[16] and is expressed as follows
(Eq.10).

(10)

The convenience of Eq.10 is that the result PS is probability-
related with essentially the same meaning as the p-value in
the t-test and others.[1, 8, 9] The above procedure stipulates
how the integration can be done, but there is one difficulty.

The normal probability density function is not integrable in
a closed form. Fortunately, for the probability in the tail of
p(x) there exists an old analytic approximation shown in
Eq.11.[8]

(11)

Eq.11 approximates the tail fairly well throughout, with the

result at both ends z = 0 and z = ∞ exactly matching the
true values: T (0) = 0.5 and T (∞) = 0. Some logistics is
involved in applying the expression when z < 0 and the tail
is right or when z > 0 and the tail is left. One should take
into account that in terms of z what is on the left of zero is
the mirror image of what is on the right thereof, and the total
area under the curve is 1.

If random variablesX0 andX1 are normally distributed then,
if they are independent of each other, their linear combina-
tion is also normally distributed with the mean and variance
as in Eq.12.[8]

X0 ∼ N(µ0, σ
2
0)

X1 ∼ N(µ1, σ
2
1)

X2 = a ·X0 + b ·X1

X0 ⊥X1 ⇒ X2 ∼ N(µ2, σ
2
2)

µ2 = a · µ0 + b · µ1

σ2
2 = a2 · σ2

0 + b2 · σ2
1 (12)

This classic result can be used to calculate the probability
of one method being more accurate than the other, or how
‘dominant’ it is. Suppose probability density p2(x) results
from subtracting X1 from X0. Then by Eq.12 µ2 = µ1−µ0
and σ2

2 = σ2
0 + σ2

1 . All that is required to evaluate the proba-
bility of X1 ≥ X0 is to integrate p2(x) for x ≥ 0. The Eq.11
can be used again. This will work even with one σ = 0 of
the two.

The requirement for independence needs consideration but is
not so limiting. Generally, unless one of the two classifiers
in comparison builds on results of the other, the requirement
would be satisfied. The “all other conditions equal” clause
concerning the applicability of both formulated methods
should not escape scrutiny either. It was previously stated
that the data as well as the number of folds for MFCV need to
be the same. However, implicitly, applicable to the classifier
comparison, the problem has to be one and only too. By the
same token, it is feasible to compare results by a particular
classifier but for different problems. If there are several repre-
sentative samples of the same data, though, at least they have
to be of the same size. If this holds then again, it is feasible to
compare quality of data between them from the perspective
of particular classifier as applicable to a particular problem.
The same would apply to MFCV specification differences.
All these aspects are relevant to the current work, although
only the comparison of classifiers is pursued.

The Appendix instructs on using MS Excel to program either
of the comparison methods for evaluation purposes.
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2.3 Proposed lazy decision tree for discrete domains
Suppose the distance d in the space of nominal / discrete
features is defined by Eq.13.

(13)

The expression in Eq.13 is known as overlap metric. As
before I[·] is the identifier function; other notation has the
following meaning: x1 and x2 are two vectors of features; g
is the feature index and G is the number of features / ‘genes’.
The algorithm for DT in the lazy mode is formulated as
follows.

Decision Branch Joint Venture

In: an instance to classify; Out: class of the instance

Parameters: min. size of the leaf; min. purity of the leaf

1. Consider narrowing the search by calculating the aver-
age distance to the test instance, using Eq.13, for subsets of
data defined by that instance values of each attribute in turn.
Select the subset (node) where the distance is the shortest.

2. If the selected subset is smaller than parametrically de-
fined or selection is idle then proceed to Step 3. Else, accept
the selection and exclude the corresponding feature from
subsequent consideration. Repeat from Step 1 applicable to
the current node. The initial node consists of all data in the
training set.

3. Once the selection cannot be narrowed down more, so the
leaf node has been reached, do one of the following:

- if purity of the leaf in respect of the biggest class in it is high
enough, set parametrically, assign that class to the instance
in question;

- if the purity is deficient, calculate the average distance from
instances of each class in the leaf to the instance in question,
using Eq.13. Choose the class closest overall to the instance
to determine its affiliation.

3. EVALUATION
The simulation conducted in this work uses data from the
USA National Health and Nutrition Examination Surveys
(NHANES)[17] for years 2011-14, consisting of 6860 records.
Missing values were filled and continuous variables discre-
tised. The population is older adults. Classification is per-
formed in respect of Type 2 Diabetes Mellitus (DM), Car-
diovascular Disease (CVD), or Hypertension (HT) statuses.
The prevalence of DM, CVD, and HT in the population is
roughly 20%, 40%, and 45%, respectively, based on the data.

The features were preselected so they were by no means
strong, neither were they weak features. All problems rely
on their own, although vastly intersecting feature-sets. Fifty
features are used to classify DM, fifty - CVD, and forty - HT.
It is relevant to the current discourse that feature-sets in all
problems are favorable for NB. This is the same data-set as
previously reported.[18]

The surveys are conducted two-yearly. Each survey is an
independent snap-shot of the population. Therefore, the data
is comprised of two natural subsamples, referred in the text
as first and second. The second data-set is slightly (under
10%) larger than the first. It makes sense examining them
separately as this removes the artificial element introduced
by subsampling from a sample rather than population. This
is advantageous computationally but, above all, gives the
opportunity to perform a reality check.

The exercise consisted of running the conventional 10-
fold cross-validation 100 times. The repeated (all-but-one)
MFCV was performed according to how it is described in the
methods section, applicable to the proposed modified DB al-
gorithm or own implementation of NB. The repeated MFCV
was simulated for algorithms tied to the WEKA platform by
repeatedly launching them after randomly reordering data,
all-in-all 100 times, with 10-fold cross-validation option. The
classifiers on WEKA are J48 and NB.[1, 12] The predictive
ability of algorithms via resampling is assessed for each di-
agnostic problem – dataset combination out of the three and
two aforementioned, respectively. During each run of MFCV
a number of accuracy aspects are evaluated. Particularly
of interest are the sensitivity, specificity and the balanced
accuracy. The first two are accuracies in respect of either the
cohort diagnosed with a chronic condition that applies, or
the healthy controls, respectively. The balanced accuracy is
their simple arithmetic mean. The accuracy reporting and the
comparison between classification methods is based on the
last values out of the repeated MFCV. Background dynamics
of the value change through the exercise is analyzed.

4. RESULTS
4.1 Comparison of imprecise
The comparison of classifier performances on different plat-
forms is presented in Tables 1&2 for NB and DT classifiers,
respectively, on the basis of balanced accuracy mean and
standard deviation (square root of variance). The columns in
the tables have the following designations titled accordingly:
‘Same’ uses the criterion expressed in Eq.10; ‘More’ applies
Eq.12 to calculate probability of X1 − X0 ≥ 0 where X0
and X1 correspond to the results under ‘Weka’ and ‘Own’,
respectively; ‘Less’ is complementary to ‘More’, evaluating
probability of the opposite. Unlike for DT, the results for
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NB look much more synchronized, whether in respect of
similarity or dominance as the criterion, which is plausible
since, notwithstanding the environmental differences, the
algorithm should be the same, give or take.

NB exploits the conditional independence of features, given
a class, and loses traction where this does not hold. Yet,
it is regarded as a ‘parametric’ method because it makes
an assumption about involved probabilities (parameterizes
a model distribution, as it were). As the result, it effectively
harnesses more data than, for example, DT which is ‘non-
parametric’. So, if the assumption holds, NB may perform
better than DT. On the other hand, NB is known for its ability
to handle class imbalance.[15] This is because it gleans the
information from all over the instance space. The higher
balanced accuracy seen in Table 1 for DM than for CVD or
HT can be a confluence of favorable circumstances for NB
on this problem.

Table 1. Balanced accuracy (%) standard deviation bounds
and p-value for own NB being in the same range as, or
jointly more/less than the Weka equivalent

 

 

Problem/ 

Sample 
Weka Own Same More Less 

DM 1 84.0±0.2 84.3±0.2 0.448 0.857 0.143 

DM 2 86.0±0.2 86.1±0.2 0.795 0.642 0.358 

CVD 1 77.5±0.1 77.5±0.1 1.000 0.500 0.500 

CVD 2 78.3±0.1 78.2±0.1 0.610 0.237 0.763 

HT 1 76.6±0.1 76.6±0.1 1.000 0.500 0.500 

HT 2 78.6±0.1 78.6±0.1 1.000 0.500 0.500 

 

Table 2. Balanced accuracy (%) standard deviation bounds
and p-value for own DT being in the same range as, or
jointly more/less than the Weka counterpart

 

 

Problem/ 

Sample 
Weka Own Same More Less 

DM 1 70.0±0.7 81.3±0.6 0.000 1.000 0.000 

DM 2 75.7±0.9 87.4±0.5 0.000 1.000 0.000 

CVD 1 81.1±0.5 77.5±0.6 0.001 0.000 1.000 

CVD 2 81.9±0.5 82.5±0.5 0.542 0.804 0.196 

HT 1 73.9±1.0 75.8±0.5 0.189 0.956 0.044 

HT 2 75.1±0.7 84.3±0.4 0.000 1.000 0.000 

 

Although inconsistently, J48 from WEKA is lagging behind
DB-JV across the problem spectrum and the data samples.
The proposed lazy DT differs in design from J48 well beyond
its basic transformation from ‘eager’ to ‘lazy’. Evidently,
J48 lacks capabilities to deal with the class imbalance.[18] So,

at least for DM, the balanced accuracy results in Table 2 are
much different.

For a closer look into the balanced accuracy differences in
the case of DM, the sensitivity results, including confidence
intervals, are presented in Figure 2 for DT classifiers on
different platforms.

As seen from Figure 2, there is an appreciable contrast in
sensitivity between the proposed DB-JV and J48 DT from
WEKA. This is verifiable even without the apparatus of p-
values. Indeed, the upper bound of the 99.7% confidence
interval (three standard deviations) of the assumed normally
distributed sensitivity for J48 is clearly less than the lower
bound of the analogous interval for DB-JV in both samples
(consult Figure 1). DM is much less prevalent than CVD or
HT. The proposed lazy DT is better equipped than the stan-
dard one to deal with a possible class imbalance by absorbing
the contained in leaves secondary information passed on to
them by progenitor nodes. However, the Table 2 results for
DB-JV, while acceptable, do not compare favorably with pre-
viously reported ones by other methods for the same data,[18]

particularly the earlier mentioned Info-Neighbor which uses
IG weighted overlap metric from Eq.13.

In DB-JV the leaf size and its purity were set to be no less
than 5 instances and 90% or more, respectively. When run-
ning, the level of detail at leaf (‘length’ of the branch) was
between 1 and 5, but 3 on average, with zero corresponding
to all training data. The NB of own making does not require
a parameter entry. The algorithms on WEKA were run with
their default settings, although neither J48 nor NB seemed to
attract any parameters of critical importance.

Between the samples, the accuracy by the same method is
notably different (see Tables 1&2, Figure 2). The accuracy
is always higher for the second sample, regardless of the
method and problem it is applied to. Although completely
foreign to each other, the samples are about the same size.
Size can impact accuracy, but the second sample is only
slightly bigger, and it is likely the accuracy is close to asymp-
totic. This can only mean the data is not homogenous. The
two samples as they appear in the surveys[17] are different
in attributes they list. Where a misalignment occurred, the
missing values had to be filled. As a statement, features be-
hind the attributes native to the first sample are more relevant
to the represented problems. Because of the imputation these
features may have become elevated in relevance in the sec-
ond sample, which is a known issue as the surrogates usually
seek to minimize the classification error.[15]
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Figure 2. Diagnostic sensitivity of platform dependent DT classifiers on DM by sample

The results in Tables 1&2 are consistent with the theoretical
accuracy variance being smaller for larger samples, accord-
ing to Eq.1. It is not possible to do calculations exactly
without adapting Eq.1 for the balanced accuracy, but this
metric approximates the situation when samples are class-
balanced,[18] that is, there are equal numbers of any class. By
seeing Eq.2 in this light it is easy to verify that Eq.1 can then
be used as is. By the way of some underestimation of the vari-
ance, suppose the sample size is 6400 (about twice the size
of the data-set for compatibility with the equation) and the
accuracy is between 90% and 50% then by Eq.1 the standard
deviation is between 0.4% (3/8) and 0.6% (5/8), respectively.
If the sample size is 3600 then the theoretical standard de-
viation range is from 0.5% (3/6) to 0.8% (5/6), which is an
overestimation but the interval change is minor. From Table 1
the standard deviation for NB on any platform is 0.1%-0.2%.
From Table 2 the standard deviation for DB-JV is 0.4%-0.6%
and for J48 it is 0.5%-1.0%. At least, the theoretical and
experimental results are comparable. Although, the repeated
all-but-one MFCV is expected to underestimate the actual
variance. This certainly holds for NB and to some extent for
DB-JV in respect of the theoretical one. NB results vary less
than in any of the DT-s. This can be explained by NB extract-
ing information from all data (enabled by its assumptions),
not locally as the DT classifiers.

4.2 Background dynamics

References to ten-fold cross-validation for accuracy evalu-
ation are found time and again in the literature. Usually, it
is also ten times repeated.[1] However, the latter is an open
question.[3, 4] Nether the current demonstration offers a stop-

ping criterion for iterations. However, it is admissible that
the fold content undergoing dramatic changes from one iter-
ation to the next is able to offset the result-so-far markedly.
The accuracy mean (and so the variance) solidifies the more
iterations are performed. Therefore, if large content changes
are pursued from the very beginning, while the mean is still
poorly established, it can be expected the accuracy will sta-
bilize sooner than otherwise. Clearly, the MFCV capability
in WEKA provides only for a single pass through data, and
so leaves no clues for subsequent runs. By contrast, the
proposed algorithm for repeated subdivision into folds pro-
motes fast content changes by redirecting instances to folds,
they have least visited, after each run. It also guarantees
that content of each fold is unique throughout the exercise.
With this preamble, the following exposition is intended for
better understanding of a potential stopping criterion for the
repeated MFCV.

The balanced accuracy coefficient of variation (standard devi-
ation to mean ratio) change through time is shown in Figures
3&4 for DB-JV and J48 classifiers, respectively, with the
own NB and one from WEKA trending similarly to either
of the DT-s. The quantity mean between steps 10 and 100 is
also shown to provide a reference level.

All graphics in Figures 3&4 show clear signs of plateauing
over time. This is expected as the values of both the accuracy
mean and standard deviation become ‘heavier’. How the
coefficient changes from iteration to iteration is purely cir-
cumstantial, driven by random subdivision of data into folds.
The pattern of change can be oscillating, increasing, decreas-
ing - however, it is largely meaningless. It can be different
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next time around. Compare the curves for different samples
but the same problem - often they are much unlike the other.

The convergence to the true ratio is stochastic. Note, the line
depicting the coefficient mean is not the asymptotic value of
the parameter.

Figure 3. DB-JV balanced accuracy coefficient of variation MFCV time series and its 10-100 mean for different
problem-sample combinations

The convergence to a solution is manifested in the magnitude
of value leaps and the time they occur. While rapid, high
amplitude changes mostly cease within 40 iterations, less
intense flare-ups in some cases can be observed even after
70 epochs of repeated MFCV. In this sense 100 rounds of
the procedure does not seem too many. How fast the conver-
gence is - would depend on the classifier, and from Figures
3&4 one may conclude that J48 does better, but there is a
scale difference with charts for DB-JV. However, if smooth
transition were to signify convergence, this could be because

J48 is a blunter instrument than DB-JV. At the same time, the
perceived smoothness could be simply a result of the MFCV
version tied to J48 being less radical. More properly com-
paring the convergence depending on the repeated MFCV
actual procedure can be done for NB since, apart from com-
putational preferences, the classifier is hypothetically the
same in both environments. From Table 1 the difference
in results is not statistically significant across the problem
spectrum, in the p-value parley, to say the least. If this means
that both results may be close to their asymptotic level after
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100 runs then one may look closer to the outset for a trend
(these charts are not shown). However, the proposed is hardly
useful without stopovers to measure the differences pairwise.

Across the board, the coefficient of variation is small, actu-
ally less than 1% for all classifiers but J48 where it is no more
than 2%, in the time frame pertinent to Figures 3&4. Evi-
dently, the fluctuation decreases over time, becoming even
less in magnitude than the perceived value of the coefficient
of variation. Therefore, it is almost immaterial for one dec-
imal place results as in Tables 1&2. There is a connection
between the coefficient and how it changes. Provided the
accuracy mean and standard deviation has stabilized, one
can roughly estimate whether another repetition is able to
impact the result significantly. Suppose the mean accuracy
is 50.0% and the next measurement is as radical as 0.0%
or 100.0%. From Eq.4 after 100 iterations this is able to

bring 0.5% change about to the mean, and so the last digit
will be affected. Likewise, after 1000 iterations only 0.05%
change is possible - the dependence is inverse. So, in real
terms, the result with one decimal place is not going to be
affected as the changes have to be assumed going both ways.
If the number of iterations is small, though, one should not
count on opposing changes occurring intermittently, or rather
that leaning one way can be sustained for long. However,
the results in Tables 1&2 can be stable enough even after
100 iterations. The standard deviations are small relative to
corresponding means. Even if a change of three standard
deviations is considered, still it will not affect the last digit.
This is easily verifiable by multiplying the standard devia-
tions by 3/101. The biggest standard deviation in Tables 1&2
is 1.0% and yet, if the next measurement of accuracy is as
rare as described, its contribution will be only 0.03%.

Figure 4. J48 balanced accuracy coefficient of variation MFCV time series and its 10-100 mean for different
problem-sample combinations
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5. DISCUSSION
5.1 Performance computation-wise
The NB on WEKA executes much quicker than the algorithm
to NB specifications of own making. It is likely the version
on WEKA is implemented in the eager mode, not the lazy
mode as its vis-a-vis. This impression stays notwithstanding
the interaction with environment to perpetuate MFCV on
WEKA. The same is true in respect of J48, but it outputs
a tree structure, so it ought to be an eager method. Also,
WEKA has a dedicated entry for lazy methods in its methods
directory, but NB and J48 are found elsewhere. Eager meth-
ods are generally faster than lazy ones in the course of MFCV,
as previously noted. Of course, the lazy DB-JV differs much
in design from J48 to conduct the speed comparison with
confidence.

One way or another, from the user point of view a quick
analysis is a virtue. Both NB and J48 on WEKA are set up
with some parameters that regulate their performance but are
not specific to the methods. So, irrespective of the above, a
question may arise whether WEKA does a proper job or runs
a demo. If it is the second, then how can this be enabled?
One answer is: by sampling from the training set. If the
data is as abundant as in the current work examples, this
may represent a viable option. The treat is universal, and
therefore applies to eager and lazy methods alike.

5.2 Other approaches to resampling
Other known resampling plans to measure classifier accu-
racy are as follows. In resubstitution the classifier is trained
and subsequently tested on all available data.[1, 2] Only one
measurement of accuracy can be obtained. It is regarded as
an optimistic method of assessment because the testing is
performed on data for which the classifier is optimized. Also,
more data is used for training than in any other resampling
plan. Despite this advantage, there is a danger of overfitting
which is a phenomenon of classifier failure on any new data.
Classifiers tune to data, but this has to be on the whole, and
with a single sample this aspect is largely neglected. Ad-
ditionally, the more parameters classifier has, the better it
can flex to accommodate data singularities, but they may
represent rare exceptions or a spurious content. These sin-
gularities would appear at a reduced rate or not at all in a
new data. On the other hand, due to a trade-off between the
parameters when tuning, even the data bulk in a different
sample may appear foreign to the classifier.

The resampling plan where a fixed portion of data is ran-
domly reserved for testing and the rest is used for training is
known as ‘hold-out’.[1, 2] Usually the procedure is repeated
a number of times. Often the test data withholding rate is
1/3 but it can be any, which offers a control more flexible

than in the two-up MFCV to test the classifier ability to learn.
This procedure is statistically sound, and more so if data is
stratified, but it does not guarantee that all instances in the
representative sample get methodically tested. It compares
to estimating accuracy from a fold rather than all data in the
all-but-one MFCV. Therefore, the result can be expected to
vary more.

Bootstrap methods[1, 2] are based on sampling with replace-
ment. Using the notation in the text M instances are ran-
domly drawn from the representative sample of the same
size to form a training set. The classifier gets then tested on
instances that were not drawn. This is repeated R times. On
average, there are approximately M/e test instances. This
translates to 36.8% effective withholding rate in respect of
test instances (although, this common interpretation of the
original result may be an overstatement[7]). The utility of
this technique is often noted in relation to sparse data.[1]

In small data-sets adding more of the same (explaining the
name choice for the technique) can help to classify correctly
test instances that are lacking the support. Even in larger
data-sets, where the correct instances would have a sufficient
support, withholding too much for testing would undermine
foundations of the data. So, the replication may be beneficial
even then. Nonetheless, the accuracy estimate so obtained is
deemed pessimistic, nothing like the estimate by resubstitu-
tion which is optimistic. Also, not all training instances are
necessarily genuine, some may be unexplainable by applica-
ble feature-sets. The negative impact of replication in this
regard is similar to the overfitting in resubstitution. Ways
are sought to balance the accuracy estimator by combining it
with the resubstitution success rate while being mindful of
overfitting risks.[7, 19] Also, a bootstrapping scheme where
data is stratified by class does not seem impossible.

The bootstrap is particularly different from the hold-out
in that the test data withholding rate is variable. The re-
peated hold-out is sometimes referred to as Monte-Carlo
cross-validation.[3] However, the term equally applies to the
bootstrap as well as to MFCV.[2] In classification the pur-
pose of resampling is to produce a series of test and training
set pairs to enable cross-validation (not necessarily recipro-
cal). The classification accuracy is found by validating a set,
that is, by comparing its instances actual class affiliations
with the projected ones. Since a computer simulation using
pseudo-random numbers is involved - this is a Monte-Carlo
method.[20] Essentially, the random resampling for classifica-
tion accuracy testing is a Monte-Carlo simulation whatever
are the specifics. ‘Resampling’ implies ‘repeating’; although,
applicable to MFCV, there is more to it.

A number of comparison studies find the conventional MFCV,
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which may include repetitions, more appropriate for accu-
racy estimation than any of the resampling techniques cited
above.[2, 3]

Comparison of classifiers has generally much more to of-
fer than a pair of classifiers on a single data-set can hope
for. Ultimately, how one knows what algorithm to choose?
The generality of this question implies experiences involving
various domains of data. The experiences form a basis for
meta-data that can be analyzed. There are ranking methods
to compare performances of multiple classifiers on multi-

ple data-sets.[21] A performance generalization of individual
methods in various applications is achievable through de-
vices of the Bayesian analysis.[9] However, comparing two
classifiers on the same data paves the way for a comparison
on the grand scale.

5.3 Rotation vs conventional
Figure 5 gives the idea of the two-up MFCV type. The
MFCV by rotation was run once with 10 folds, thus produc-
ing 90 serial measurements of accuracy. WEKA does not
offer this capability.

Figure 5. MFCV type dependent balanced accuracy of DB-JV and NB classifiers in DM diagnostic
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The balanced accuracy so obtained differs in two respects
from the one by the conventional 100 × 10 MFCV as in
Tables 1&2. Firstly, the mean is less than otherwise because
the training sets are much smaller. Secondly, the variation
of results is much higher as both training and test sets are
segment-wise independent in their midst in addition to being
9 and 10 times smaller, respectively, than in the repeated
all-but-one MFCV. These observations are no different for
DM, CVD, or HT; therefore, only the results for DM are
shown.

Interestingly, despite being so reduced, the training sets ex-
hibit a great deal of resilience as the mean accuracy seen in

Figure 5 is still meaningful. Also, the wide confidence inter-
val for better chart legibility belies the effective ‘amplitude’
of changes; but even two standard deviations off the mean
already account for 95.5% of normally distributed data (see
Figure 1). The accuracy degrades more for DB-JV than for
NB, which has to be on the part of NB being a parametric
method, as previously noted, and so effectively accessing
more data than DB-JV. In this connection, some of DB-JV
traction may have been lost as the subset hierarchy it was
yielding was 1 level less, both on average and binding, than
in the all-but-one MFCV, while with the same parameter
settings.

Figure 6. NB balanced accuracy and confidence interval by repeated 10-fold or leave-one-out cross-validation by problem
for samples 1&2
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The two-up confidence intervals are not only wide but also
about the same for DB-JV and NB, as evident from Figure
5. The first is explainable by the training and test set pair
variability and their size. Of course, a fold-sized sample
is no match to all data, but it is not the instance count that

matters, instead the second may well have to do with the lost
perspective when sampling from the representative sample
of, rather than population. This can be a source of artificial
noise that may have caused the marginalization of classifier
ability for error correction, particularly in NB.

Figure 7. DB-JV balanced accuracy and confidence interval by repeated 10-fold or leave-one-out cross-validation by
problem for samples 1&2

However, the two-up result variation, as seen in Figure 5, is
in principal agreement with Eq.1. For example, for a training
and test sample pair of 900 instances the mean accuracy of
90% translates to the standard deviation of 1.0%, and of 50%
to 1.7% (5/3). The observed standard deviation is in the
vicinity of 2.5% while the sample is somewhat smaller. For
400 instances the theoretical range so defined is from 1.5%
to 2.5%, indicating high sensitivity of the standard deviation
to the size change when sample is small. Generally, since

the two-up MFCV engages multiple samples, experimental
result variance for it should be in better agreement with the
theoretical one than for the all-but-one MFCV that is limited
to a single sample. However, this may be difficult to judge
due to data distortion that occurs at the fold level, as was
pointed out.
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5.4 Leaving one instance vs one fold out
Comparison of results from Tables 1&2 with LOOCV is
graphically represented in Figures 6&7 for NB and DB-JV,
respectively. While this variant of the all-but-one MFCV can
be enabled on WEKA by entering the number of instances
for the number of folds, the current comparison does not
involve the platform.

LOOCV closely follows the mean result of 100 times applied
conventional 10-fold cross-validation, with the balanced ac-
curacy by LOOCV typically higher but within one standard
deviation, or so, from the aforementioned mean. In this con-
nection, DB-JV with LOOCV was reaching the leaf level in

about the same number of steps as with 100 × 10 MFCV,
parameterized no differently. The likeness in results is more
discernible in Figure 7 than in Figure 6 because the three
standard deviations confidence interval, as applicable to 100
× 10 MFCV, is much wider for DB-JV than for NB. The
NB result stability is extraordinary, drawing attention once
again.

LOOCV uses about 10% more data for training than 10-fold
cross-validation, which can explain the observed in Figures
6&7 difference in results. For lazy methods on large data
LOOCV offers a much better deal since computationally it
compares to a single MFCV run.

Figure 8. Opposing-sample-validated over same-sample LOOCV balanced accuracy gain/loss for DB-JV and NB classifiers
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LOOCV is regarded as an optimistic estimator. Indeed, the
results suggest this may be the case. Firstly, the LOOCV
training sets are the biggest in the MFCV range. Secondly,
LOOCV does not seem to be much different from the resub-
stitution which is optimistic. For example, with NB, modi-
fying the training set by removing one instance and adding
another will not cause a substantive difference to the involved
feature value probabilities by class in a large data.[18] Some
apprehension about LOOCV exists, though, and this may
be because of its proximity to resubstitution.[2, 3] Theoreti-
cally, LOOCV may fail on noisy data, due to overfitting, if
the classifier is unstable. Figures 6&7 suggest that NB is
more stable than DB-JV, although both have the ability to
handle the class imbalance, characteristic of DM, and this is
a condition similar to noise.[15]

5.5 Wild-card testing
The ultimate purpose of accuracy testing is to build confi-
dence in practical utility of a diagnostic tool. Therefore, it
is sometimes proposed as a challenge to test a model on a
benchmark set reserved solely for that purpose. Applica-
ble to the examples in this work, there are two sets of data
obtained independently of each other by sampling directly
from the population - the surveys are run serially and as new
campaigns.

The results of testing of one sample using the other for train-
ing are represented graphically in Figure 8 as a gain/loss over
LOOCV in terms of balanced accuracy differences.

The comparison with LOOCV is appropriate as the amounts
of test data are exactly same, and the training sets differ in
size by less than 10%. From Figure 8 the following is evident
across the problem spectrum. For DB-JV there are balanced
accuracy 1%-2% gains at best when the second sample is
used for training. As per previous, it is the sample which is
more self-consistent and also slightly bigger than the first
one. The fortunes are other way around when the first sample
is used for training, amounting to 5% - 6% loss at worst. In
the case of NB the accuracy is lost throughout but by little,
1% - 2% at worst. As per previous, NB is less sensitive
to data changes than DB-JV. These results are encouraging
notwithstanding having had the surveys aligned. More so
that LOOCV is an optimistic estimator.

6. CONCLUSION
Nowadays much more is available in terms of data access
and computational power than just few decades ago. Under-
standing of requirements as to the classification accuracy /
error estimation is changing. Previously the emphasis was on
small data-sets. The size was not so limiting as to undermine
the predictive ability of a classifier. The real challenge was

to get a peek of what is beyond, should more data become
available. The concern was that the confidence in results
from the same model would diminish. This energized the
quest for accuracy scatter estimation, and in this connection
finding ways of imprecise result comparison. However, even
theoretically, the more data - the less variation. The results
in this work actually confirm this finding. Be it as it may,
but does this make the accuracy interval estimation methods
redundant? While a simulation can be performed on a large
sample, realistically the training set has to be small as only
then the classifier is fast. How to correct for this belongs to
the online learning and is beyond the scope of this paper, but
reducing the heat around the issue of accuracy estimation
seems justifiable, and so the paper contributes two simple
complementary techniques to compare results by different
classifiers from the same data. Although, how many itera-
tions of multi-fold cross-validation are exactly required to
establish classification accuracy mean and standard deviation
with confidence – may not have a short answer. It is not a
fixed number, neither it is small, what seems to be accepted
in the literature. If anything, it will certainly depend on the
precision required. Clearly, it depends also on the amount of
data available. However, classification methods may be more
reliant or less reliant, which can impact on the convergence
greatly. Although, more accurate methods should be also
more reliant.

In the part of evaluation of the methodology for classifier
comparison this work features a lazy decision tree algorithm.
Decision trees in discrete domains lack flexibility and the
lazy approach can remedy that. At the same time, dissipation
of information in any tree accounts for much of their under-
performance. A hybrid with the nearest neighbor method
is proposed to counter the loss. The scheme shows some
success over a state of the art decision tree on a publically
available server. A proper performance comparison across
computational platforms is hardly possible without enlisting
the back office capabilities, yet the proposed methodology
makes it easier.

7. APPENDIX
Attached are four text files that will open in MS Excel and can
be made into a workbook. The worksheets contain formulae
to calculate the p-value of two classification methods being
close, or the probability of one performing better or worse
than the other. Files ‘Same1.csv’ and ‘Same2.csv’ utilize
Eq.7&11 to calculate the similarity between two methods
based on their performance. The first file applies to the case
when both methods have the same standard deviation of their
accuracy. The second file accommodates standard deviations
that differ. The file ‘MoreLess.csv’ makes use of Eq.11&12
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to ascertain the probability of one method performing better
than the other.

These three files share some essential notation. The columns
‘M1’, ‘S1’ and ‘M2’, ‘S2’ set the means and standard devia-
tions of accuracy of the first and second classification meth-
ods, respectively. The only place where any input occurs is
immediately below these headings. The entries correspond
to µ0, σ0 (first method) and µ1, σ1 (second method) found in
the text. The column ‘Sensible’ runs the check whether the
standard deviations are the same (‘Same1.csv’) or different
(‘Same2.csv’) - if ‘TRUE’ this is the right choice of formu-
lae. Much of other column headings in ‘Same2.csv’ can be
traced to Eq.8. The result in ‘Same1.csv’ and ‘Same2.csv’
is found under ‘P-Value’. In ‘MoreLess.csv’ the result is un-
der ‘P-More’ and ‘P-Less’ addressing how often the second
method is better and worse than the first, respectively. The
two probabilities are complementary to each other. The sec-
ond method is dominant if the result for ‘P-More’ is greater
than for ‘P-Less’; conversely, the first method is dominant;
or else they are both equally dominant. ‘M3’ and ‘S3’ in this
file are column titles for the mean and standard deviation,

respectively, of the difference between the second (‘M2’ and
‘S2’) and the first (‘M1’ and ‘S1’) random variables in terms
of Eq.12. ‘M3’ and ‘S3’ entries correspond to µ2 and σ2 in
the text.

Other columns in above files perform conversions and run
calculations for different scenarios because Eq.11 does not
provide ready answers. For example ‘Same2.csv’ handles
two x values: one with ‘plus’ and another with ‘minus’ in
terms of Eq.7. This explains the headings ‘XP’ and ‘XM’.
It is convenient then to sort the values in the ascending or-
der, so headings ‘XF’ and ‘XS’ appear. Then it is required
to obtain z using Eq.11 which depends on means and stan-
dard deviations that apply, those under ‘M1’, ‘S1’ or ‘M2’,
‘S2’. So, there are the headings ‘Z1F’, ‘Z1S’, ‘Z2F’, ‘Z2S’.
Similar notation is used in ‘Same1.csv’ and ‘MoreLess.csv’
files but only one x value there requires handling. A column
may include additional results underneath the primary one to
facilitate calculations that follow.

The table in the file ‘Approximation.csv’ verifies the ex-
pression in Eq.11 against what Excel has in its repertoire
(presumably achieving its result by numeric integration).
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