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Abstract

The focus of this paper is on order processing models of the bid-ask spread, also termed as fixed-cost models. While
other theories have been advanced to explain spreads, such as inventory holding costs and adverse selection, research
indicates that the fixed cost component constitutes the bulk of the observed spread. This paper starts with the Roll
model and the subsequent extension of Choi, Salandro and Shastri. It takes cognizance of the implications of such
models for the observed stock prices and the mid-points of bid-ask quotes, to set up tests using the Generalized Method
of Moments (GMM) technique. The paper develops an analytical variance-covariance matrix for the fixed cost model
with instantaneous adjustment of prices to new information.
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1. Introduction

The quoted bid-ask spread is defined as the difference between the price at which a dealer is willing to sell the secu-
rity, the ‘ask’, and the price at which he is willing to buy it, the ‘bid’. There are three major theories which purport
to explain the existence of the spread. These are, order processing cost models, inventory cost models, and adverse
selection models. Stoll (1989) develops a unified framework for studying the relative importance of these, and shows
that the differences between the models lie in their predictions regarding the probability of a price reversal, and the
magnitude of the price reversal.(Note 1) Stoll also makes a distinction between the quoted spread, and the effective or
realized spread. The realized spread is defined as the difference between the price at which the dealer sells a security,
and the price at which he buys at an earlier instant. The order processing models, which are the focus of this paper,
predict that the two spreads are equal.

The simplest of the three models are the order processing, or fixed cost models. One of the most popular models in this
class was developed by Roll (1984), and later extended by Choi, Salandro and Shastri (1988), hereafter referred to as
CSS. Its premise is that the spread compensates the dealer for the costs incurred in processing buy and sell transactions.
In this framework, transactions at the bid are offset by transactions at the ask, and the difference between the two is
used by the dealer to defray his expenses.

The literature on the estimation of the realized spread is fairly diverse. Roll (1984) estimates realized spreads in an
order processing framework using daily and weekly data and attempts to relate them to firm size. CSS (1988) use
transaction data for stock options to estimate the spread, and the conditional probability of a price continuation. Stoll
(1989) estimates the relative components of the spread using transaction prices and bid-ask quotes. Hasbrouck and Ho
(1987) do not estimate spreads, but use transaction data and intraday quotes to show that observed stock returns may
best be described by an ARMA(2,2) process. In addition to the spread, their model incorporates a delayed adjustment
mechanism for observed prices. The partial adjustment model for the evolution of asset prices is also developed by
Amihud and Mendelson (1987), who study the impact of the trading mechanism on the return generating process.
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The objective of this paper is to study the order processing model. By focusing solely on the fixed cost model, we
are ignoring the other two components of the spread, namely inventory and adverse selection costs. However, this
does not imply that these costs are insignificant, although empirical research has shown that the fixed cost component
constitutes the bulk of the spread (Note 2). The order processing model is often used by researchers who are forced to
take the bid-ask spread into account as a ‘nuisance’ parameter, although they are not interested in the spread per se.

This paper takes advantage of the implications of the theoretical models for two series of observations, observed prices
and the midpoints of bid-ask quotes, to set up tests with Hansen’s (1982) Generalized Method of Moments (GMM)
technique. Besides yielding a relation between the covariance of observed price changes and the spread, the fixed cost
model, has testable implications for the midpoints of bid-ask quotes. The model also predicts that the variance of the
observed price changes varies directly with the size of the spread. In addition to giving estimates of the realized spread,
GMM facilitates the computation of a chi-squared statistic which can be used to judge the validity of the models. For
the fixed cost model with instantaneous adjustment of prices to new information, we derive the analytical covariance
matrix suggested by Richardson and Smith (1988).

In section two, we discuss the order processing cost model. In section three we develop the GMM test procedure for
the models under consideration and describe the analytical covariance matrix for the estimates of the parameters of the
Roll model. Finally, in section four we analyze the results and conclude the paper.

2. The Models

In this section we discuss the framework of the order processing model, under two different sets of assumptions regard-
ing the price adjustment process. We first study the Roll model using notation that is identical to that used by Harris
(1989b). In this context, we also briefly examine an extension of the original model proposed by CSS. Then, we con-
sider a fixed cost model under the assumption that prices need not always instantaneously adjust to new information.
This added flexibility allows prices to either partially adjust to or over-react to information.

2.1 The Roll Model

The order processing model was developed under the following set of assumptions.

1. Security prices at any given time, fully incorporate all relevant available information. What this means is that
the price that would be observed in the absence of market imperfections accurately reflects the intrinsic value of
the asset.

2. Buy or sell orders are equally probable at any instant in time, on an unconditional basis, and order flows are
serially independent.

3. The underlying price of the asset is independent of the order flow in the market. This implicitly rules out any
adverse information effects.

4. The true value of the security is bracketed by the bid-ask spread and the spread is assumed to be constant and
symmetric (Note 3), at least for the time period for which the analysis is conducted.

Mathematically, the model may be stated as follows.

Pt = P∗t +
s
2

Qt (1)

and,
P∗t = P∗t−1 + µ + εt, (2)

where Pt is the observed price at time t, P∗t is the intrinsic value of the asset at time t, which would have been observed
in the absence of the spread, and Qt is the indicator of the transaction type. Qt = 1 if the observed price is at the ask,
and −1 if it is at the bid. The value innovations, {ε} are assumed to be serially uncorrelated, and have a zero mean and
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constant variance σ2
ε . (Note 4) The drift in the true prices µ is assumed to be constant over time, as is the spread s.

With these assumptions, the covariance of the observed price changes equals minus the square of half the bid-ask
spread, i.e., Cov(4Pt,4Pt−1) = −s2/4, and the estimates of the covariance can be transformed to get the spreads. (Note
5)

2.1.1 The CSS Extension

CSS generalize the model by partially relaxing the second assumption made above. In their model, although the un-
conditional probability of a bid or an ask transaction is the same at a particular point in time, conditional on a bid, the
probability of a consecutive bid is greater than a half, and likewise for the ask. In other words, transaction types are
positively serially correlated. A major difference between the two models, is that in the CSS framework, the interval at
which successive transactions are measured is important, while it is irrelevant for the Roll model.

There are two reasons as to why transaction types may be serially correlated in practice. First, large market orders may
be split up by floor brokers, thereby ensuring that successive transactions take place on the same side of the market.
Similarly, a movement in the price will cause limit orders on the same side of the order book to be executed in succes-
sion.

In Appendix II we show that even if the conditional probability of a bid following a bid or that of an ask following
an ask, is greater than half, the formula for the spread converges to that predicted by the Roll model, if we consider
time intervals with an adequate number of transactions. Assuming that transactions occur at fixed intervals of time, we
show that if there are five transactions in the time interval, then the formula converges even if the probability is as high
as 0.75. Thus, if we assume that the stock trades at one minute intervals, we can use five minute intervals to estimate
the spread.

2.2 A Fixed Cost Model With Partial Adjustment/Over-reaction of Prices to Information

In this subsection, we develop a model for observed prices by combining the features of the fixed cost models pro-
posed by Roll and Harris with the partial adjustment mechanism for prices developed by Amihud and Mendelson and
Hasbrouck and Ho. The term ‘partial adjustment’ is a misnomer, for, the model also allows the prices to overreact to
new information.

The assumptions under which this model is developed may be stated as follows.

1. The intrinsic or true value of an asset follows a random walk. However, even in the absence of market frictions
like bid-ask spreads, the intrinsic values need not be observable in the market. Under such conditions, the market
will observe an adjusted price series, where the adjusted price at a point in time either partially incorporates the
innovation in the intrinsic value or else represents an overreaction to the new information. The full adjustment
model is a special case, when adjusted prices reflect all available information and hence are equivalent to the
intrinsic values.

2. The probability of observing a buy or a sell order is unconditionally the same at a point in time, and order flows
are serially independent.

3. Both the intrinsic value as well as the adjusted price of an asset are independent of the order flow in the market.

4. The adjusted security price is bracketed by the bid-ask spread and the spread is constant and symmetric.

The model may be mathematically expressed as follows. Let the true price series {V} be given by,

Vt = Vt−1 + µ + εt. (3)
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The drift µ is assumed to be a constant and the innovations {ε} follow a stationary distribution with mean zero and
variance = σ2

ε . The adjusted price series {P∗} may be expressed as,

P∗t = P∗t−1 + g(Vt − P∗t−1). (4)

‘g’ is the adjustment coefficient. If g=1, P∗t = Vt, and prices incorporate all available information. A value of g such
that 0 < g < 1 represents partial adjustment of prices, while if g > 1, we have over-reaction of prices to information.
In order to ensure that the variances of the changes in the adjusted and observed prices are positive, we are forced to
restrict g to have a value less than two. The observed price series {P} is as before given by,

Pt = P∗t +
s
2

Qt, (5)

where Qt is the indicator of the transaction type. The only difference from the model studied earlier is that P∗, or the
quote midpoint, need no longer be the true price and need not follow a random walk.

Our formulation of the partial adjustment feature is identical to the model studied by Hasbrouck and Ho, but differs
slightly from the model proposed by Amihud and Mendelson. The latter specify a random walk for the intrinsic values
as shown in equation 3.

However, their adjusted and observed prices are identical, and are given by,

Pt = Pt−1 + g(Vt − Pt−1) + ut, (6)

where {u} is white noise with zero mean and a finite variance. The noise is a result of noise trading as well as the impact
of market microstructure effects. In this set up, the observed price is affected by innovations in the intrinsic value and
by current and past noise trading and market microstructure effects.

In our model, since the only source of friction is the spread which is assumed to be a constant, we do not want the
bid and ask quotes to change except due to the adjustments caused by the innovations in the intrinsic value. Hence,
we make a distinction between adjusted prices and observed prices. Adjusted prices reflect the impact of the value
innovations, while the observed prices differ from the adjusted prices solely because of a constant bid-ask spread.

3. The Estimation Procedure

The models that have been considered thus far lend themselves to estimation and testing using Hansen’s GMM proce-
dure. In this section we derive the population moment conditions for the Roll model. In addition, for the Roll model,
we test the hypothesis that the value innovations, {ε}, are drawn from a normal distribution, and also derive the analyt-
ical variance-covariance matrix for the unknown parameters.

3.1 The Roll Model

Given the assumptions of the model and equations (1) and (2), a number of results may be derived. Among them are
the following.

E(4P∗t ) = µ = E(4Pt) (7)

The expected change in the true price of the security is a constant, and is equal to the expected change in the observed
price of the security.

Var(4P∗t ) = σ2
ε . (8)

The variance of changes in the true price of the security is a constant.

Var(4Pt) = σ2
ε + s2/2. (9)

The variance of changes in the observed price of the asset is equal to the variance of true price changes plus one half
the square of the bid-ask spread.

Cov(4P∗t ,4P∗t−1) = 0. (10)
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The first order serial covariance of true price changes is zero.

Cov(4Pt,4Pt−1) = −s2/4. (11)

The first order serial covariance of observed price changes is minus one fourth the square of the bid-ask spread.

The true price, P∗, is not directly observable. However, the ask at time ‘t’ is given by,

Pat = P∗t + s/2, (12)

while the bid is given by,
Pbt = P∗t − s/2. (13)

Therefore, (Pat + Pbt)/2 = P∗t , and hence, by using the midpoints of the bid and the ask quotes, we can estimate the
mean and the variance of the ‘true’ price series, assuming that the spread is symmetric.

We have six moment conditions, and only three unknowns, µ, σ2
ε and s2. Additional restrictions may be generated by

using a longer measurement interval. For example,

Var(P∗t − P∗t−k) = kσ2
ε , (14)

and we can get one such expression for every value of k we choose. Typically, these additional restrictions entail the
use of overlapping observations when the model is tested. (Note 6) However, to keep the analysis simple, we focus
only on the six equations discussed above.

The population moment conditions may be jointly expressed as,

E



P̄t − P̄t−1 − µ
Pt − Pt−1 − µ

(P̄t − P̄t−1 − µ)2
− σε

2

(Pt − Pt−1 − µ)2 − σε
2 − s2/2

(P̄t − P̄t−1 − µ)(P̄t−1 − ¯Pt−2 − µ)
(Pt − Pt−1 − µ)(Pt−1 − Pt−2 − µ) + s2/4


= 0, (15)

where the P’s are the observed transaction prices, and the P̄’s the average of the observed bid and ask quotes.

We derive the analytical variance-covariance matrix for the above moment conditions in Appendix I. It can be seen
that the first two moment conditions have identical variances, and the same covariances with all the other restrictions,
and the matrix is therefore singular. In order to overcome this problem, we drop the first moment condition. In a finite
sample, we apply the test to,

gT (µ, σε2, s2) =
1
T

T∑
t=1


Pt − Pt−1 − µ

(P̄t − P̄t−1 − µ)2
− σε

2

(Pt − Pt−1 − µ)2 − σε
2 − s2/2

(P̄t − P̄t−1 − µ)(P̄t−1 − ¯Pt−2 − µ)
(Pt − Pt−1 − µ)(Pt−1 − Pt−2 − µ) + s2/4

 (16)

The overidentifying statistic associated with this equation has an asymptotic chi-squared distribution, with two degrees
of freedom. That is,

TgT
′W0gT ∼ χ

2(2), (17)

where W0 is the inverse of the variance-covariance matrix of restrictions, and
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√
T (θ̂ − θ) ∼ N[0, (D′WD)−1] ≡ N[0,


σ2
ε m3 0

m3 m4 − σ
4
ε 0

0 0 s6+40s4σ2
ε+112s2σ4

ε

2s2+16σ2
ε

], (18)

where mi is the ‘i’th central moment of {ε}.

3.1.1 Testing for Normality

In equation (2), if we make the assumption that the innovations in the true price series {ε} are normally distributed with
mean zero and variance σ2

ε then,
4P∗ ∼ N(µ, σ2

ε ). (19)

If 4P∗ is normally distributed it can be shown that | 4P∗ | follows a chi distribution with one degree of freedom, and
noncentrality parameter = (µ/σ)2. It can also be shown that, (Note 7)

E | 4P∗t |= (
2
π

)1/2σexp(
−1
2
µ2

σ2 ) + µ[1 − 2N(
−µ

σ
)], (20)

where N is the standard normal distribution function.

From equation (1) we see that 4Pt = 4P∗t + s
24Qt. Thus, if 4P∗ follows a normal distribution, then conditional on 4Q,

4P will also follow a normal distribution. Hence, | 4P | 4Q | will follow a chi distribution. Since 4Q can take on only
three possible values, we can easily compute the conditional expectations of | 4P | and weight them in order to get the
unconditional expectation of | 4P |. In this case it can be shown that,

E | 4Pt |= (
2
π

)1/2σ{
1
4

exp(
−1
2

(µ − s)2

σ2 ) +
1
4

exp(
−1
2

(µ + s)2

σ2 ) +
1
2

exp(
−1
2
µ2

σ2 )}

+
1
4

(µ − s)[1 − 2N(
−(µ − s)

σ
)] +

1
4

(µ + s)[1 − 2N(
−(µ + s)

σ
)]

+
1
2

(µ)[1 − 2N(
−(µ)
σ

)]. (21)

Equations (20) and (21) can be combined with the five moment conditions obtained earlier in order to test the hypothesis
that the price innovations are normally distributed (Note 8). We will then have seven equations with three unknowns,
and the overidentifying chisquared statistic will have four degrees of freedom.

3.2 A Fixed Cost Model With Partial Adjustment/Overreaction

The population moment conditions for this model can be derived using equations (3), (4) and (5). These conditions
may be stated as follows.

E(4P∗t ) = µ = E(4Pt) (22)

This result is similar to that obtained for the Roll model, namely, the expected change in the adjusted price is a constant
and is equal to the expected change in the observed price.

Var(4P∗t ) =
g

(2 − g)
σ2
ε . (23)

The variance of changes in the adjusted price is a constant, and is a function of the variance of the innovations in the
intrinsic value as well as the adjustment coefficient. If g = 1, prices adjust fully and the variance is the same as that
obtained for the Roll model. In order for the variance to be positive we require that g be less than two.

Var(4Pt) =
g

(2 − g)
σ2
ε + s2/2. (24)
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The variance of changes in the observed price of the asset is equal to the variance of adjusted price changes plus one
half the square of the bid-ask spread.

Cov(4P∗t ,4P∗t−1) =
g(1 − g)
(2 − g)

σ2
ε (25)

The first order serial covariance of the changes in the adjusted price series is in general not equal to zero, and depends
on g and σ2

ε .

Cov(4Pt,4Pt−1) =
g(1 − g)
(2 − g)

σ2
ε − s2/4. (26)

The first order serial covariance of observed price changes is equal to the first order serial covariance of changes in the
quote midpoints minus one fourth the square of the bid-ask spread. The serial covariance need not always be negative.
If prices overreact or adjust fully, then the covariance will be negative. With partial adjustment, however, the covariance
may be either positive or negative.

The population moment conditions may be jointly expressed as,

E



P̄t − P̄t−1 − µ
Pt − Pt−1 − µ

(P̄t − P̄t−1 − µ)2
− σε

2 g
(2−g)

(Pt − Pt−1 − µ)2 − σε
2 g

(2−g) − s2/2

(P̄t − P̄t−1 − µ)(P̄t−1 − ¯Pt−2 − µ) − σε2 g(1−g)
(2−g)

(Pt − Pt−1 − µ)(Pt−1 − Pt−2 − µ) − σε2 g(1−g)
(2−g) + s2/4


= 0, (27)

where the P’s are the transaction prices, and the P̄’s the averages of the bid and ask quotes.

In order to be consistent with the approach for the Roll model, we will drop the first moment condition and, in a finite
sample, apply the test to,

gT (µ, σε2, s2, g) =

1
T

T∑
t=1



Pt − Pt−1 − µ

(P̄t − P̄t−1 − µ)2
− σε

2 g
(2−g)

(Pt − Pt−1 − µ)2 − σε
2 g

(2−g) − s2/2

(P̄t − P̄t−1 − µ)(P̄t−1 − ¯Pt−2 − µ) − σε2 g(1−g)
(2−g)

(Pt − Pt−1 − µ)(Pt−1 − Pt−2 − µ) − σε2 g(1−g)
(2−g) + s2/4


= 0. (28)

We have five equations and four unknowns, and the overidentifying chi-squared statistic has one degree of freedom.

4. Conclusions and Testable Implications

In this paper, we derive testable implications of the theoretical models for two series of observations, observed prices
and the midpoints of bid-ask quotes, using a Generalized Method of Moments (GMM) technique. The fixed cost
model, has testable implications for testing the relationship between the covariance of observed price changes and the
spread. In addition, it also has implications for the mid-points of bid-ask quotes. In addition to giving estimates of the
realized spread, GMM facilitates the computation of a chi-squared statistic which can be used to judge the validity of
the models.

The Roll model predicts that the first order serial covariance of observed price changes will always be negative. Hence
an estimation of consistently positive values, would serve to reject this model. It also predicts that the estimates of the
spread should not change, when we change the intervals at which trade prices and bid-ask quotes are observed. The
partial adjustment model, however allows the first order serial covariances of price changes to be negative as well as
positive. It postulates that the first order serial covariance is a function of the spread as well as the adjustment factor. If
the factor is greater than or equal to one, the covariance will be negative. However, if the adjustment factor is less than
one, the covariance may be positive or negative. Just as in the case of the full adjustment model, the partial adjustment
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factor also requires the estimate of the spread to be independent of the time interval in which prices and quotes are 
observed.
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Notes

Note 1. Foster and Viswanathan (1990) also study the three components of the spread simultaneously. The major focus 
of their paper is the adverse selection costs.

Note 2. See Foster and Viswanathan (1990).

Note 3. Roll (1984) has shown that the size of the spread can be allowed to depend on the magnitude of price changes, 
without changing the structure of the model. If so, the estimated realized spread is the average spread over the sample 
period.
Note 4. Researchers often assume that the {ε}’s are i.i.d. This, however, is not necessary for our study.
Note 5. The resulting estimate is subject to underestimation due to Jensen’s inequality, because the transformation uses 
a concave function.

Note 6. See Lo and MacKinlay (1988), and Richardson and Smith (1988).
Note 7.See Leon, Nelson, and Nottingham (1961).
Note 8. This is a convenient test for normality, that can be easily carried out in a method of moments framework. It is 
possible that there are other, more powerful,tests which can be used as well.
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Appendix I

The Analytical Variance Covariance Matrix of the Moment Conditions.

From equation (4.8), we have six moment conditions involving Pt and P̄t. Under the null hypothesis, P̄t ≡ P , the true 
price. Therefore (4.8) may be expressed as,

w0 =



εt

εt + s
24Qt

ε2
t − σ

2
ε

(εt + s
24Qt)2

− σ2
ε − s2/2

εtεt−1
(εt + s

24Qt)(εt−1 + s
24Qt−1) + s2/4


.

The model assumes that (ε) and (Q) are independent. Therefore, Ef(ε)g(Q) = Ef(ε)Eg(Q), where f and g are functions
of ε and Q respectively. We have also assumed that,

E(εt) = 0,

E(ε2
t ) = σ2

ε ,

and
E(εtεt− j) = 0, j , 0.

In order to derive the analytical variance covariance matrix, it is sufficient to assume that the (ε)’s are independently and
identically distributed, but, this is not necessary. For our application, we need to only impose the following restrictions
on the (ε)’s:

E(ε2
t εt− j) = 0, j , 0.

E(ε3
t ) = m3,

and m3 is finite.
E(ε3

t εt−1) = 0.)

E(ε4
t ) = m4,

and m4 is finite.
E(ε2

t ε
2
t− j) = σ4

ε , j , 0.

E(εtεt− jεt− j−1) = 0.

E(ε2
t εt− jεt− j−1) = 0.

E(εtεt−1εt− jεt− j−1) = 0.

We can show that,
E(4Qt) = 0, (13)

E(4Q2
t ) = 2,

and
E(4Qt4Qt−1) = −1.

We can also demonstrate the following, for 4Q.

E(4Qt4Qt− j) = 0, j , 0,±1.

E(4Q2
t 4Qt− j) = 0,∀ j.

E(4Q2
t 4Q2

t− j) = 4, j , 0.

E(4Q4
t ) = 8.
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E(4Q3
t− j4Qt) = −4, j = ±1.

E(4Q3
t− j4Qt) = 0, j , 0,±1.

E(4Qt− j−14Qt− j4Qt) = 0,∀ j.

E(4Q2
t− j−14Qt− j4Qt) = −2, j = +1.

E(4Q2
t− j−14Qt− j4Qt) = 0, j , 0,+1.

E(4Qt− j−14Qt− j4Q2
t ) = −2, j , 0,−1.

E(4Qt− j−14Q2
t− j4Qt) = 2, j = 1.

E(4Qt− j−14Q2
t− j4Qt) = 0, j , 0,±1.

E(4Qt− j−14Qt− j4Qt−14Qt) = 1, j , 0,±1.

The analytical variance-covariance matrix S 0 =
∑l=∞

l=−∞E(wowl′). For the model that we are considering, it can be
shown that the only lags which matter are l = ±1. Using the assumptions and the results that we have established, the
analytical variance-covariance matrix for the six moment restrictions shown in equation (4.8) can be shown to be,

S 0 =



σ2
ε σ2

ε m3 m3 0 0
σ2
ε σ2

ε m3 m3 0 0
m3 m3 m4 − σ

4
ε m4 − σ

4
ε 0 0

m3 m3 m4 − σ
4
ε

s4

4 + 2s2σ2
ε − σ

4
ε + m4 0 − s4

4 −
s2

2 σ
2
ε

0 0 0 0 σ4
ε σ4

ε

0 0 0 − s4

4 −
s2

2 σ
2
ε σ4

ε
5s4

16 + σ2
ε s2 + σ4

ε


.

Since this matrix is singular, we drop the first moment condition. The covariance matrix for the reduced set of condi-
tions is,

S 0 =


σ2
ε m3 m3 0 0

m3 m4 − σ
4
ε m4 − σ

4
ε 0 0

m3 m4 − σ
4
ε

s4

4 + 2s2σ2
ε − σ

4
ε + m4 0 − s4

4 −
s2

2 σ
2
ε

0 0 0 σ4
ε σ4

ε

0 0 − s4

4 −
s2

2 σ
2
ε σ4

ε
5s4

16 + σ2
ε s2 + σ4

ε

 .
The derivative matrix is given by,

D0 =


−1 0 0
0 −1 0
0 −1 − 1

2
0 0 0
0 0 1

4

 .
The variance-covariance matrix of the three unknowns, µ, σ2, and s2 is given by (D0′S −1

0 D0)−1
.
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Appendix II

Serial Covariance of Price Changes with Serially Correlated Transaction Types.

We derive an expression for the spread, when ‘δ’, the conditional probability of a bid following a bid, or of an ask 
following an ask, is not equal to 1/2. The covariance, in this case, depends on the length of the measurement interval. 
More specifically, it depends on ‘N’, where ‘N’ is the number of transactions that have occurred between t-1 and t. For 
the purpose of this analysis, we will assume that transactions occur at fixed intervals in time,i.e., N is fixed for a given 
measurement interval.

a) N=1: In this case, the joint probability distribution can be shown to be,

4Pt

-s 0 s
-s 0 δ(1 − δ)/2 (1 − δ)2/2

4Pt−1 0 δ(1 − δ)/2 δ2 δ(1 − δ)/2
s (1 − δ)2/2 δ(1 − δ)/2 0

Cov(4Pt,4Pt−1) = −s2(1 − δ)2.

b) N=2: In this case, the joint probability distribution can be shown to be,

4Pt−1 4Pt

-s 0 s
-s 0 δ(1 − δ)[δ2 + (1 − δ)2] 2δ2(1 − δ)2

0 [δ2 + (1 − δ)2]× [δ2 + (1 − δ)2]×
δ(1 − δ) [δ2 + (1 − δ)2]2

δ(1 − δ)
s 2δ2(1 − δ)2 [δ2 + (1 − δ)2]δ(1 − δ) 0

Cov(4Pt,4Pt−1) = −s2[2(1 − δ)δ]2.

From the above distributions, two main features of the covariance are obvious.

i) The only two entries which affect the covariance are (s,-s) and (-s,s).
ii) Because of the symmetric nature of the model, the two probabilities are equal. Hence, we need only focus on

the probability of the sequence bid-ask-bid, in order to derive the covariance.
c) N=3:

Pr(s,−s) =
1
2

[3δ2(1 − δ) + (1 − δ)3]
2

Cov(4Pt,4Pt−1) = −s2[3δ2(1 − δ) + (1 − δ)3]
2

d) N=4:

Pr(s,−s) =
1
2

[4δ3(1 − δ) + 4δ(1 − δ)3]
2

Cov(4Pt,4Pt−1) = −s2[4δ3(1 − δ) + 4δ(1 − δ)3]
2

e) N=5:

Pr(s,−s) =
1
2

[5δ4(1 − δ) + 10δ2(1 − δ)3 + (1 − δ)5]
2

Cov(4Pt,4Pt−1) = −s2[5δ4(1 − δ) + 10δ2(1 − δ)3 + (1 − δ)5]
2
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In general,

Cov(4Pt,4Pt−1) = −s2[
N∑

k=1

CN
2k−1δ

N−(2k−1)(1 − δ)2k−1]

2

where Ca
b = 0 if a < b, else Ca

b = a!
(a−b)!b! .

For a given value of Cov(4Pt,4Pt−1), we will now compare the values of the spread obtained using Roll’s formula
and the exact formula.

δ = .60
N Roll Exact
1 2(−c)1/2 2.5(−c)1/2

2 2(−c)1/2 2.083(−c)1/2

3 2(−c)1/2 2.016(−c)1/2

4 2(−c)1/2 2.003(−c)1/2

5 2(−c)1/2 2.001(−c)1/2

10 2(−c)1/2 2.000(−c)1/2

δ = .75
N Roll Exact
1 2(−c)1/2 4(−c)1/2

2 2(−c)1/2 2.667(−c)1/2

3 2(−c)1/2 2.286(−c)1/2

4 2(−c)1/2 2.133(−c)1/2

5 2(−c)1/2 2.065(−c)1/2

10 2(−c)1/2 2.002(−c)1/2

δ = .90
N Roll Exact
1 2(−c)1/2 10(−c)1/2

2 2(−c)1/2 5.556(−c)1/2

3 2(−c)1/2 4.098(−c)1/2

4 2(−c)1/2 3.388(−c)1/2

5 2(−c)1/2 2.445(−c)1/2

10 2(−c)1/2 2.241(−c)1/2

As we can see, the exact formula converges to Roll’s formula as N increases. Thus, even for a high value of δ, like .75,
if the stock trades every minute, Roll’s formula will be fairly accurate if 5 minute price changes are used.
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