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ABSTRACT

A new robust adaptive control algorithm is developed for a class of uncertain discrete-time SISO systems. Different from the
existing investigated systems, the concerned discrete system here is with both uncertain smooth nonlinear functions and unknown
disturbance. On the basis of the idea of neural network (NN) approximation, a novel recurrent neural network (RNN) is first
proposed and used to approximate a backstepping control law following the transformation of the original system into a predictor
form. According to Lyapunov stability theorem, a new on-line tuning law for parameters of RNN is obtained. Meanwhile, in
order to achieve satisfying robust tracking performance, a novel controller is constructed by virtue of the approximation error of
RNN. It has been proved that all the concerned signals are uniformly ultimately bounded. In addition, a very small tracking error
can be obtained through appropriate selection of control parameters. Finally, we give a simulation example to demonstrate the
validness of the newly proposed control algorithm for the investigated systems.
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1. INTRODUCTION

During the past few decades, neural networks (NNs) have
obtained widespread attentions particularly in the area of
identification and control for dynamic systems by virtue of
their excellent universal approximation ability.[1–12] For ex-
ample, Sarma et al.[4] propose an approach combined with
ANN to make out primal phonemes of Assamese language.
RBF neural network is employed as an accessorial method
to weaken the impact of nonlinearity and uncertainty on the
nonlinear system.[5] Generally, according to structures, neu-

ral network (NN) can be categorized into two types, i.e.,
feed-forward neural network (FNN)[1, 2, 10, 13, 14] and recurrent
neural network (RNN).[6, 9, 11, 15–18, 20] We know that FNN can
only represent static mappings and its approximation per-
formance is easily influenced by training data because the
scheme of weights update does not depend on internal net-
work information. However, RNN can memorize the past
knowledge in virtue of its delay feedback loops. Thus, when
the inputs are time-varying RNN can also deal with them
by use of its superior temporal operation. In practical appli-
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cations, that characteristic makes RNN change accordingly
when control conditions change suddenly. Consequently,
RNN can achieve better control property compared with
FNN when the system contains un-modeled dynamics. That
is also the main reason why RNN has been widely used in the
control field. For example, Miao et al.[9] propose a recurrent
neural network control method in the case of having no infor-
mation about the system dynamics. In addition, Lin et al.[11]

combine a robust adaptive backstepping control (RABC) al-
gorithm and recurrent wavelet neural network to control the
target system. From simulation results in those papers it can
be concluded that control method combined with recurrent
neural networks can achieve good control performance.

Through lots of literature investigation, recently we have
found that, among various types of NN, radial basis function
neural network owns the capability of approximating any
function to arbitrarily small error range.[24, 25] However, so
far, there has no discrete RNN found. In the study, for the
purpose of enhancing the mapping capability of RBFNN,
we add delay feedback links to the original NN forming the
recurrent RBFNN. Then, we use the recurrent RBFNN as
the main controller for the discrete nonlinear systems by
use of the proposed neural network’s dynamic characteristic
and relative simple structure. Compared with the previous
research, this study proposes a more general RNN for use to
deal with nonlinearity and uncertainties for a more general
control system.

We all know that compared with the continuous-time descrip-
tion the discrete-time description are more veritable when de-
picting practical problems in systems. From the investigated
papers, we conclude that adaptive NN control is well devel-
oped for nonlinear continuous-time systems.[9, 10, 16–20, 27, 28]

However, the difference of Lyapunov function in discrete-
time[13] has no the linearity property of the derivative of a
Lyapunov function in continuous-time. Consequently, adap-
tive NN control suitable for continuous-time systems may
not be applied to discrete-time systems directly. Through
years of progress, many researchers have been devoted to
the research of adaptive NN control for discrete-time sys-
tems. So far, the research in this aspect has advanced signifi-
cantly.[13, 14, 31–34] Generally the adaptive NN control scheme
for nonlinear uncertain discrete-time systems is on the basis
of the backstepping technique and Lyapunov stability the-
ory.[20–23] For example, in Ref.,[26] a NN control algorithm
combined with the backstepping technique is provided for a
class of strict-feedback systems. The controllers mentioned
above can achieve bounded tracking error by means of neural
networks as well as backstepping techniques. However, they
have a drawback of complexity.

One aspect is the computational expansion[27] which results
from the repeated differentiations of the certain nonlinear
functions. Furthermore, the designed controller becomes
more complex when the system order grows. At present,
through the introduction of dynamic surface control (DSC)
technique[28, 29] this problem of complexity growing has been
solved. The technique is to utilize first-order filters of the
synthetic inputs at each intermediate step and it has been
recently widely used in adaptive control literature such as
Ref.[30] The other aspect that results into design complexity
is the utilization of multiple approximators as mentioned in
the previous examples. For the sake of solving the problem,
in literature,[10] the author only utilizes one single NN to
mimic the lumped unknown function. That approach effec-
tively avoids use of multiple approximators and reduces the
computational burden.

On the basis of above observations, in the study alleviating
the complexity and lightening the computational burden of
the discrete-time controllers design will be further consid-
ered. In the paper, a novel controller is constructed based on
single recurrent RBFNN. In order to provide convenience for
the following use of the backstepping technique, the original
system is first transformed into an equivalent n-step ahead
predictor. Then, all the unknown functions are passed down,
and only the ideal backstepping control law at the last step is
approximated through the proposed NN. Thus, the controller
in this paper is much simplified and its computational burden
is also much lightened. In addition, a robust adaptive con-
troller based on the approximation error is constructed for the
purpose of achieving satisfying tracking performance. It is
obviously seen from the stability analysis that all the signals
are bounded, and through appropriate chose of control pa-
rameters arbitrarily small state tracking error can be obtained.
Finally, the simulation result of an example is given, that
verifies the superiority of the newly investigated controller.

The structure of the paper is given as below. In Section 2, the
control problem to be investigated and preliminaries such as
the architecture of RNN are presented. Section 3 describes
the control design procedure for certain class of systems on
the basis of NN approximation. Otherwise, all the closed-
loop signals are also rigourously proved bounded through
the constructed Lyapunov function in the section. In Section
4, a simulation example demonstrates the developed theory
useful. Finally, Section 5 concludes the paper.

Notation. ‖ · ‖ denotes the Euclidean norm of vectors and
induced norm of matrices.
A := B means that B is defined as A.
()T represents the transpose of vector.
λmax() denotes the largest eigenvalue of a square matrix.
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2. SYSTEM DESCRIPTION AND PRELIMINAR-
IES

2.1 System description
The investigated systems are described as below:

ξj(ι+ 1) = ξj+1(ι) + fj(ξj(ι)) (1)

ξm(ι+ 1) = fm(ξm(ι)) + gm(ξm(ι))u(ι) + d(ι)(2)

y(ι) = ξ1(ι) (3)

where ξj(ι) = [ξ1(ι), ξ2(ι), . . . , ξj(ι)]T ∈ Rj(j =
1, 2, . . . ,m) is the system state variables which is assumed
to be available for measurement, and u(ι) ∈ R, y(ι) ∈ R
are the system input and output, respectively; fj(ξj(ι))(j =
1, 2, . . . ,m) and gm(ξm(ι)) are unknown smooth nonlin-
ear functions; d(ι) is the external disturbance. Meanwhile,
|d(ι)| ≤ dmax where dmax is a known constant.

Our control goal is to design a controller that ensures the out-
put tracks the known reference signal yd(ι) and guarantees
all the closed-loop signals in the system remain uniformly
ultimately bounded.

To obtain our main results, we give the following assump-
tions:

Assumption 1 Ωy := {y|y = ξ1}.

Assumption 2 0 < gm(ξm(ι)), 0 < gmin, 0 < gmax and
gmin < |gm(ξm(ι))| < gmax.

Definition 1 The solution of (1), (2) and (3) is semi-globally
uniformly ultimately bounded (SGUUB), if for any Ω, which
is a compact subset ofRn and all ξ̄m(k0) ∈ Ω, there exist an
ε > 0 and a number N(ε, ξ̄m(k0)) such that ‖ξ̄m(k)‖ < ε

for all k ≥ k0 +N .

2.2 Architecture of RNN
As we know many well-developed approaches can be utilized
to emulate unknown nonlinear functions. However, among
so many frequently used methods, only NN is known to
own the capability of approximating any nonlinear unknown
function to arbitrarily small error range. That is also the
reason why it is often used for identification and control of
nonlinear systems. In addition, we all know RBFNN owns
simple structure and many other advantages. Thus, in order
to enhance the approximation ability of NN, a RBFNN using
radial basis function as basic activation function is proposed
and depicted in Figure 1, where τ−1 means a time delay.
The recurrent RBFNN comprises three layers, i.e., an input
layer, a hidden layer, and an output layer. And the detailed
description of the structure will be given as below:

(1) Layer 1 (input layer): The input and output in the first
layer are respectively described as follows:

net1j (χ) = ϕj(χ) (4)

o1
j (χ) = θ1

j (net1j (χ)) = net1j (χ) (5)

j = 1, 2, . . . ,m1

where ϕj represents input to the jth node of input layer; χ
denotes the number of iterations; θ1

j is activation function of
the jth input node in this layer, which is set to be unit; m1
denotes number of input nodes.

Figure 1. Structure of three-layer recurrent radial basis
function neural network

(2) Layer 2 (hidden layer): Every recurrent loop is added to
each corresponding layer. For the i-th node of the j-th input

net2i (χ) = γio
2
i (χ− 1) + Σm1

j=1ϑjiϕ
2
j (χ) (6)

o2
i (χ) = θ2

i (net2i (χ)) = exp(−‖net
2
i (χ)− ci‖2

b2 )(7)

i = 1, 2, . . . ,m2

where γi is the recurrent weight of the ith node; θ2
i is activa-

tion function of the ith node in this layer. For convenience
of the following description, here we denote θ2

i (·) as θ(·);
ϑji is the connective weight which is set to be 1 here; ci
represents center of the basis function of the ith node; b > 0
is the width of the basis function; m2 denotes the number of
nodes in hidden layer.

(3) Layer 3 (output layer): The output node
∑

represents the
summation of all incoming signals

net3κ(χ) = Σm2
i=1ωiκϕ

3
i (χ) (8)

o3
κ(χ) = θ3

κ(net3κ(χ)) = net3κ(χ) (9)

κ = 1, 2, . . . ,m3
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where ωiκ is the connective weight between the ith node in
the hidden layer and the κth node in the output layer; θ3

κ is
the activation function of the κth node in the output layer,
which is set to be unit; and o3

κ is the κth output of the output
layer; m3 denotes the number of output nodes.

Moreover, we denote

γ = (γ1γ2 . . . γm2)T (10)

ω = (ω11ω21 . . . ωm21, . . . , ω1m3ω2m3 . . . ωm2m3)T (11)

% = (γT , ωT )T (12)

Then, the final output is

o3 = Ψ(ϕ, γ, ω)
= Ψ(ϕ|%) (13)

where ϕ = (ϕ1, ϕ2, . . . , ϕm1) are the inputs of the RNN,
Ψ = (Ψ1,Ψ2, . . . ,Ψm3) are the outputs of the RNN. For a
smooth function F (ϕ) : Rm1 −→ Rm3 , it can be expressed
as F (ϕ) = F̂ (ϕ|%∗)+ε, where ε is the functional reconstruc-
tion error. In the study the ideal weights %∗ can be denoted
as %∗ = argmin%{supϕ‖F (ϕ)− F̂ (ϕ|%)‖}, and %̂ is often
denoted as the estimation of %∗.

Assumption 3 On a compact set Ωϕ ∈ Rm, the ideal RNN
weight %∗ satisfies ‖%∗‖ ≤ %m where %m is a positive con-
stant.

Lemma 1 Consider ϕ being the input vector. The properties,
i.e., λmax[θ(ϕ(κ))θT (ϕ(κ))] < 1 and
θT (ϕ(κ))θ(ϕ(κ)) < n, will be used in the following system
stability proof.

3. SINGLE NEURAL NETWORK APPROXIMA-
TION BASED ADAPTIVE ROBUST CONTROL
DESIGN

We are often confronted with the problem of causality con-
tradiction when constructing a backstepping controller for
systems under consideration. However, when the original
system (1)-(3) is transformed into an ahead predictor[28] the
aforementioned problem can be naturally avoided. Accord-
ing to the transformation process in Ref.,[28] the initial strict-
feedback form (1)-(3) can be transformed into

ξ1(ι+m) = ξ2(ι+m− 1) + F1(ξ̄m(ι))
...

ξm−1(ι+ 2) = ξm(ι+ 1) + Fm−1(ξ̄m(ι))
ξm(ι+ 1) = Fm(ξ̄m(ι)) +Gm(ξ̄m(ι))u(ι) + d(ι)(14)

where Fj(ξ̄m(ι)) and Gm(ξ̄m(ι)) depend on fj(·)(j =
1, 2, . . . ,m) and gm(·) respectively. We should be aware of
the fact that functions Fj(ξ̄m(ι))(j = 1, 2, . . . ,m) become
highly nonlinear. Actually, when j decreases, Fj(ξ̄m(ι))
becomes more entangled and complex. The reason is
that Fm−1(ξ̄m(ι)) is obtained through one-step substitution,
while F1(ξ̄m(ι)) is obtained through (m − 1)-step substi-
tution. Fortunately, a RNN can approximate an unknown
smooth function to arbitrarily small error tolerance as dis-
cussed in section 2. Thus, employing RNN as our main
controller may be a good choice when there is no knowledge
of the exact structures of Fj(ξ̄m(ι))(j = 1, 2, . . . ,m) and
Gm(ξ̄m(ι)). The construction procedure of the proposed
controller will be presented as follows.

Firstly, in order to make it convenient for analysis and
discussion, let Fj(ι) = Fj(ξ̄m(ι))(j = 1, 2, . . . ,m)and
Gm(ι) = gm(ξ̄m(ι)).

Step 1: From equations (1)-(3) and (14), we obtain that

e1(ι+m) = ξ1(ι+m)− yd(ι+m)
= ξ2(ι+m− 1) + F1(ι)− yd(ι+m) (15)

If we consider ξ2(ι+m− 1) as a virtual control for the con-
cerned system and δ2(ι+m− 1) as the ideal intermediate
function, the following error variable can be introduced, i.e.,

e2(ι+m− 1) = ξ2(ι+m− 1)− δ2(ι+m− 1) (16)

It is obviously seen that e1(ι+m) = 0 if choosing

δ2(ι+m− 1) = −F1(ι) + yd(ι+m) (17)

Substituting (17) into (16) leads to

ξ2(ι+m− 1) = e2(ι+m− 1) + δ2(ι+m− 1)
= e2(ι+m− 1)− F1(ι) + yd(ι+m) (18)

Substituting (18) into (15), we can achieve e1(ι + m) =
e2(ι+m− 1).

Step 2: Let e2(ι) = ξ2(ι)− δ2(ι), then its (m-1)th difference
is

e2(ι+m− 1) = ξ2(ι+m− 1)− δ2(ι+m− 1)
= ξ2(ι+m− 1) + F1(ι)− yd(ι+m)

= ξ3(ι+m− 2) + F2(ι) + F1(ι)− yd(ι+m)
= ξ3(ι+m− 2) + F ∗

2 (ι)− yd(ι+m) (19)

where F ∗
2 (ι) = F1(ι)+F2(ι). And ξ3(ι+m−2) is likewise

considered as a virtual control for the investigated system.
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Trough the introduction of the error variable

e3(ι+m− 2) = ξ3(ι+m− 2)− δ3(ι+m− 2) (20)

and chose of

δ3(ι+m− 2) = −F ∗
2 (ι) + yd(ι+m) (21)

it can be easily obtained that e2(ι+m−1) = 0. Substituting

(21) into (20) leads to

ξ3(ι+m− 2) = e3(ι+m− 2) + δ3(ι+m− 2)
= e3(ι+m− 2)− F ∗

2 (ι) + yd(ι+m) (22)

From (20), (21) and (22), e2(ι + m − 1) = e3(ι + m − 2)
can be obtained.

Step i: As in step 1 and step 2, for ej(ι) = ξj(ι)− δj(ι), its
(m-j+1)th difference is presented as below

ej(ι+m− j + 1) = ξj(ι+m− j + 1)− δj(ι+m− j + 1)
= ξj+1(ι+m− j) + Fj(ι) + F ∗

j−1(ι)− yd(ι+m)
= ξj+1(ι+m− j) + F ∗

j (ι)− yd(ι+m) (23)

where F ∗
j (ι) = Fj(ι) +F ∗

j−1(ι) is an unknown function. As
the previous design step, ξj+1(ι+m− j) is also considered
as a virtual control for the investigated system. Through the
introduction of the error variable

ej+1(ι+m− j) = ξj+1(ι+m− j)
−δj+1(ι+m− j) (24)

and selection of

δj+1(ι+m− j) = −F ∗
j (ι) + yd(ι+m) (25)

it is apparent to obtain that ej(ι+m− j + 1) = 0. Substi-
tuting (25) into (24) leads to

ξj+1(ι+m− j) = ej+1(ι+m− j)
−F ∗

j (ι) + yd(ι+m) (26)

Substituting (26) into (23), the error (23) is re-written as

ej(ι+m− j + 1) = ej+1(ι+m− j) (27)

Step n: As for em(ι) = ξm(ι)− δm(ι), its first difference is
expressed as below

em(ι+ 1) = ξm(ι+ 1)− δm(ι+ 1)
= Fm(ξ̄m(ι)) +Gm(ξ̄m(ι))u(ι) + d(ι) + F ∗

m−1(ι)− yd(ι+m)
= Fm(ι) + F ∗

m−1(ι) +Gm(ι)u(ι) + d(ι)− yd(ι+m)
= F ∗

m(ι) +Gm(ι)u(ι) + d(ι)− yd(ι+m) (28)

where F ∗
m(ι) = Fm(ι) + F ∗

m−1(ι) and Gm(ι) are unknown
functions. Apparently, em(ι+ 1) = 0 if the expected control
law u∗(ι) is chosen as follows:

u(ι) = u∗(ι) = −F
∗
m(ι)− d(ι) + yd(ι+m)

Gm(ι) (29)

Since F ∗
m(ι) and Gm(ι) are unknown, we can utilize the

recurrent RBFNN to emulate u∗(ι) as below:

u∗(ι) = Ψ(ξ̄m(ι)|%∗)) + ε(ξ̄m(ι)) (30)

where ξ̄m(ι) = ϕ(ι). In this paper, let the recurrent weights
to be constant and from the aforementioned description, (30)
can be easily converted to the following form:

u∗(ι) = Ψ(ϕ(ι)|%∗) + ε(ϕ(ι))
= ω∗T θ(ϕ(ι)) + ε(ϕ(ι)) (31)

where θ = θ2
j .

Assumption 4 For compact set Ωϕ, ε(ϕ(ι)) satisfies
‖ε(ϕ(ι))‖ ≤ ς , where ς > 0 is unknown constant.

Let ω̂(ι) be the estimate of ω∗, and ς̂(ι) be the estimate of ς .

Then,

u(ι) = ω̂T θ(ϕ(ι)) + ς̂(ι) (32)

The updating algorithms are as below:

ω̂(ι+ 1) = ω̂(ι)− λ(θ(ϕ(ι))em(ι+ 1)
ς̂(ι+ 1) = ς̂(ι)− ζ(em(ι+ 1) + µς̂(ι)) (33)

Substituting (32) into (28), the error (28) can be transformed
into

em(ι+ 1) = Gm(ι)(ω̂T (ι)θ(ϕ(ι)) + ς̂(ι))
+F ∗

m(ι)− yd(ι+m) + d(ι)
(34)

Combining (31), (34) equals to
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em(ι+ 1) = Gm(ι)(ω̂T (ι)θ(ϕ(ι)) + ς̂(ι)) + F ∗
m(ι)− yd(ι+m) + d(ι)

+Gm(ι)u∗(ι)−Gm(ι)(ω∗T θ(ϕ(ι)) + ε(ϕ(ι))) (35)

Substituting (29) into (35) leads to

em(ι+ 1) = Gm(ι)(ω̂T (ι)θ(ϕ(ι)) + ς̂(ι))−Gm(ι)(ω∗T θ(ϕ(ι)) + ε(ϕ(ι)))
= Gm(ι)(ω̃T (ι)θ(ϕ(ι)) + ς̂(ι)− ε(ϕ(ι))) (36)

where ω̃(ι) = ω̂(ι)− ω∗.

Theorem 1 Taking the second-order nonlinear system de-
picted in (1)-(3) into consideration, we provide the control
law as (32) and the adaptation laws as (33). Then, under
any bounded initial conditions, i.e., ξ̄m(0) is initialized in
Ω, all the closed-loop system signals preserve SGUUB and
a small tracking error tolerance can be achieved through
appropriate selection of control parameters.

Proof: The Lyapunov function is chosen as below

V = Σmj=1e
2
j (ι) + ω̃T (ι)λ−1ω̃(ι) + ζ−1ς̃2(ι) (37)

From equation (36), we know that

ω̃T (ι)θ(ϕ(ι)) = em(ι+ 1)
Gm(ι) − ς̂(ι) + ε(ϕ(ι)) (38)

The first difference of (37) is given by

∆V = Σmj=1[e2
j (ι+ 1)− e2

j (ι)] + ω̃T (ι+ 1)λ−1ω̃(ι+ 1)− ω̃T (ι)λ−1ω̃(ι) + ζ−1ς̃2(ι+ 1)− ζ−1ς̃2(ι) (39)

According to (27), we have

e1(ι+ 1) = e2(ι), e2(ι+ 1) = e3(ι), . . . , ej(ι+ 1) = ej+1(ι), j = 1, 2, . . . ,m− 1 (40)

Then, its difference along (33) and (36) is as follows:

∆V = e2
m(ι+ 1)− e2

1(ι) + ω̃T (ι+ 1)λ−1ω̃(ι+ 1)− ω̃T (ι)λ−1ω̃(ι) + ζ−1ς̃2(ι+ 1)− ζ−1ς̃2(ι)
= e2

m(ι+ 1)− e2
1(ι)− 2ω̃T (ι)θ(ϕ(ι))em(ι+ 1) + (θ(ϕ(ι))em(ι+ 1))T

λθ(ϕ(ι))em(ι+ 1)− 2ς̃(ι)(em(ι+ 1) + µς̂(ι)) + ζ(em(ι+ 1) + µς̂(ι))2

= e2
m(ι+ 1)− e2

1(ι)− 2e
2
m(ι+ 1)
Gm(ι) + 2ς̂(ι)em(ι+ 1)− 2ε(ϕ(ι))em(ι+ 1)

+θT (ϕ(ι))λθ(ϕ(ι))e2
m(ι+ 1) + ζe2

m(ι+ 1)− 2ς̃(ι)em(ι+ 1)− 2µς̃(ι)ς̂(ι)
+2ζµς̂(ι)em(ι+ 1) + ζµ2ς̂2(ι)

= (ζ + 1− 2
Gm(ι) )e2

m(ι+ 1)− e2
1(ι)− 2ε(ϕ(ι))em(ι+ 1) + 2ςem(ι+ 1)

+θT (ϕ(ι))λθ(ϕ(ι))e2
m(ι+ 1)− 2µς̃(ι)ς̂(ι) + 2ζµς̂(ι)em(ι+ 1) + ζµ2ς̂2(ι) (41)

Using the facts that

θT (ϕ(ι))θ(ϕ(ι)) < n;
θT (ϕ(ι))λθ(ϕ(ι)) ≤ τn;

−2εem(ι+ 1) ≤ τe2
m(ι+ 1) + ε2

τ
;

2ζµς̂(ι)em(ι+ 1) ≤ ζe2
m(ι+ 1) + ζµ2ς̂2(ι);

2ς̃(ι)ς̂(ι) = ς̃2(ι) + ς̂2(ι)− ς2;

2ςem(ι+ 1) ≤ τe2
m(ι+ 1) + ς2

τ
; (42)

we obtain
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∆V ≤ (ζ + 1− 2
Gm(ι) )e2

m(ι+ 1)− e2
1(ι) + τe2

m(ι+ 1) + ε2

τ

+τe2
m(ι+ 1) + ς2

τ
+ τne2

m(ι+ 1)

−µς̃2(ι)− µς̂2(ι) + µς2 + ζe2
m(ι+ 1) + ζµ2ς̂2(ι) + ζµ2ς̂2(ι)

≤ (2ζ + 2τ + τn+ 1− 2
gmax

)e2
m(ι+ 1)− e2

1(ι)

+( 1
τ

+ 2µ)ς2 + (2ζµ2 − µ)ς̂2(ι)− µς̃2(ι) + ε2

τ
(43)

where ρ = ( 1
τ + 2µ)ς2 + ε2

τ is nonnegative. The design
parameters are chosen as below

0 < µ <
1
2ζ , ζ <

1
gmax

− τ(n2 + 1)− 1
2 (44)

Then, as long as the error em(ι) is larger than
√
ρ, ∆V ≤ 0.

This implies for all ι ≥ 0, V (ι) is bounded. This indicates
em(ι) is bounded and satisfies that Ωe ∈ R := {e|e ≤ √ρ}.
Consequently, the theorem is completely proved.

4. SIMULATION EXAMPLE
To illustrate the superiority of the proposed approach an
example is given in the following description:

ξ1(ι+ 1) = ξ2(ι) + f1(ξ̄1(ι))
ξ2(ι+ 1) = f2(ξ̄2(ι)) + g2(ξ̄2(ι))u(ι) + d(ι)

yι = ξ1(ι) (45)

where f1(ξ̄1(ι)), f2(ξ̄2(ι)) and g2(ξ̄2(ι)) are unknown
smooth functions. According to (32) the controller is chosen
as below:

u(ι) = ω̂T (ι)θ(ϕ(ι)) + ς̂(ι) (46)

For the purpose of simulation, the unknown system functions
are assumed as below:

f1(ξ̄1(ι)) = 1.1ξ2
1(ι)

1 + ξ2
1(ι)

f2(ξ̄2(ι)) = ξ1(ι)
1 + ξ2

1(ι) + ξ2
2(ι)

g2(ξ̄2(ι)) = 1
d(ι) = 0.1× sin(ι× pi/10) (47)

At beginning let ξ(0) = [1 0]T . The node number of
the first layer, the hidden layer and the output layer is
m1 = 2,m2 = 9,m3 = 1, respectively. The initial
weights for RNN are ω̂(0) = 1.5× ones(L, 1) and γ(0) =
1.8 × ones(L, 1). That is, the feedforward weights are ini-
tialized to be 1.5, and the recurrent weights are initialized

to be 1.8. The controller parameters chosen for simulation
are λ = 0.01, ζ = 0.01, µ = 0.001. The reference signal is
yd(ι) = (1/2) sin(ι× pi/20) + (1/2) sin(ι× pi/10).

Figure 2. The tracking performance of system

Figure 3. The tracking error of system

Simulation results obtained in this situation are presented in
Figures 2-5. The proposed control approach is utilized to

108 ISSN 1927-6974 E-ISSN 1927-6982



http://air.sciedupress.com Artificial Intelligence Research 2016, Vol. 5, No. 2

track the reference signal yd(ι) for the system (47). Figures
2 and 3 apparently demonstrate that the final tracking perfor-
mance is favorable with high tracking precision. Figure 4
gives the control input signal. It can be obviously observed
that the control input is not smooth but bounded. Figure 5
depicts the study behavior of the RNN weights. The four
figures show that the concerned signals are bounded.

Figure 4. The control input of system

5. CONCLUSIONS
Through combining the advantage of backstepping technique
and NN, a novel approach for certain systems with external
unknown disturbance is proposed in the study. In order to en-
hance mapping ability of NNs, feedback and delay loops are
added to the original RBFNN. Then, following the system

transformation and combining with backstepping technique,
single recurrent radial basis function neural network is uti-
lized to emulate the lumped nonlinear functions. Trough
this method, the structure of the controller can be simplified
observably, and the computational burden can be alleviated
drastically. Another adaptive controller is also constructed
in this article so as to weaken the negative impact of the
approximation error on the investigated system. Stability
analysis shows all the closed-loop system signals are ensured
uniformly ultimately bounded, and arbitrarily small track-
ing error can be obtained through appropriate parameters
selection. Finally, a simulation example demonstrates the
proposed controller is feasible and effective.

Figure 5. The trajectory of RNN weights
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