
http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

ORIGINAL RESEARCH

Parallelization of the next Closure algorithm for
generating the minimum set of implication rules

Nilander R. M. de Moraes1, Sérgio M. Dias2,3, Henrique C. Freitas1, Luis E. Zárate∗1

1Department of Computer Science, Pontifical Catholic University of Minas Gerais (PUC Minas), Minas Gerais, Brazil
2Federal Service of Data Processing (SERPRO), Belo Horizonte, Minas Gerais, Brazil
3Department of Computer Science, Federal University of Minas Gerais (UFMG), Minas Gerais, Brazil

Received: December 29, 2015 Accepted: February 15, 2016 Online Published: March 2, 2016
DOI: 10.5430/air.v5n2p40 URL: http://dx.doi.org/10.5430/air.v5n2p40

ABSTRACT

This paper addresses the problem of handling dense contexts of high dimensionality in the number of objects, which is still an
open problem in formal concept analysis. The generation of minimal implication basis in contexts with such characteristics is
investigated, where the NextClosure algorithm is employed in obtaining the rules. Therefore, this work makes use of parallel
computing as a means to reduce the prohibitive times observed in scenarios where the input context has high density and high
dimensionality. The sequential and parallel versions of the NextClosure algorithm applied to generating implications are employed.
The experiments show a reduction of approximately 75% in execution time in the contexts of greater size and density, which
attests to the viability of the strategy presented in this work.

Key Words: Minimum set of implication rules, Formal concept analysis, Parallel computing

1. INTRODUCTION

Formal concept analysis (FCA) has been considered an im-
portant formalism for knowledge representation, extraction
and analysis.[1–3] Its formalization was born in 1982 with
the work of Wille,[4] who proposed considering each lattice
element as a formal concept and the lattice itself as repre-
senting a conceptual hierarchy.[5] However, the applicability
of FCA is limited by its capacity of dealing with huge data
sets.[6, 7] FCA induces a potentially high combinatorial com-
plexity and the structures obtained, even from a small dataset,
may become prohibitively large. Despite the fact that the
worst case of the lattice size (2min(|G|,|M |)) is rarely found
in practice, the computational cost is still too prohibitive
for many applications. There is an enormous interest in the

community to present efficient solutions, since this restric-
tion is closely related to an open problem in FCA: handling
dense and highly dimensional contexts.[8, 9] To address this
situation techniques capable of reducing the complexity of
constructing lattices,[10] selecting specific concepts[11, 12] or
even acting directly on the input context,[13, 14] have recently
been addressed. However, even with the aid of these tech-
niques, obtaining the lattice can be infeasible. In this sense,
the use of parallel architectures is shown to be a viable alter-
native in reducing the execution time.

Proposals and mathematical fundamentals for parallel and
distributed solutions have been presented by several au-
thors.[15–17] However, these contributions fail to assess the
impact of density on the input context in the final perfor-

∗Correspondence: Luis E. Zárate; Email: zarate@pucminas.br; Address: Department of Computer Science, Pontifical Catholic University of Minas
Gerais (PUC Minas) - Av. Dom José Gaspar, 500 - Belo Horizonte, Brazil.

40 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

mance of the proposal. Furthermore, they lack information
on the resources used to obtain the results such as the data
structures used, the configuration of the test environment, the
number of computers that comprise the cluster, the number
of cores involved, among other information.

On the other hand, implication rules drawn from the formal
concepts allow the identification of rare patterns in the data,
or regularities that occur in a small number of records (ob-
jects). Although they are less used for data analysis,[18] the
implications are of practical interest, since it can expose inno-
vation that is little known regarding the data in the study.[19]

However, as in the generation of lattices, generating the com-
plete set of implications may also present an exponential
behavior in the worst case scenario.[20]

Literature presents several algorithms for the acquisition
of implication databases.[21–23] Among these algorithms,
there is the NextClosure[24] algorithm that, as suggested by
Guigues and Duquenne,[22] can be employed for the genera-
tion of minimal implication bases (also called stem base or
Duquenne-Guigues basis). For providing the complete, min-
imal and non-redundant set of implications, the stem base
is of special interest for summarizing the set of valid rules.
In other words, the stem base corresponds to the smallest
number of implications from which all valid implications in a
formal context can be obtained. Recently, FCA has received
attention for representing and analyzing social networks. For
example in Jota Resende et al.,[25] the NextClosure algorithm
was used to detect hidden substructures using a minimum set
of rules. The paper points out the difficulty in manipulating
database of high dimensionality. The authors suggest the
development of parallel algorithms in order to improve the
computational performance, in order to apply the FCA theory
in social networks analysis.

In this work, the behavior of the NextClosure algorithm in
obtaining the stem base is considered. For such, we imple-
mented a parallel version of Ganter’s algorithm for com-
puting the Duquenne–Guigues basis. The sequential and
parallel approaches are evaluated and compared to determine
in which scenarios which strategy is more suitable than the
other, i.e. situations in which the gain achieved with paral-
lelism is significant.

Experiments reveal interesting results concerning the impact
in the the size and density parameters in obtaining the stem
base. It shows that this performance is also associated with
the number of rules extracted from the input context. These
findings allowed us to identify the situation in which paral-
lelization would provide greater performance. Furthermore,
parallelization of the stem base provided a reduction around
3/4 in execution runtime, compared to the corresponding

sequential solution. This demonstrates the efficiency in the
use of parallel architectures as a means of reducing the pro-
hibitive times observed in handling large scale contexts.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the theoretical foundations of FCA. Section
3 shows the work related to this paper. Section 4 exposes
the development of our parallel version of the algorithm
NextClosure and the methodology used in the experiments.
In Section 5, the empirical results are presented. Finally,
conclusions and future work are presented in Section 6.

2. THEORETICAL REVIEW REGARDING THE
FCA

Two fundamental concepts of FCA are formal contexts and
formal concepts. A third important body of knowledge in
the context of this work are the implication rules. These
concepts are discussed in the following subsections.

2.1 Formal context
A formal context K(G,M, I) consists in two sets G and M ,
and a binary relation I between these sets. The elements of
G are known as objects, while the ones of M are denomi-
nated attributes. If an object g contains a relation I with an
attribute m, this relation is expressed by gIm or (g,m) ∈ I .

The derivation operator ′ is used to map a set of objects onto
a set of attributes and vice-versa. For a set A ⊆ G of objects,
A′ is defined as the set of attributes common to the objects
in A and mathematically, it is expressed as:

A′ : {m ∈M | gIm ∀g ∈ A}. (1)

In correspondence, for the set B ⊆ M of attributes, B′ is
defined as the set of objects with all attributes in B. It is
formally expressed by

B′ : {g ∈ G | gIm ∀m ∈ B}. (2)

2.2 Formal concept
A formal concept of a context K(G,M, I) consists in an pair
(A,B), where the following property is applied:

A ⊆ G, B ⊆M, A′ = B and B′ = A. (3)

The object subsetA is called extent, while the attribute subset
B is denoted intent.

The derivation operator ′ can be combined in a pair of com-
posite operators, denoted by ′′, which map a set onto itself.
Therefore, for a set A ⊆ G, A ⊆ A′′.

2.3 Implication rules
A context K(G,M, I) satisfies an implication Q → R,
with Q,R ⊆ M , if ∀g ∈ G, gIq for all q ∈

Published by Sciedu Press 41

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

Q implies gIr for all r ∈ R.

That is, an implication rule between two sets Q and R is
valid for a given context, if the set of objects described by
attributes in Q is also described by attributes in R. The sets
Q and R are called, respectively, premise and conclusion.

A→ A
,

A→ B

A ⊂ C → B
,
A→ B,B ⊂ C → D

A ⊂ C → D
. (4)

The Duquenne-Guigues basis or stem base is a minimum
(in the number of implications) subset from which every im-
plication of a formal context can be generated by means of
Armstrong’s axioms.[22] It is formed by the set of implica-
tions of the form P → P ′′, where P is a pseudo-intent.

Definition 2.1 (Pseudo-intent). A set P ⊆ M is called
pseudo-intent if P 6= P ′′ and Q′′ ⊆ P for all pseudo-intent
Q ⊆ P , Q 6= P .

Pseudo-intents can be generated by means of Quasi-
intents.[20]

Definition 2.2 (Quasi-intent). A set is a quasi-intent if, and
only if, the set itself is an intent or a pseudo-intent.

Definition 2.3 (Quasi-intent). A set Q ⊆M is a quasi-intent
if, and only if, Q satisfies the following condition: if P ⊂ Q,
P 6= Q, is a pseudo-intent, then P ′′ ⊆ Q.

3. RELATED WORK
A notable contribution for the formal concept analysis field
is presented by Qi et al.,[15] where the authors propose a new
distributed algorithm for extracting formal concepts through
the concept search space partitioning. In that work, the ap-
proach for verifying the validity of the subspaces, i.e. the
subsets which have a higher probability to generate formal
concepts, is unprecedented. However, in the work of Qi et
al.[15] only the mathematical formalism is presented, which
makes it under the practical point of view, of low impact,
because the empirical results of the proposed approach are
not presented.

Fu and Nguifo[17] also present an algorithm for obtaining the
concepts from search spaces in a parallel manner. In that pro-
posal, redundant attributes are removed from the input formal
context before the step where the partitions are generated,
in order to decrease the algorithm effort in extracting the
formal concepts. Another important feature to be highlighted
on the proposed algorithm by the authors is that it is based
on the NextClosure algorithm for obtaining in an effective
manner the concept set. Moreover, the approach adopted by
the authors does not take into account the workload balance,
which reveals itself as one of the limiting factors in the em-

ployed strategy. In that work, the authors conclude by means
of experimental results that due to the use of the NextClosure
algorithm for obtaining the concepts, the parallel proposal
is able to handle input contexts of high dimensionality, but
due to the workload mismatch, the algorithm can present
quick variations in performance depending on the load factor
chosen.

In contrast to the results of the work in Fu and Nguifo,[17]

Moraes et al.[7] exhibit a strategy for creating formal con-
cepts which takes into consideration workload balancing. In
fact, that feature is an advantage over Fu and Nguifo[17] ap-
proach because as emphasized by the authors, the execution
time can be estimated by the means of empirical experiments.

Similarly, Krajca et al.[26] also explore the parallelization
algorithms in the process of generating concepts. In fact,
the parallel version discussed in that work is based on Vy-
chodil[27] algorithm. In that work the strategy of generating
concepts is very similar to Kuznetsov’s CbO algorithm,[28]

differing only in the order of concepts generated.

In Krajca et al.,[26] two versions (sequential and parallel) of
the same algorithm are presented. The authors make a brief
explanation on the technique used for obtaining concepts and
attest the feasibility in employing the depth-first search as
the strategy for not generating repeated concepts. Moreover,
they perform comparative experimental tests between the
sequential and the parallel versions as well as with other
algorithms in the literature.[24, 29, 30] However, the authors do
not mention what data structures are used in implementing
these algorithms.

In turn, Hu et al.[16] use a partitioning approach in the in-
put formal context, which differs from the above-mentioned
work, since in that strategy the context is either split horizon-
tally or vertically, and as a result of that operation subcontexts
are obtained, i.e. partial formal contexts. With these subcon-
texts, the subconcepts are then extracted and united by the
means of a specific union operator, in order to find the final
set of formal concepts. This strategy has the advantage of
considerably reducing the degree of complexity required to
extract the set of relationships between objects and attributes.
However, that gain is practically discarded in the process of
uniting the subconcepts. In fact, at first, splitting the context
seems to be the obvious choice to be made in order to re-
duce the complexity in generating concepts. However, as in
generating concepts, uniting them also presents exponential
order.

In Valtchev and Duquenne,[31] a divide and conquer strategy
is presented for the construction of the concept lattice. In that
strategy, the lattice is constructed from partial lattices which,

42 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

taken two by two by means of the cartesian product, they
form a complete lattice. In that study, the authors present a
new technique for identifying invalid nodes, which consists
in calculating, along with the Lattice, the set of implication
rules from the partial lattices. Valtchev and Duquenne[31]

claim that that technique is effective, since it enables the
rapid identification of invalid nodes, that is, the cartesian
product of partial Reticulates that do not constitute a concept.
The authors also claim that the proposed method performs
better than the NextClosure algorithm, however they do not
show that behavior in an experimental manner.

Finally, Li et al.[32] in turn present all the mathematical
formalism necessary for the effective generation of formal
concepts in distributed systems, thereby ensuring the viabil-
ity of its usage. Although the practical aspects of applying
parallel architectures are not discussed.

4. SCALABLE ALGORITHM AND EXPERIMEN-
TAL METHODOLOGY

The formal contexts used to perform the simulations in this
work were randomly generated, but with the specification
parameters, in order to obtain a test scenario that is the
most comprehensive and reliable. Moreover, the minimum,
intermediate and maximum densities for formal contexts
employed in the experiments were specified, since this pa-
rameter is directly related to the performance of the FCA
algorithms, as much in the concept generation as in rule
acquisition.

The SCGaz tool was used to generate the workloads[33]

(Available at: http://www.icei.pucminas.br/proje
tos/dsrgroup/?wpdmpro=scgaz). This tool enables the
specification of the number of objects and attributes for the
context to be generated, as well as the specification of an
arbitrary density that is calculated based on the dimensions
adopted for the context. At this point, it is important to note
that the contexts generated by SCGaz are irreducible.

Since the high-performance computing to be achieved when
obtaining the implication rules is also an objective of this
work, the implementation of both approaches (sequential
and parallel versions) for obtaining the implication rules
was written in the C programming language. Since that, for
the parallel approach, we used the OpenMP (Available at:
www.openmp.org) library for accessing the resources for
intra-node parallelism (i.e. multithreading).

One may also note that the data structures for both ap-
proaches adopted were the same. This was done in order to
minimize the appearance of eventual distortions that could af-
fect the experimental results, due to the adoption of divergent
data structures.

4.1 Generation of synthetic formal contexts

The selection of synthetic contexts justifies itself in the fact
that the use of real databases can specialize rather than gener-
alize the result analysis, and require a discretization process,
which would imply a further aspect to be considered in the
experiments. Thus, for the generation of synthetic contexts,
it was decided to select a set of densities that could ade-
quately represent the behavior of the algorithm in several
situations. Thus, in the simulations the following densities
were employed: minimum, 30%, 50%, 70% and maximum.

Since the contexts generated by SCGaz have the characteris-
tic of being irreducible, the minimum and maximum densi-
ties can vary according to the dimensionality specified (i.e.
number of objects and attributes). Therefore, comparing the
behavior of two or more contexts of different dimensions in
these extremes can become inconvenient, because the density
parameter will be different for each input. Thus, to enable
comparison between different contexts, we opted the usage
of intermediate densities (i.e. 30%, 50% and 70%), with
a view to the evaluation of the algorithm in relation to the
variation of other parameters.

Considering that two or more formal contexts may differ in
their incidence matrices even when presenting characteris-
tics in common such as dimensions and densities, for the
simulations it was employed samples of size 3 for each syn-
thetic context considered. This was done in order to consider
the impact on the performance of the density from both ap-
proaches. Moreover, such a choice was also guided by the
high execution time that is expected to observe in the sim-
ulations with the contexts considered. Table 1 presents the
synthetic contexts employed in the experiments, where each
line represents a group sample.

Table 1. Synthetic contexts used in the experiments

|M|×|G|
Density (%)

Min. Intermediate Max.

15×1,000 21.93 30 50 70 78.07
15×5,000 29.88 30 50 70 70.12
15×10,000 34.97 - 50 - 65.03
20×1,000 13.85 30 50 70 86.15
20×5,000 18.42 30 50 70 81.58
20×10,000 21.11 30 50 70 78.88
25×1,000 10.6 30 50 70 89.4
25×5,000 13.62 30 50 70 86.38
25×10,000 14.81 30 50 70 85.19

Note in Table 1 that the set of synthetic contexts considered
presents few attributes in relation to the amount of objects.
This is justified since the algorithm to obtain the minimal im-
plication basis contains the worst case scenario in the number

Published by Sciedu Press 43

http://www.icei.pucminas.br/projetos/dsrgroup/?wpdmpro=scgaz
http://www.icei.pucminas.br/projetos/dsrgroup/?wpdmpro=scgaz
www.openmp.org

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

of attributes from the input context. Moreover, there is also
the fact that this is the situation that occurs most frequent in
real application cases for the FCA.

4.2 Metrics for the evaluation of experiments
For the sequential approach, the execution time will be eval-
uated together with the dimensionality and the density of the
input context. With this condition, it is intended to justify
the execution time obtained due to these two parameters. As
for the parallel approach, the same metrics will be evaluated
as in its sequential counterpart. Moreover, the efficiency and
scalability of the algorithm as for its parallelization will also
be evaluated.

Table 2 presents a summary of the metrics for the perfor-
mance evaluation used in this work.

Table 2. Metrics for the performance evaluation

Metric Expression Description

Sequential time ts Sequential execution time
Parallel time tp Parallel execution time
Threads n No. of threads of execution
Cores p No. of cores
Speedup s(n) = ts / tp Where n is the no. of threads
Effiency E(p) = S(n) / p Where S(n) is the speedup

At this point, it is important to note that due to the higher ex-
ecution time expected, for certain sample groups, a threshold
is imposed to this metric. The maximum execution time al-
lowed for the contexts that will be simulated is set to 50 hours.
Exceeding this limit, the simulation for the corresponding
sample group will be interrupted.

4.3 Parallel algorithm for acquiring the minimal impli-
cation basis

Both approaches studied in this work follow the same syntac-
tic structure, differing only on call points of the concurrency
access primitives. Therefore, generally, the structure of the
algorithm can be summarized in steps below:

(1) Generate the initial set of attributes;
(2) Initialize the list of implication rules;
(3) Acquire the implication rule;
(4) Maintain the rule list;
(5) Generate the next quasi-closed set.

Basically, obtaining the minimal implication basis consists
in generating the entire quasi-closed set of a formal context.
However, as the minimal basis is composed of pseudo-closed
sets, subsets of interest are precisely those that are not closed
with respect to the derivation operator. As the closure opera-
tor is defined in terms of this input context, one can refer to
the pseudo-closed or quasi-closed sets as pseudo-intentions
or quasi-intentions, respectively.

Steps 1 and 2 are responsible for initializing the data struc-
tures employed by the algorithm, namely the empty attribute
subset (empty intent) and the empty list of implication rules.
The remaining outline steps are included within a loop, where
the stop condition does not occur until the current subset (of
quasi-intents) is equal to the full set of attributes.

At each iteration in the algorithm, a new subset is generated
and evaluated. Thus, step 3 deals with obtaining probable
rules. They are probable because, as mentioned above, the
minimal implication basis is defined in terms of pseudo-
intentions, that is, non-closed quasi-intentions in relation
to the derivation operator. Therefore, at the time when the
quasi-intent is closed, it will not result in a new implication
rule.

Thus, if a pseudo-intent is generated, then in step 4, the new
subset is added to the list of rules. Again, this structure
is maintained, due to the recursive nature of the algorithm,
since the minimal basis is defined in terms of itself, this
structure is used as feedback in the next step.

Finally, in step 5, the next quasi-intent is generated. In this
step, the list of rules held in the previous step as well as the
current quasi-intent are employed for generating the next
subset. Naturally, the generation of subsets occurs in lexi-
cographical order, since for generating these, the algorithm
NextClosure is used.

4.3.1 Definition of the load balancing criteria

Since the present work deals with the parallelization of an
algorithm, the problem of specifying the ideal size for work-
loads arises naturally. In fact, parallelization of FCA al-
gorithms is a recent topic and still under discussion,[34–38]

however specifying the ideal size for partitions is a point that
is still open.

It is known that the size employed for the workloads has a
relevant impact on the performance of parallel/distributed
algorithms. Thus, in order to minimize possible distortions
that this parameter may inflict on the results of this work,
the size specification for the workloads takes into account
their balance. It is important to mention that, in this work,
balancing is defined as the equitable grain size (i.e. amount
of objects, attributes and rules) for each thread.

Since performance is closely related to dimensionality, the
density and the number of rules generated, the efforts were
put in the parallelization of the points where these parame-
ters occur. Therefore, the grains are defined in terms of the
quantity of objects, attributes and rules. Consequently, it is
expected that the performance observed with the paralleliza-
tion is influenced by the granularity of these parameters.

44 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

Despite the selected balancing criteria not being guaranteed
as the best, it is expected that the metrics and analysis expo-
sure of the experimental results can assist related work in the
calculating the ideal size of this parameter.

4.3.2 Implementation of the scalable algorithm
In consonance with what has been exposed previously, the
parallel implementation of the algorithm for obtaining the
minimal implication basis takes into consideration, mainly,
the equitable division of the workloads. This characteristic
was reached with the aid of the primitives available in the
OpenMP library.

It can also be noted that the structural changes were only per-
formed when strictly necessary in order to reach a parallel be-
havior. In this manner, the greatest part of the parallelization
effort was concentrated in the identification and inclusion of
OpenMP directives in the parts where a parallelization was
possible.

Also, since the largest part of the algorithm logic for obtain-

ing the minimal implication basis concentrates in operations
over sets and in the usage of loop structures, the efforts for
implementing the parallel approach were focused on these
structures.

Therefore, in order to guarantee the workload balance, in the
parallelization of the loops the omp for directive was em-
ployed. This directive enables the parallel execution of loop
structures, dividing the workload amongst the thread team,
following a previously defined scheduling scheme. And,
since it is intended to employ workloads of equitable size,
along with this directive, the clause static was used as the
scheduling strategy.

Regarding the implementation of data structures, since much
of the operations is concentrated in operations over sets, a
representation at the bit level for these sets was employed.
This was done in order to reduce the space required for
storage of such structures and for a higher performance in
operations over sets.

Algorithm 1 DUQUENNE-GUIGUES minimal implcation basis

Algorithm 2 Double prime derivation operator

Algorithm 3 Next closure

Finally, the set of parallel algorithms that make up the paral-
lel approach for obtaining the stem base is expressed through
the Algorithms 1-6. The parallelized parts are defined be-
tween Begin Parallel Region and End blocks. It is also

noteworthy that since the workload division is performed
by the OpenMP library, the calculation of specific work
threasholds of each thread was omitted in the algorithms.
Therefore, in the sections where variables workload_st

Published by Sciedu Press 45

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

and workload_end occur, it should be understood that these
are automatically calculated, in an equal manner.

The Algorithms 4 and 5 are the derivative operations over
the input context, namely: the concept extent and intent. In

the first algorithm, grains are defined in terms of the amount
of context objects and the size of the attribute subset A ⊆M .
As for the latter, the grains correspond to the amount of
context attributes and the size of the object subset B ⊆ G.

Algorithm 4 Extent concept excent

Algorithm 5 Intent concept intent

At line 7 of these two algorithms, the tid variable corre-
sponds to the identifier of the thread in execution. More
especifically, the pseudo-code between Begin Parallel

Region and End blocks will be executed in parallel by a
team of execution threads. Each thread belonging to a team
receives an unique identifier, so as to facilitate the merge of

46 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

the partial results in line 21.

Again, the calculation of the specific workload limits of each
execution thread is defined in an automatic manner and cal-
culated according to the domain limits of the loop. In the
case of the Algorithm 4, limits in the interval 0 ≤ i < |G|
are calculated. For the Algorithm 5, limits are between
0 ≤ i < |M |.

The Algorithm 6, in turn, corresponds to the parallel version

of the closure operator for quasi-closed sets. In this algo-
rithm, the grains of the first parallel block, between lines
1 and 11, are defined in terms of the number of context at-
tributes and the amount of rules (i.e. obtained up to the
moment). In this block, the work ranges of the thread team
are defined within the range 1 ≤ x ≤ |M |. As for the second
parallel block (lines 18− 31), the granularity is defined by
the size of the subsets T and new_closure.

Algorithm 6 Linclosure

Unlike the other parallel regions, the second parallel region
presents section parallelism. In the OpenMP implementation,
this behavior is described by the usage omp section direc-
tives, which correspond to a non-iterative type of parallelism,
where each parallel section is assigned to an execution thread.
According to the OpenMP documentation, it may occur in
the same thread the execution of more than one parallel sec-
tion, if its implementation permits. This type of parallelism
has been adopted for this block due to the low granularity
presented in this region.

Finally, although it is possible to parallelize the loop, it has
not been parallelized, due to its low granularity (All imple-
mentation of the algorithm for obtaining the minimal impli-
cation basis are available at: http://www.icei.pucmina
s.br/projetos/dsrgroup/?wpdmpro=dgbasis.

Figure 1 shows the mechanics of the algorithms presented.

5. RESULT ANALYSIS
This section presents the results of the experiments conducted
for the set of formal contexts considered.

5.1 Experimental results
The experiments were done in an Intel Xeon E5430 2.6Ghz
/ 8 cores, with 8Gb of RAM and operating system RHEL
v4.1.2-44. That said, below, in Table 3a, the performance of
the sequential approach is presented. For each synthetic con-
text, the execution times obtained with density variation are
presented; hyphens denote that the simulation was aborted
due to the 50h threshold defined in the methodology. Some
contexts that exceeded this threshold are shown and indicated
with asterisks.

In general, the acquisition of the minimal basis presents the
worst case when the input context density is 50%, which is
notedly different from the observed behavior when obtaining

Published by Sciedu Press 47

http://www.icei.pucminas.br/projetos/dsrgroup/?wpdmpro=dgbasis
http://www.icei.pucminas.br/projetos/dsrgroup/?wpdmpro=dgbasis

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

formal concepts, where the worst case scenario is achieved
when the entry presents maximum density. In particular, for
the context containing 15 attributes and 5,000 objects, this
behavior is not checked. In part, because it is a relatively
small context, but mainly due to the need of a number of
iterations (i.e. quasi-intents) very close to the contexts with
densities close to 70% and 70.12% (see Table 1).

Figure 1. Flow chart of the algorithms for generating the
Duquenne-Guigues basis of implications

Table 3. Average for each sample group

(a) Sequential time (in seconds)

|M| × |G|

Density (%)

min. 30 50 70 max.

time (in seconds)

15×1,000 1.35 3.81 12.50 9.33 9.31
15×5,000 27.35 24.25 41.58 43.40 43.39
15×10,000 69.01 - 82.56 - 85.57
20×1,000 4.07 122.22 2,350.07 1,344.65 408.35
20×5,000 49.41 836.65 7,360.39 1,851.14 1,897.59
20×10,000 226.77 1130.12 9,382.43 3,677.29 3,711.39
25×1,000 8.40 2149.90 671,753.12 - -
25×5,000 211.48 54,957.18 - - -
25×10,000 254.07 165,507.72 - - -

(b) No. of rules obtained

|M| × |G|

Density (%)

min. 30 50 70 max.

rules (n)

15×1,000 952 1,515 1,389 7 0
15×5,000 4,948 4,324 594 0 0
15×10,000 6,353 - 208 - 0
20×1,000 1,466 7,830 22,820 3,972 0
20×5,000 4,953 20,614 33,172 53 0
20×10,000 11,702 19,693 31,385 5 0
25×1,000 1,724 28,074 - - -
25×5,000 10,287 94,810 - - -
25×10,000 8,848 137,028 - - -

Another point to be noted, with respect to contexts 15×5, 000
with minimum and 30% densities. In both cases, we find that
the context with minimum density (i.e. 29.88%) showed a
superior execution time in relation to its correspondent by
30%. This is justified by the density proximity. Besides, of
course, that the entry with minimum density has provided a
higher quantity of as many quasi-intentions as of rules, which
suggests that, as in dealing with formal concepts, the context
incidence relationship has a significant weight in obtaining
minimal implication basis.

Still in Table 3a, we note that for the contexts with more than
20 attributes, the explosion in execution time is clear due to
the increased input density. It is also possible to observe a
certain trend towards execution time obtained by the varia-
tion of context density. Of course, it can be stated that after a
density of 50%, there is a decline in execution time. Table
3b helps to interpret such behavior.

Comparing the data in Table 3b with the execution times
shown in Table 3a, it is observed that the algorithm perfor-
mance is closely related to the number of rules obtained. In
general, as the density increases, that is, from the minimum
possible up to 50%, the number of rules also increases. In
contrast, after 50%, there is a decline in the number of rules.
In particular, when the maximum density was employed, for
all contexts used, the number of rules was always null. This
occurs, since in this case all subsets generated are closed in
relation to the derivation operator. However, the subsets of
interest for the construction of the stem base are precisely
those that are not closed (see Algorithm 1).

Despite the fact that the number of rules affects the algorithm
performance, this factor does not provide a longer execution
time. An example of this situation can be observed in the
context 15× 5, 000 with minimum density. In this case, the
context with such configuration presented the largest num-
ber of rules, however, this characteristic did not result in
the longest time taken. This shows that, although the perfor-
mance is also dependant on the number of rules, this measure
does not contribute alone to the increase in execution time.
In fact, as it can be seen in Figure 2, the acquisition of the
set of rules is also conditional to the number of quasi-intent
subsets obtained from the input context.

In the graph of Figure 2 it is easy to see that the number of
subsets (i.e. quasi-intents) grows with the increase of the
context density. In fact, this number is exponential in the
number of input attributes, where in the case where the con-
text presents maximum density, the number of corresponding
quasi-intents reaches its largest value (i.e. 2|M |). Another
important consideration refers to the relationship between
the number of subsets generated and of objects. As the re-

48 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

sults show, the number of objects has a linear impact on the
number of quasi-intents generated.

A closer look at the results from Table 3b and the graph from
Figure 2 reveals that the increase in the number of objects
in the context causes a decline in the number of rules to
be steeper, as the density approaches the maximum value.
This is expected, since the increase in the number of objects
makes the rule acquisition process more difficult, either by
increasing the number of subsets evaluated or even by the
effort required to perform derivative operations.

Figure 2. Variation of density of the input context and the
corresponding no. of quasi-intents

Table 4a shows the standard deviation of the execution time
of the sample groups used in the simulations. In this Table,
the results explain the impact of the context incedence rela-
tion over the algorithm performance. Furthermore, it shows
that although contexts belonging to the same sample group
are similar in size and density, they still refer to different
contexts. For example, taking the contexts 20 × 5, 000 to
25×10, 000 with 50% and 30% density, respectively. The av-
erage µ(x), for a confidence level of 90%, using the t-student
distribution, the confidence interval for the first context is
7, 119.2 ≤ µ(x) ≤ 7, 600.8; for the second, the range is
149, 617.88 ≤ µ(x) ≤ 181, 397.56.

In Table 4a, it is observed that the increase in the standard
deviation is closely related to the increase in the number of
input attributes. This is clear for contexts over 20 attributes.
Furthermore, with the aid of Table 4b, which presents a dis-
persion degree in the amount of rules for each sample group,
it is possible to notice that the execution time is also related
to the number of rules generated, thus corroborating with the
observations raised about the input density.

Table 4. Standard deviation for each sample group

(a) Execution time (in seconds)

|M|×|G|

Density (%)

min. 30 50 70 max.

time (in seconds)

15×1,000 0.02 0.13 0.29 0.19 0.02
15×5,000 0.01 0.12 0.15 0.13 0.13
15×10,000 0.29 - 0.06 - 0.05
20×1,000 0.08 2.50 40.44 184.27 1.20
20×5,000 0.14 7.90 227.53 7.06 1.51
20×10,000 0.32 19.24 589.28 4.72 9.58
25×1,000 0.10 51.52 - - -
25×5,000 0.78 515.57 - - -
25×10,000 0.92 15,013.92 - - -

 (b) No. of rules obtained

|M|×|G|

Density (%)

min. 30 50 70 max.

rules (n)

15×1,000 2 26 69 2 0
15×5,000 0 24 65 0 0
15×10,000 4 - 33 - 0
20×1,000 7 110 479 903 0
20×5,000 30 317 1,784 33 0
20×10,000 11 60 3,123 3 0
25×1,000 18 462 - - -
25×5,000 6 136 - - -
25×10,000 47 1,985 - - -

In Tables 5 and 6 are shown the speedup and efficiency of
algorithms 2 and 6 when applied 8 logical cores. As the
paralelization effort was focused in these two rotines, it was
possible to measure the contribution of these portions in the
perfomance of the proposal.

It can be seen in Table 5 that the speedup of DOUBLEPRIME

is related with the number of quasi-intents of the input con-
text. It also could be noted that the increase of density pro-
vides an improvement of the performance of this rotine. On
the other hand, Table 6 shows that the greater the number
of pseudo-intentions generated, the greater the speedup of
LINCLOSURE.

Table 7 lists the times obtained with parallelization of the
minimal implication basis. It is shown for each synthetic
context, the execution times obtained with the variation of
the density as well as the number of threads. Also in this
Table, hyphens denote the input context with that density and
number of threads was not simulated, due to the threshold
defined in methodology (see Section 4.2).

Table 7, it is noted that, as in its corresponding sequential
one, the parallel time also depends on the density of the input
context. A comparison of execution times for the parallel
and the sequential versions, shown in Table 3a, also reveals
that the performance is only meaningful for contexts with 15

Published by Sciedu Press 49

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

attributes when 4 or more execution threads are employed.

Table 5. Speedup and effiency achieved in DoublePrime
with 8 threads of execution

|M| x |G|

Density (%)

min. 30 50 70 max.

Speedup / Efficiency

15×1,000 0.901 / 0.113 1.079 / 0.135 1.389 / 0.174 1.522 / 0.19 1.557 / 0.195
15×5,000 1.128 / 0.141 1.164 / 0.146 1.599 / 0.2 1.842 / 0.23 1.836 / 0.229
15×10,000 1.229 / 0.154 - 1.491 / 0.186 - 1.835 / 0.229
20×1,000 0.932 / 0.116 1.333 / 0.167 1.589 / 0.199 1.776 / 0.222 1.644 / 0.205
20×5,000 1.209 / 0.151 1.554 / 0.194 1.858 / 0.232 1.813 / 0.227 2.2 / 0.275
20×10,000 1.297 / 0.162 1.626 / 0.203 1.889 / 0.236 1.802 / 0.227 1.66 / 0.208
25×1,000 1.014 / 0.127 1.554 / 0.194 1.836 / 0.23 - -
25×5,000 1.293 / 0.162 1.825 / 0.228 - - -
25×10,000 1.432 / 0.179 1.894 / 0.237 - - -

Table 6. Speedup and efficiency achieved LinClosure with 8
threads of execution

|M|×|G|

Density (%)

min. 30 50 70 max.

Speedup / Efficiency

15×1,000 1.805 / 0.226 1.907 / 0.238 2.519 / 0.315 0.096 / 0.012 0.075 / 0.009
15×5,000 3.426 / 0.428 3.152 / 0.394 1.315 / 0.164 0.073 / 0.009 0.079 / 0.01
15×10,000 3.667 / 0.458 - 0.414 / 0.052 - 0.08 / 0.01
20×1,000 2.441 / 0.305 3.951 / 0.494 4.66 / 0.582 4.186 / 0.523 0.088 / 0.011
20×5,000 3.427 / 0.428 4.423 / 0.553 5.007 / 0.626 0.236 / 0.029 0.087 / 0.011
20×10,000 3.929 / 0.491 4.373 / 0.547 5.115 / 0.639 0.093 / 0.012 0.1 / 0.013
25×1,000 2.744 / 0.343 4.398 / 0.55 3.662 / 0.458 - -
25×5,000 3.774 / 0.472 4.03 / 0.504 - - -
25×10,000 3.855 / 0.482 3.845 / 0.481 - - -

Table 7. Average parallel time (in seconds) for the
construction of the stem base of contexts from Table 1

Context # threads

Density (%)

min. 30 50 70 max.

time (in seconds)

15×1,000

2

1.33 3.30 10.86 9.79 9.84
15×5,000 24.32 22.28 40.45 44.92 46.36
15×10,000 66.28 - 86.01 - 77.81
20×1,000 3.25 73.90 1,313.53 888.01 403.27
20×5,000 38.25 508.71 4,306.58 1,660.34 1,599.46
20×10,000 171.06 745.97 5,954.80 3,228.70 3,409.13
25×1,000 6.24 1,241.77 - - -
25×5,000 144.78 35,016.49 - - -
25×10,000 180.25 101,669.18 - - -
15×1,000

4

1.43 2.43 7.75 7.03 7.11
15×5,000 16.68 15.47 28.49 29.56 30.53
15×10,000 43.80 - 56.76 - 56.95
20×1,000 2.32 45.82 756.00 554.59 261.94
20×5,000 24.71 307.21 2,473.64 1,048.54 1,025.64
20×10,000 107.71 454.05 3,450.38 2,159.62 2,322.41
25×1,000 4.32 749.47 - - -
25×5,000 90.68 24,259.85 - - -
25×10,000 115.76 80,372.78 - - -
15×1,000

8

0.94 2.13 6.82 7.33 7.76
15×5,000 15.19 13.81 26.60 24.94 25.16
15×10,000 41.36 - 54.95 - 50.05
20×1,000 2.60 35.01 537.62 433.82 297.05
20×5,000 21.39 235.88 1,805.16 1,066.64 913.23
20×10,000 90.57 364.94 2,656.57 2,087.76 2,277.62
25×1,000 3.51 505.03 183,897.60* - -
25×5,000 68.14 13,872.32 - 71,873.45 18,403.50
25×10,000 90.78 43,701.65 - - -
15×1,000

16

4.17 8.30 25.92 33.18 33.48
15×5,000 30.15 27.70 58.52 58.39 57.06
15×10,000 68.54 - 101.92 - 91.57
20×1,000 8.08 69.32 771.35 1,180.88 1,087.44
20×5,000 42.44 340.78 2,456.46 1,981.20 2,048.81
20×10,000 141.62 523.04 3,611.47 3,393.92 3,385.14
25×1,000 12.16 647.78 - - -
25×5,000 110.00 14,939.25 - - -
25×10,000 146.39 45,030.98 - - -

In fact, not only the performance of the sequential implemen-

tation, but also from the parallel version depend on the con-
text density. Thus, in the carried simulations, it was observed
that the maximum speedup (Maximum Speedup compared
to the other contexts of the same dimension, but with differ-
ent densities) is obtained when the incidence context matrix
presents sparse density and a relatively high number of rules,
as illustrated by the data in Table 8, which shows the gain
obtained with 8 execution threads.

In Table 8, considering the finding about acquiring the max-
imum performance of the algorithm, it is possible to note
that the speedup reaches its peak when the input context
presents a high number of rules and sparse density. This
is corroborated by the contexts 15× 5, 000 with minimum
density, 25× 1, 000 and 25× 5, 000 with 30% density and
15× 1, 000, 20× 1, 000, 20× 5, 000 and 20× 10, 000 with
50% density. In such cases, as shown in Table 3b, the con-
texts considered showed high amounts of rules, compared
with their counterparts in other densities.

Table 8. Speedup achieved with 8 threads and 8 cores

|M|×|G|

Density (%)

min. 30 50 70 max.

Speedup

15×1,000 1.439 1.785 1.832 1.273 1.20
15×5,000 1.801 1.756 1.563 1.740 1.724
15×10,000 1.669 - 1.502 - 1.710
20×1,000 1.565 3.491 4.371 3.10 1.375
20×5,000 2.311 3.547 4.077 1.735 2.078
20×10,000 2.504 3.097 3.532 1.761 1.630
25×1,000 2.397 4.257 3.653 - -
25×5,000 3.103 3.962 - - -
25×10,000 2.799 3.787 - - -

Reinforcing these findings, it can also be seen that the con-
texts that presented results (synthetic contexts that showed
the execution time below the threshold defined.) with 50%
density (i.e. 15× 5, 000 and 15× 10, 000), but resulted in a
smaller number of rules that obtained lower speedup. This is
in agreement with the previous claim about the performance
of the parallel approach. In fact, as the grain size in the
parallel approach is defined in terms of the quantity of ob-
jects, attributes and rules, the low index of rules in this case
incurred in finer grains and, hence, a lower performance.

Another point that stands out is the result obtained for the
context 15 × 10, 000 with minimum density. Unlike other
sparse contexts which produced many rules, this context,
with 8 threads, presented lower speedup than the context
with maximum density, which generated less rules. However,
this behavior is due to the number of threads used in this
simulation, since in the scenario where 4 execution threads
were employed, such input context showed higher perfor-
mance than the others. More specifically, in this situation,

50 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

the simulations with contexts 15 × 10, 000 with minimal,
50% and maximum densities presented respectively, speedup
of 1.575, 1.455 and 1.502.

The graphs from Figure 3 present the performance of the
parallel approach with the increase in the number of execu-

tion threads for synthetic contexts with density of 30%, 50%
and 70%, respectively. The graphs clearly demonstrate the
scalability achieved with the parallelization of the minimal
implication basis in obtaining the set of rules. It is shown
only the contexts that presented an execution time lower or
equal to the threshold defined in the methodology.

Figure 3. Speedup obtained with the increase of the no. of threads of execution

In Figure 3a, it is observed that the maximum speedup is
obtained when the number of threads is equal to 8. It should
also be noted that the performance achieved is closely re-
lated to the size of grains. More specifically, contexts with a
higher amount of attributes which also generated more rules
obtained higher speedup.

However, it is noted that there is a loss of performance due
to the increase in the number of objects, for the contexts
which presented a high number of rules. This behavior can
be clearly observed in contexts with 15, 20 and 25 attributes,
when applied to 8 execution threads. This is due to the ex-
tension calculation in line 7 in the Algorithm 1, where the
support (i.e. the number of objects involved in the implica-
tion) of the obtained rule is calculated. Since the extension
calculation deals with objects, the higher this parameter, the
greater the effort involved in such operation.

The decline in performance due to the increase in the num-
ber of objects can also be seen in Figure 3b, which shows
the scalability of parallel approach for contexts with 50%
density. This behavior is presented only for contexts with
20 attributes because, as mentioned above, contexts with 15
attributes showed a reduction in the number of rules with an
increase in the amount of objects (see Table 3b).

Figure 3c, in turn, shows the scalability for contexts with 70%
density. In this graph the relationship between the speedup
and the number of rules is clear, where the 20× 1, 000 con-
text, presenting a higher number of rules in comparison to
the other contexts, obtained the highest performance.

In the graph from Figure 3c, it is also noted that the maxi-

mum speedup is achieved with 4 and 8 execution threads. In
the situation which 4 threads were employed, the contexts
15× 1, 000 and 20× 5, 000 obtained better results. On the
other hand, when 8 threads were employed, these contexts
showed a slight decline in the speedup, while the other con-
texts showed an increase in performance. Also this behavior
is justified by the grain size. Since few rules were generated
in this scenario, the performance of the parallel approach
was due to the parallelism achieved in the Algorithm 2.

It is also important to note the behavior of the parallel ap-
proach when 16 execution threads were used, as shown in
graphs of Figures 3a, 3b and 3c. In such situation, for all
densities considered, there was a reduction in the gain ob-
tained. This behavior is justified, since this scenario has
incurred greater competition between threads, once that the
number of available cores was 8. It can also be seen that
some contexts, in this scenario, presented worse results, com-
pared to the sequential approach, with parallelization (i.e.
15×1, 000 and 15×5, 000 with 30%; 15×1, 000, 15×5, 000
and 15 × 10, 000 with 50%; 15 × 1, 000, 15 × 5, 000 and
20× 5, 000 with 70%), which is related to the granularity.

It is presented below, in Figure 4 the efficiency acquired with
the increase in the number of threads is presented, for the
contexts with 30%, 50% and 70% density, respectively.

As the results show in Figures 4a, 4b and 4c, the decline in
efficiency due to the increase in the number of threads when
the input size is maintained is clear. Furthermore, it is noted
that the increase in the number of context attributes provides
an improvement for this metric.

Published by Sciedu Press 51

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

Figure 4. Efficiency obtained with the increase of the no. of threads of execution

5.2 Dresden challenge

As mentioned earlier, there is a special interest from re-
searchers in the development of techniques and algorithms
capable of handling dense and highly dimensional contexts.
This fact gave rise to recurring challenge exposed in the 4th
edition of the ICFCA.

However, in this work, as demonstrated in the experiments,
the algorithm for obtaining the minimal implication basis
has the worst case scenario in the number of context at-
tributes. So in this section, experiments with a focus on high
dimensionality in the number of objects are performed. The
experiments were conducted in contexts of 25 attributes with
minimal and 30% densities. The purpose of these simula-
tions is to verify that the parallel approach can deal with the
specified contexts, according to the threshold defined in the
methodology.

In Table 9, the execution times and the number of rules for
formal contexts considered are presented.

Table 9. Simulations with 8 threads of execution

|M| × |G| Density (%) Time (in seconds) # rules

25×30,000 17.57 1,131.40 38,496
25×30,000 30 174,873.88 227,064
25×50,000 18.54 1,466.93 32,285
25×50,000 30 372,129.97* 354,608
25×70,000 19.05 28,669.74 175,505
25×70,000 30 - -
25×90,000 20.15 26,565.92 155,505
25×90,000 30 - -
25×120,000 21.11 22,704.28 125,603
25×120,000 30 - -

As discussed in Section 5.1, the results from Table 9 ex-
plain the impact of the input context density on the algorithm
performance when obtaining the minimal implication basis.
However, not only this parameter impacts the execution time,
but also the number of rules parameter, which also has sig-
nificant influence on this metric. This is because, in order to
obtain the set of implications, the already obtained rules are

employed to generate the other ones (see Algorithm 6).

Analyzing the results presented, it is easy to verify the be-
havior of the algorithm in relation to the parameter density
and number of rules. For example, in context results with
minimum density, a significant increase in the execution time
starting from 70, 000 objects is perceivable. This increase
was mainly due to the increase in the number of rules. In
fact, from the contexts with minimum density considered in
this simulation, the one that showed the highest execution
time was precisely the one that generated the largest number
of rules (i.e. 25× 70, 000).

Such observations are also valid for the other contexts with
30% density. In this case, it is observed that the context
that showed the longest execution time was also the one that
resulted in the largest number of rules (i.e. 25 × 50, 000).
However, unfortunately, due to the defined threshold, it was
not possible to perform tests with a higher number of objects
for this density.

6. CONCLUSIONS AND FUTURE WORK
In this work, the usage of parallel processing strategies was
discussed as a means of reducing the high execution time
observed in situations where the formal context presents an
elevated degree of density and high dimensionality. It was
shown, through experiments, that the parallelization of the
stem base provides a significant reduction in the execution
time when the input context presents a sparse density and a
high number of rules. However, even with this reduction, the
observed times are still prohibitive when employed densities
exceeding 30% in large-scale contexts, as shown in Section
5.2.

The experiments also reveal that the number of execution
threads has a significant influence on the performance of the
parallel approach. Particularly, in the simulations that used
16 execution threads, there was a decline in the obtained
speedup. This behavior could be observed for all contexts
considered in the experiments, and it is justified, since this sit-

52 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

uation provides greater competition among the thread teams,
once that the environment in which these simulations were
performed contains only 8 processing cores.

In contrast, when an amount equal to or less than the num-
ber of available cores is employed, a higher speedup had
occurred. At the first moment, such behavior may suggest
that the parallel implementation adopted in this study shows
better performance when the number of threads per core is
equal to 1. However, in the simulations with 16 threads, it
may be noted that the increase in the number of attributes
at the input context provides an improvement in the gain
obtained. Despite such performance being lower compared
to simulations with a smaller number of threads. This shows
that the behavior observed for 16 execution threads is related
to the grain size.

This study, however, evaluated the formal contexts in which
the number of objects is greater than the number of attributes.
The behavior of the algorithm when obtaining the stem base
in situations where the input presents large numbers of at-
tributes in comparison with the number of objects was not
evaluated. Nor were the contexts where the object and at-
tribute dimensionality are the same.

It is important to mention that in real problems as in social
networks analysis, the number of objects is significantly supe-
rior to the number of attributes. In this kind of sceneries that
our scalable parallel version of the NextClosure algorithm
can be used.

ACKNOWLEDGEMENTS
The authors would like to thank CNPq, CAPES, FAPEMIG,
and SERPRO.

REFERENCES
[1] Kuznetsov SO, Poelmans J. Knowledge representation and pro-

cessing with formal concept analysis. Wiley Interdisciplinary Re-
views: Data Mining and Knowledge Discovery. 2013; 3(3): 200-15.
http://dx.doi.org/10.1002/widm.1088

[2] Poelmans J, Kuznetsov SO, Ignatov DI, et al. Formal concept anal-
ysis in knowledge processing: a survey on models and techniques.
Expert Syst. Appl. 2013; 40(16): 6601-23.

[3] Poelmans J, Elzinga P, Viaene S, et al. Formal concept analysis in
knowledge discovery: a survey. In: Croitoru, M., Ferré, S., Lukose,
D., eds.: ICCS. Volume 6208 of Lecture Notes in Computer Science.,
Springer; 2010. p. 139-53.

[4] Wille R. Restructuring lattice theory: an approach based on hierar-
chies of concepts. In: Ordered sets, Dordrecht–Boston, Reidel; 1982.
p. 445-70.

[5] Ganter B, Wille R. Formal concept analysis: mathematical founda-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA. 1997.

[6] Baixeries J, Szathmary L, Valtchev P, et al. Yet a faster algorithm for
building the hasse diagram of a concept lattice. In: Ferré, S., Rudolph,
S., eds.: ICFCA. Volume 5548 of Lecture Notes in Computer Science.
Springer; 2009. p. 162-77.

[7] Moraes NRM, Zárate LE, Freitas HC. A distributed algorithm for
formal concepts processing based on Search Subspaces. In: Filipe J,
Cordeiro J, eds.: ICEIS (1), SciTePress; 2010. p. 105-11.

[8] Gély A, Medina R, Nourine L, et al. Uncovering and reducing hidden
combinatorics in guigues-duquenne Bases. In: Ganter, B., Godin, R.,
eds.: ICFCA. Volume 3403 of Lecture Notes in Computer Science.,
Springer; 2005. p. 235-48.

[9] Gély A, Medina R, Nourine L. About the enumeration algorithms of
closed sets. In: Kwuida, L., Sertkaya, B., eds.: ICFCA. Volume 5986
of Lecture Notes in Computer Science., Springer; 2010 p. 1-16.

[10] Dias SM, Vieira NJ. Concept lattices reduction: definition, analysis
and classification. Expert Systems with Applications. 2015; 42(20):
7084-97. http://dx.doi.org/10.1016/j.eswa.2015.04.044

[11] Kuznetsov SO, Obiedkov SA, Roth C. Reducing the representation
complexity of lattice-based taxonomies. In: Priss U, Polovina S, Hill
R, eds.: ICCS. Volume 4604 of Lecture Notes in Computer Science.
Springer; 2007. p. 241-54.

[12] Jay N, Kohler F, Napoli A. Analysis of social communities with ice-
berg and stability-based concept lattices. In: Medina R, Obiedkov SA,
eds.: ICFCA. Volume 4933 of Lecture Notes in Computer Science.
Springer; 2008. p. 258-72.

[13] Dias SM, Vieira NJ. Reducing the size of concept lattices: the jbos ap-
proach. In: Kryszkiewicz M, Obiedkov SA, eds.: CLA. Volume 672
of CEURWorkshop Proceedings., CEUR-WS.org; 2010. p. 80-91.

[14] Rimsa A, Zárate LE, Song MAJ. Handling large formal context using
bdd – perspectives and limitations. In: Proceedings of the 7th Interna-
tional Conference on Formal Concept Analysis (ICFCA 2009). Vol-
ume 5548 of LNCS/LNAI., Darmstadt, Germany, Springer-Verlag;
May 2009. p. 194-206.

[15] Priss U. Some open problems in formal concept analysis. Problems
presented at International Conference on Formal Concept Analysis
(ICFCA) 2006 in Dresden (2006). Available from: http://www.up
riss.org.uk/fca/problems06.pdf(last access - April 2014).

[16] Qi H, Liu D, Hu C, et al. A parallel algorithm based on search space
partition for generating concepts. In: 10th International Conference
on Parallel and Distributed Systems, ICPADS 2004, Newport Beach,
CA, USA, July 7-9, 2004, IEEE Computer Society. 2004: 241-8.

[17] Hu X, Wei X, Wang D, et al. A parallel algorithm to construct con-
cept lattice. Fuzzy Systems and Knowledge Discovery. FSKD; 2007.
p. 119-23.

[18] Fu H, Nguifo E. Partitioning large data to scale up lattice-based al-
gorithm. Tools with Artificial Intelligence, 2003. Proceedings. 15th
IEEE International Conference. 2003: 537-41.

[19] Vimieiro R. An study of algorithms for extraction of rules based on
formal concept analysis (in portuguese: um estudo de algoritmos
para a extração de regras baseados em análise formal de conceitos).
Master’s thesis, Universidade Federal de Minas Gerais (UFMG), In-
stituto de Ciências Extatas, Departamento de Ciência da Computação,
Belo Horizonte, Minas Gerais, Brasil. 2007.

[20] Cohen E, Datar M, Fujiwara S, et al. Finding interesting associations
without support pruning. IEEE Trans. Knowl. Data Eng. 2001; 13(1):
64-78.

[21] Ganter B. Formal concepts analisys: algorithmic aspects. TU Dres-
den, Germany, Tech. Report. 2002.

Published by Sciedu Press 53

http://dx.doi.org/10.1002/widm.1088
http://dx.doi.org/10.1016/j.eswa.2015.04.044
http://www.upriss.org.uk/fca/problems06.pdf
http://www.upriss.org.uk/fca/problems06.pdf

http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

[22] Taouil R, Bastide Y. Computing proper implications. In: 9th Interna-
tional Conference on Conceptual Structures: Broadening the Base -
ICCS’2001, Stanford, CA US; July 2001. 13 p.

[23] Guigues J, Duquenne V. Minimum families of informative impli-
cations resulting from an array of binary data (in French: Familles
minimales d’implications informatives résultant, d’un tableau de
données binaires). Mathématiques et Sciences Humaines. 1986; 95:
5-18.

[24] Carpineto C, Romano G, D’Adamo P. Inferring dependencies from
relations: a conceptual clustering approach. Computational Intelli-
gence. 1999; 15.

[25] Ganter B. Two basic algorithms in concept analysis. In: Kwuida,
L., Sertkaya, B., eds.: ICFCA. Volume 5986 of Lecture Notes in
Computer Science. Springer; 2010. p. 312-40.

[26] Jota Resende G, De Moraes N, Dias S, et al. Canonical computational
models based on formal concept analysis for social network analysis
and representation. In: International Conference on Web Services
(ICWS) - IEEE. June 2015: 717-20.

[27] Krajca P, Outrata J, Vychodil V. Parallel recursive algorithm for fca.
In: 6th Internation Conference on Concept Lattices and Their Ap-
plications (CLA 2008). Volume 433., Oulomouc, Czech Republic.
October 2008: 71-82.

[28] Vychodil V. A new algorithm for computing formal concepts. In: Pro-
ceedings of the 19th European Meeting on Cybernetics and Systems
Research (EMCSR 2008). 2008: 15-21.

[29] Kuznetsov SO. Learning of simple conceptual graphs from positive
and negative Examples. In: Zytkow, J.M., Rauch, J., eds.: PKDD.
Volume 1704 of Lecture Notes in Computer Science. Springer; 1999.
p. 384-91.

[30] Lindig C, Gbr GD. Fast concept analysis. In: Working with Concep-
tual Structures – Contributions to ICCS 2000, Shaker Verlag; 2000.
p. 152-61.

[31] Berry A, Bordat JP, Sigayret A. A local approach to concept gen-
eration. Ann. Math. Artif. Intell. 2007; 49(1-4): 117-36. http:
//dx.doi.org/10.1007/s10472-007-9063-4

[32] Valtchev P, Duquenne V. Towards divide-and-conquer methods
for computing concepts and implications. In: Fourth International
Conference on Knowledge Discovery and Discrete Mathemat-
ics–Journées de l’informatique Messine – JIM’03, Metz, France,
INRIA. Sep 2003: 3-15.

[33] Li Y, Liu ZT, Shen XJ, et al. Theoretical research on the distributed
construction of concept lattices. In: Machine Learning and Cybernet-
ics, 2003 International Conference on. Volume 1. Nov. 2003: 474-9.

[34] Rimsa A, Song MAJ, Zárate LE. SCGaz - a synthetic formal con-
text generator with density control for test and evaluation of fca
algorithms. In: IEEE International Conference on Systems, Man,
and Cybernetics, Manchester, SMC 2013, United Kingdom, October
13-16, 2013, IEEE. 2013: 3464-70.

[35] Fu H, Nguifo EM. A parallel algorithm to generate formal concepts
for large data. In: Eklund PW, ed.: ICFCA. Volume 2961 of Lecture
Notes in Computer Science., Springer; 2004. p. 394-401.

[36] Kengue JFD, Valtchev P, Djamégni CT. A parallel algorithm for lat-
tice construction. In: Ganter B, Godin R, eds.: ICFCA. Volume 3403
of Lecture Notes in Computer Science. Springer; 2005. p. 249-64.

[37] Kengue JFD, Valtchev P, Djamégni CT. Parallel computation of
closed itemsets and implication rule bases. In: Stojmenovic I, Thu-
lasiram RK, Yang LT, Jia W, Guo M, de Mello RF, eds.: ISPA.
Volume 4742 of Lecture Notes in Computer Science. Springer; 2007.
p. 359-70.

[38] Krajca P, Vychodil V. Distributed algorithm for computing formal
concepts using map-reduce framework. In: Adams NM, Robardet C,
Siebes A, Boulicaut JF, eds.: IDA. Volume 5772 of Lecture Notes in
Computer Science. Springer; 2009. p. 333-44.

[39] Krajca P, Outrata J, Vychodil V. Parallel algorithm for computing
fixpoints of Galois connections. Ann. Math. Artif. Intell. 2010; 59(2):
257-72. http://dx.doi.org/10.1007/s10472-010-9199-5

54 ISSN 1927-6974 E-ISSN 1927-6982

http://dx.doi.org/10.1007/s10472-007-9063-4
http://dx.doi.org/10.1007/s10472-007-9063-4
http://dx.doi.org/10.1007/s10472-010-9199-5

	Introduction
	Theoretical review regarding the FCA
	Formal context
	Formal concept
	Implication rules

	Related work
	Scalable algorithm and experimental methodology
	Generation of synthetic formal contexts
	Metrics for the evaluation of experiments
	Parallel algorithm for acquiring the minimal implication basis
	Definition of the load balancing criteria
	Implementation of the scalable algorithm

	Result analysis
	Experimental results
	Dresden challenge

	Conclusions and future work

