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ABSTRACT

Performing Phonetic Search Keyword Spotting (PS KWS) in new languages when language resources are scarce is an interesting
and challenging task. In a previous paper we reported a methodology that enabled PS KWS under these conditions utilizing
cross-language phoneme mappings from another sufficiently resourced and well-trained source language. We performed phoneme
recognition in the new target language with the acoustic model of the source language. The keyword search was performed over a
phoneme lattice of the target language phonemes following a mapping from one language to the other. In the present work we
extend this method and its capabilities by mapping two source language phoneme sets into one target language set and performing
a combined lattice search. Testing the technique on English and Arabic as source languages yielded a 50% Detection Rate (DR)
and a False Alarm Rate (FAR - measured in number of false alarms per hour per keyword) of 2 when Spanish was the target
language, a DR of 36% and FAR of 4 when Dari was the target language and a DR of 35% and FAR of 6 with Farsi as the target
language. These results indicate that combining two source languages is better than using a single language since the acoustic
space is better represented. Searching in a combined lattice while employing adequate phoneme transformations significantly
improves performance. Such a system can be used as an initial version of a PS KWS system in a new language when sufficient
language resources are not available.

Key Words: Cross-language phoneme mapping, Keyword spotting, Spoken term detection, Phonetic search, Multi-lingual
Keyword Spotting, Parallel lattice search

1. INTRODUCTION

There is a growing demand for Keyword Spotting (KWS)
systems that enable specific words to be identified out of
a stream of continuous speech.[1] This demand is mani-
fested in international evaluation efforts that led to signif-
icant advances in KWS research in recent years.[2, 3] The
applications based on KWS are many and diverse: from call
classification and speech database search for call centers and
security-intelligence organizations, to multi-media search

applications in the internet and enterprise markets. These ap-
plications are relatively easy to develop for languages which
are rich in Language Resources (LRs). However, when a
new language is concerned, the process of collecting LRs,
such as large speech and text databases for training acoustic
and language models and a large vocabulary pronunciation
lexicon,[4–7] is both long and costly.

Our previous works[8, 9] reviewed existing technologies that
utilize cross-language phoneme mapping to enable the use
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of statistically representative acoustic models from a well-
resourced language in order to perform KWS in an under-
resourced language. Examples for various implementations
of this concept were proposed in several recent studies.[10–12]

The studies vary in both method for modeling[13–16] and in the
mapping techniques employed.[17–21] Studies also differ in
the amount of source LRs available, as well as, the languages
concerned. A comparison of the recognition performance
between the various studies reported in the literature is dif-
ficult to assess due to the differences in data and methods
used. Moreover, most studies target their methods to Auto-
matic Speech Recognition (ASR) (e.g. Ref.[4, 22]) rather than
KWS. In our previous study, we compiled a methodology for
rapidly introducing Phonetic Search KWS capabilities in a
new language for varying quantities of LR availability. Our
methodology was based on using source language acoustic
models for producing a string of recognized phonemes in the
target language and then searching keywords. Hence there
was no need for a full set of LRs or for training dedicated
acoustical models in the target language.

We employed PS for performing KWS since it is more suit-
able in cases where vocabulary flexibility is required together
with fast search in large speech databases. The PS method
is also less dependent on linguistic constraints, and requires
training a phoneme-level, rather than a word-level Language
Model (LM). Furthermore PS KWS has an advantage when
phoneme mappings between languages are applied since
PS works mainly on the acoustic-phonetic feature space,
rather than any other space (e.g. words) and employs a fuzzy
search mechanism that may compensate for inaccurate map-
pings.[9, 23]

Our cross-language PS KWS system consists of the follow-
ing two central components:

(1) A Phoneme Recognition Engine: Phoneme recogni-
tion was performed using acoustic models of English
or Arabic as source languages with several options for
a phoneme-level LM: ergodic (equal transition proba-
bilities), target LM or source LM.

(2) A Phonetic Search Engine: Phonetic search was per-
formed over the resulting source language phoneme
lattice while employing a mapping scheme between
the source language used and the Spanish phonemes.
The Levenshtein Distance measure was used for se-
quence matching, where all hypotheses with a distance
lower than a pre-defined threshold were declared as
recognized keywords.

A block diagram of the PS KWS system using cross-language
mapping is shown in Figure 1:

Figure 1. Cross-Language Phonetic Search KWS System

The design of the system allows these two parts of the system
to function independently. The phoneme recognition stage
uses the source language acoustic models and phoneme LM
as input, to produce a phonetic lattice. The phonetic search
stage uses the phonetic lattice produced in the phoneme
recognition stage and any given phonetic mapping (repre-
sented by a mapping matrix) between the source and target
language phonemes.

The focus of our previous work was the use of acoustic mod-
els from a single source language to a target language. We
studied three different mapping methods: manual knowledge-
based mapping; data-driven mapping, and performance-
based mapping. The data-driven method uses limited target
speech data to train coarse acoustic models in the target lan-
guage and then measures the distance between these coarse
acoustic models in the target language and well-trained acous-
tic models from the source language to automatically gen-
erate the best-matched mapping. The performance-based
mapping is used to improve the accuracy of the knowledge-
based or data-driven mappings by automatic learning from
the phoneme recognition statistics. The training set for the
recognition statistics was a small amount of speech in the
target language, selected randomly.

Figure 2. Two independent systems of Cross-Language
Phonetic Search KWS

In the present work, we extended the scope of this methodol-
ogy to study the effect of several source languages mapped
into a single target language. Figure 2 illustrates two separate
cross-language systems, built for a given target language T,
where each system uses different source language models,
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symbolized as A or B. Specifically, we sought to assess the
effect of acoustic similarity between one or both source lan-
guages to the target language and to compare the benefits of
either method in terms of performance. The ultimate goal of
this research is to improve the accuracy of KWS in a given
under-resourced target language by fusing the knowledge
extracted from two (or more) independent cross-language
KWS systems.

2. METHODS

2.1 Speech databases

The evaluation of our cross-language PS KWS methods was
performed using American English (En) and Levantine Ara-
bic (Ar) as the source languages, and Spanish (Sp), Dari (Da)
and Farsi (Fa) as target languages.

As is customary for ASR systems, speech audio was used to
train acoustic models, and to test the quality of these mod-
els. The data was divided into one part used for training,
and another for the testing, such that each part contains dis-
joint sets of the speakers. For the current work, the English
acoustic models where trained using 157 hours from the Wall
Street Journal portion of Macrophone[24] that contains a col-
lection of read sentences; Arabic models were trained using
a total of 115 hours from Levantine Arabic Conversational
Telephone Speech[25] and Fisher Levantine Arabic Conversa-
tional Telephone Speech;[26] The experimental test sets for
Spanish, Dari and Farsi included one hour of speech for each
language. Spanish tests were performed on a portion of the
SpeechDat Spanish database for fixed telephone network,[27]

Dari tests were performed on a portion of DAR_ASR001
Appen Dari audio database, and Farsi tests were performed
on a portion of FAR_ASR001 Appen Farsi audio database.
The development database used for estimating the confusion
matrices (to be used by the weighted Levenshtein distance
during the phonetic search stage) included an additional hour
of speech for each language from the same databases. The
remaining Spanish audio was used to generate a Spanish
reference experiment that required well-trained acoustic and
language models. The search was performed on a list of
keywords of three syllables or more for each language.

The phoneme sets used for each language were as follows:
En – 39 phonemes based on the DARPA phonetic alphabet;
Ar – 43 phonemes based on the Buckwalter transliteration;[28]

Sp – 31 phonemes based on the SAMPA phonetic alphabet
for Spanish;[29] Da – 31 phonemes based on the SAMPA
phonetic alphabet; Fa – 31 phonemes based on the SAMPA
phonetic alphabet.

2.2 Acoustic model training
Acoustic models were trained for both source languages us-
ing the standard Hidden Markov Model Toolkit (HTK).[30]

An MFCC based, 39-dimensional feature vector was used
(13 Mel-Frequency Cepstral Coefficients, with the first and
second derivatives), calculated over 25-millisecond frames
with a 10 millisecond step. Tri-phone modeling was used
with Hidden Markov Models (HMMs) containing 3 emitting
states, each state’s emission probability modeled by a mix-
ture of 16 diagonal-covariance Gaussians. The development
set for estimating the confusion matrices included another
hour of speech in the target language. Phoneme recognition
was performed using HTK. The search was performed on a
list of keywords per language having three syllables or more.

2.3 Phoneme mappings
PS KWS using cross-language mapping techniques was
described in our former paper. The current research em-
ployed the same three mapping paradigms to map phonemes
from two source languages to the target language phonemes.
An example of the former, single-source cross-language
phoneme mapping is illustrated in Table 1: The mappings,
between English and Spanish, were one-to-many on the
phoneme level. In the present study, phonemes of two source
languages: English and Arabic, were mapped into the target
language Spanish phonemes. An example of this mapping is
illustrated in Table 2.

Table 1. Examples of one-to-many phoneme mapping
between Spanish and English

 

 

 
Spanish < > English 

a < > aa, ae 
i < > iy, ih 
tS < > ch, sh 

Table 2. Examples of phoneme mapping between Spanish
and two source languages: English and Arabic

 

 

 
Spanish < > Arabic English 

o < > u ow 
b < > f v 
rr < > r r 

2.4 Lattice construction
Phoneme recognition using different source models was per-
formed similarly to the previous study where only one source
language was used. As the two source languages method is
based on producing two separate lattices in the two source
languages and then performing a combined search in these
lattices, the phonetic search phase had to be significantly
altered, in order to meet the goals of the current study. The
main challenge was to allow transitions between both lattices
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in order to increase the flexibility of the phonetic search,
without excessively increasing the degrees of freedom in
the search. This challenge was met by penalizing the cross-
lattice transitions by a proportion that depends on the time
gap between the two connected nodes. Next we describe the
joint lattice search method.

Assume two cross-language transformations from two differ-
ent source languages into a single target language denoted by
A→ T and B → T , where A and B symbolize the source
languages and T the new target language. For each trans-
formation, a probabilistic mapping matrix PT |A and PT |B
is computed. Each entry (t, s) in the matrix is a conditional
probability of the form

PT |A(t, s) = p(wt|as) (1)

PT |B(t, s) = p(wt|bs) (2)

where wt is a target phoneme of T , as is an acoustic model
of A, and bs is an acoustic model of B. If we denote |A| and
|B| as the size of the phoneme set in A and B respectively,
and |T | as the number of target phonemes in T , then the
dimensions of matrices PT |A and PT |B are |T | × |A| and
|T | × |B| respectively.

Given the two transformations described above, we propose
a simple method to construct a new multi-language trans-
formation, AB → T , as follows. First we define a new
probabilistic mapping PT |AB by concatenating PT |A and
PT |B (assuming the same phoneme order of T inherent by
the row order of both matrices), such that

PT |AB = [PT |A PT |B ] (3)

Figure 3. Cross-lattice bi-directional transition between
node i of lattice La and node j of lattice Lb, with transition
costs ξij = ξji

The next operation was implemented per speech utterance
during the search process. Each utterance was indexed by
two phonetic lattices, La and Lb, from which a new lattice
Lab that allows cross-language transitions from one lattice to

another and vice versa was produced in a constrained manner.
The transition method can be visualized as follows: the pho-
netic lattice is modeled by a graph, where the graph nodes
indicate time stamps and the arcs indicate the recognized
phonemes. Transition arcs are added to the graph to connect
nodes of different source languages, while a cost rule is im-
plemented for each transition. The cross-lattice connections
are illustrated in Figure 3.

The cost is a log likelihood one, based on |∆Tij | - the time
gap between node i of lattice La and node j of lattice Lb

(see Figure 3), allowing for a bi-directional transition be-
tween the two nodes. We define the probability of crossing,
Pcross(∆Tij), as an exponential family density function hav-
ing the form

Pcross(∆Tij) = K exp(−|∆Tij | − γ) (4)

where K is a positive normalization constant and γ is a posi-
tive constant bias (set in order to have some minimal penalty
on any transition).

Then the cost, denoted by ξij can be written as

ξij = log[Pcross(∆Tij)] = −ε0 − ε1|∆Tij | (5)

where ε0 and ε1 are positive constants.

The cost rule in equation (5) implements a penalty of cross-
language transitions including the case where the time gap
|∆Tij | equals zero, in order to prevent loopbacks in the
search. Therefore a small penalty, ε0 > 0 is set. The second
constant in equation (5), ε1 > 0, can be calibrated to opti-
mize search results. In practice ∆Tij is given in frame-step
units (typically quantized to 10 msec time-gap between ad-
jacent frames). Our experiments showed that the transition
cost should be set to be significantly large within a few frame
steps, say between 5 to 10 frames.

In order to reduce the computational cost during the search,
we found it efficient to prune cross-lattice transition arcs in
the graph that entail very low probability. Preliminary exper-
iments also indicated that a reduced form of lattice fusion
can be implemented to save search computations: namely, it
was sufficient to connect cross-language nodes only within a
time-gap of 30 msec (up to 3-frame distance) with a minimal
transition cost of ξij = −ε0 (where ε0 = 0.001 and ε1 = 0).
This approach led to a negligible decrease in accuracy.

2.5 Evaluation
To assess the contribution of the proposed lattice fusion ap-
proach, we conducted cross-language phonetic search ex-
periments using several configurations. The experiments
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were performed on 3 target languages (separately): Spanish,
Dari and Farsi, using phonetic lattices indexed by the orig-
inal acoustic models of two source languages, English and
Arabic.

The one-to-one (single source) configurations (acoustic mod-
els of a single source language mapped to the new target
language), En→ Sp (for English-To-Spanish), and Ar→Sp
(for Arabic-To-Spanish) for Spanish and for Dari, En→Da
and Ar→Da accordingly, were calculated for reference.

The new lattice fusion method was also compared to a ref-
erence of combined results of the two corresponding single
lattice searches that were independently generated. We tested
several approaches for combining results, in the post-decision
stage. The reference chosen was the approach that yielded
the best KWS performance using a combination of results
of En→Sp and Ar→Sp mapping for Spanish as a target lan-
guage. The most simplistic approach was found to yield the
best results: pooling together all spotting results, from both
searches, using a score normalization that is source-language-
dependent. “Z-normalization” (Znorm), given by equation 6,
was applied for each cross-language search:

z = (s− µ)/σ (6)

where s is the non-normalized score, and µ and σ are the
mean and standard-deviation of true-detection scores, com-
puted over a small development set (less than half an hour).

This reference was used for all the following experiments.
Results were evaluated on the test part of Spanish, Dari and
Farsi.

Phoneme recognition was performed using the HTK speech
recognition engine. The feature vector, of order 39, consisted
of MFCC with first and second derivatives. The acoustic
models were three state tri-phone HMMs with additional
models for speaker noises and non-speech events. The pho-
netic search process was performed over a phoneme lattice
following implementation of the mapping schemes described
above. The weighted Levenshtein distance was used to mea-
sure the distance between the keywords and partial phoneme
sequences on the lattice. True and false detections were
estimated for various thresholds and presented in a graph
showing DR as a function of FAR, that were calculated as
follows:

DR = 100 ∗N_true/N_total (7)

where N_true is the number of true detections and N_total is
the total number of all occurrences of keywords in the audio.

FAR = N_false/(Dur ∗N_kw) (8)

where N_false is the number of false detections (false
alarms), Dur is the audio duration in hours, and N_kw is the
number of keywords in the list of words we are searching.

This means that the DR is measured in percentages while
FAR is a real number.

3. RESULTS
The following figures show comparative results for different
multi-language configurations. As described in the meth-
ods section, the target languages in the experiments were
Spanish, Dari, and Farsi. In all figures, the notations “En”
and “Ar” correspond to English and Arabic, respectively,
as single source languages, whereas “En+Ar” corresponds
to their combination, which can be performed in two dis-
tinct methods. As described above, we examined reference
combination derived by a post-decision technique, which is
denoted in the figures as “En+Ar: union + Znorm”; and the
new lattice fusion method, proposed in this study, which is
denoted in the figures as “En+Ar: lattice fusion”.

Figure 4. Spanish results in four cross-language
configurations

Figure 4 demonstrates results for Spanish as the target lan-
guage using the four search methods. It can be observed
that with the simple approach of result pooling and score
normalization, using two source languages already improves
performance compared with the single source language meth-
ods. Additional improvement can be seen for the proposed
lattice fusion method.
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Figure 5 presents a somewhat different behavior with Dari
as the target language. First, we note that the Ar→Da config-
uration yielded significantly better results than En→Da. The
graphs further demonstrate degradation in performance when
the two source languages are pooled together using Znorm
normalization, compared to using Arabic language alone.
The lattice fusion method, however, provided a modest (but
obvious) improvement over the performance of the Ar→Da
system.

A possible explanation to the different behavior we see when
using Dari as the target language (compared with the Spanish
case) is that even though Dari & Arabic do not belong to
the same linguistic families, Arabic is much better suited to
span the acoustic space of Dari speech. When combining the
KWS results in post processing, many FAs are introduced
due to the English phoneme recognition. Employing the
combined lattice search makes the system less prone to these
errors, as the English part is “chosen” only when needed.

Figure 5. Dari results in four cross-language configurations

Figure 6. Farsi results of the lattice fusion method (solid
line denoted as “Ar+En: lattice fusion”) compared to single
lattice configurations, from English (En) and Arabic (Ar).

In order to further validate the lattice fusion method, we
tested it on a new target language - Farsi. Figure 6 presents
PS results using the lattice fusion approach on Farsi as a
new target language and compares them to the single source

language En and Ar results. Again, the fusion leads to a
substantial improvement.

4. CONCLUSIONS

This study presented a lattice fusion approach for applying
PS KWS in a new target language given acoustic models
of two different source languages. Our experiments com-
pared four different methods: Two separate single-source
into a single target cross-language transformations and a
post-processing approach that collects all results and applies
Znorm score normalization and a combination of the two
source language searches, using a new lattice fusion method.
Our results indicated two distinct cases. In one case, the two
source languages (En and Ar) were quite different (acousti-
cally) from the target language (Sp). In this case, both the
post-lattice search score normalization and the fused lattice
method yielded better results than the single language cross-
language mapping and search. The fused lattice performed
better than all other methods, including the post-processing
method.

The major advantage of the fused configuration, however,
was demonstrated in the second case in the Dari experiments.
In this case, the asymmetry between the two single cross-
language mappings, Ar→Da, and En→Da is substantial. Not
surprisingly, the Ar→Da configuration out-performed the
En→Da mapping. This imbalance poses a difficulty when
attempting to exploit the weaker system (En→Da) in order to
improve the results of the stronger system in a post decision
approach. Indeed, results demonstrate that the Znorm oper-
ation up-scaled the scores of the weaker system, and thus
inserted additional false detections, which led to a degrada-
tion in the overall performance. The lattice fusion method,
however, provided a modest (but obvious) improvement that
exceeded the performance of the single language Ar→Da
system.

We believe that the robustness of the suggested fusion method
lies in the probabilistic approach of the combined fused
search, which is based on the mapping matrix, P(T |AB)
(equation (3)). In the Dari case, for example, the search
path will make a transition to an English route only when
the phonetic mapping likelihood is high enough compared
to other Arabic options. Thus in most cases only strong (in
a probabilistic sense) English-Dari matches could affect the
results, while the others are essentially neglected.

To further validate this assumption we experimented with
a similar case, using Farsi as the target language instead of
Dari. Although an asymmetry between English and Arabic
mappings into Farsi is noted, here again, the lattice fusion
method provided superior results.
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To summarize, when two cross-language configurations are
constructed, where in each configuration a single source lan-
guage is mapped onto a new target language with a proper
probabilistic mapping matrix, performing a search on our
fused lattice (created from the two resulting phonetic lattices)
using a unified multi-language mapping matrix is straight
forward. A major advantage of the suggested lattice-fusion
approach lies in its flexibility in making transitions between
the original lattices during the search operation itself. Our
results indicate that this method can enrich the phonetic con-
tent and context that can be found in a single search path.
When this procedure was performed in a constrained manner,
as formulated in this study, the lattice fusion approach led to
significant improvements.

We have thus introduced a methodology for applying pho-
netic search in cross-language conditions when there are
insufficient language resources in the target language.

This approach improves the KWS performance and is also
relatively simple and quite generic. It can be further applied
in cases where model sets of multiple (more than two) source
languages are available.
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