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ABSTRACT

The Beetle Antennae Search (BAS) algorithm is a meta-heuristic search algorithm, which has efficient search capabilities. This
paper presents two different variant algorithms based on the BAS algorithm, which are the BAS with fitness value (BASF)
algorithm and BAS with local fast search (BASL) algorithm. The test results of 23 benchmark functions will be used to verify
the reliability and accuracy of these algorithm. These benchmark functions include unimodal and multimodal high-dimensional
functions, as well as fixed-dimensional multimodal functions. The test results show that the improved algorithm can search for
the optimal solution globally and accurately with its own search strategy without environment parameters. Stability and accuracy
are significantly improved while the calculation time does not change much.
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1. INTRODUCTION

From the initial PID algorithm[1] has been presented, the
control algorithm has been developed more than one hun-
dred years old, and so many algorithms emerged during the
period. At the same time the development history of control
theory has also experienced three stages: classical control
theory,[2] modern control theory[3] and intelligent control
theory.[4] Nowadays, intelligent algorithms based on bionics
theory have many branches, among many of them provide
a lots effective solution to complex optimization problems,
and the recent rise of artificial intelligence[5] have pushed the
application of control theory to a new level.

Intelligent computing is also known as “soft computing”,[6]

which is inspired by the laws of nature, then imitate the al-

gorithm for solving the problem according to the principle
of it. Inspired by nature, imitating its structure for inven-
tion and creation, this is bionics. This is one aspect of our
learning from nature. On the other hand, we can also use
the bionic principle to design operations, which is the idea
of intelligent computing. The initial algorithm in this paper
belongs to the meta-heuristic search algorithm in the bionic
domain. Like Genetic Algorithm (GA)[7] and Genetic Pro-
gramming[8] based on evolutionary algorithms, Black Hole
algorithm[9] and Simulated Annealing algorithm[10] based on
physics-based algorithm, and swarm-based algorithm such
as Particle Swarm Optimization (PSO) algorithm[11] and Ant
Colony Optimization algorithm,[12] they are all based on the
theory of bionics, and most of them are guided by two basic
behaviors: exploration and exploitation.
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The BAS algorithm[13, 14] is also derived from the behavior
of mimicking the predation behavior of the beetle. It is
similar to the single-particle PSO algorithm,[15] more like a
gradient-free Gradient Descent algorithm[16] combined with
a Simulated Annealing algorithm. Thanks to the core algo-
rithm of BAS is very concise, new algorithms based on bas
algorithm or combined with BAS algorithm emerge in an end-
less stream. The Beetle Swarm Optimization[17] algorithm
proposed by Wang is combined with the PSO algorithm. The
Beetle Swarm Antennae Search algorithm[18] proposed by
Wang is to apply its application to group search.

The main work of this paper is proposed two improved algo-
rithms based on BAS, which are named as BAS with fitness
value (BASF) and BAS with local fast serach (BASL) algo-
rithm. In this paper, 23 benchmark functions are tested for
each of the three algorithms, and the comparison of test re-
sults is given. Among them, the BASF algorithm introduces
the difference of the fitness value in the iterative process into
the iterative change of x, which weakens the influence of
the step size. The BASL algorithm adds a local fast search
when the global optimal value is updated. This local fast
search uses small step size and large probability direction
guidance to ensure that a potential local optimal solution can
be searched. This algorithm greatly enhances the global opti-
mization ability of BAS and does not significantly increase
the calculation time.

The next organization of this article are as follows. In Section
2, this paper describes the flow and structure of BAS and two
improved algorithms in detail. In Section 3, twenty-three
benchmark functions are used to test the global optimization

ability and accuracy of the three algorithms, and analyze their
robustness by standard deviation. In Section 4, a conclusion
is drawn.

2. IMPROVED BEETLE ANTENNAE SEARCH
ALGORITHM DESIGN

2.1 Beetle Antennae Search Algorithm
As a meta-heuristic algorithm, BAS algorithm is mainly
inspired by the beetle’s behavior of prey, it treats the sur-
rounding natural environment as the current search area and
guides the beetles forward with the odor concentration in the
air. The beetle takes two long antennas as signal receivers,
and when the odor signal on one side is at a higher concen-
tration than the other, then this beetle will move to a higher
odor level ground by crawling or flying. When it reach the
intended location, antennas head are full of randomness. So
in this situation, the two long antennas must again compare
the difference odor concentration, until the prey in the area
is found. By changing the distance moved, beetle can ef-
fectively avoid falling into the local higher concentration of
odor. So after the appropriate number of moves, it will have
a great probability to find the right result.

The structure of BAS algorithm is described in pseudo code
1. First the article assume that the beatles position x at
time tth is represented as xt, t denotes the number of it-
erations. Establish the benchmark function f(xt), where
variable xt=[x1,· · · ,xk], and k denotes the dimensions of
x. For the beetle exploration, the article set the two main
parameters to update the new location information, they are
direction

−→
b and step length δ.

So firstly, in a simple BAS algorithm model, the article set a
random direction as follow,

−→
b = rand(k, 1)

||rand(k, 1)|| , (1)

where rand(.) denotes a random function. The article de-

notes the coordinates of the two antennae,

xr = xt−1 + dt
−→
b ,

xl = xt−1 − dt
−→
b , (2)

where xr denotes the beetle’s right antenna coordinates and
xl denotes the left, and the article sets x represents the cen-
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troid of the beetle head model, d represents the variable
related to search step δ.

Subsequently, as long as determined the movement of the
centroid, it will be able to solve the optimization problem of
the entire area. So in the following iterative manners,

xt = xt−1 − δt
−→
b sign(f(xr)− f(xl)), (3)

where δ is the step size of searching which accounts for
the convergence speed following a decreasing function of t
instead of an increasing function or a constant. The initializa-
tion of δ should be equivalent to the searching area. sign(.)
represents a sign function.

dt = 0.95dt−1 + 0.01, (4)

δt1 = 0.95δt−1. (5)

where dt denotes the distance between two antennae at tth
times, and δt denotes the step size. It can be seen that both
dt and δt decrease with the times of iterations, this ensures
that the algorithm can eventually converge to a certain value.

2.2 Fitness Function Value Iteration
To give a less appropriate example, in deep learning image
recognition, the more features, the more reference informa-
tion is given and the accuracy is improved. In the original
BAS algorithm, the main influencing factors of x iteration
are direction

−→
b and step length δ, so we want to explore

whether the fitness function value obtained by the search can
also be used to guide the iteration of x?

Based on the original BAS algorithm, let µ denotes f(xr)−
f(xl), as follows,

xt = (1− w)xt−1 + wxt−1
g − δt

−→
b min(µ, α), (µ ≥ 0),

xt = (1− w)xt−1 + wxt−1
g − δt

−→
b max(µ,−α), (µ < 0), (6)

Where xg denotes the current global optimal solution, and
w ∈ [0, 1] denotes the proportion of the best solution in this
iteration. α is a positive number which set in advance in
order to prevent excessive step size. In this way, x can keep
a reasonable search range even when the changes are drastic,
and converge effectively when approaching the value of the
best fitness function value.

Since the random direction is the same dimension as the
iteration x, the global optimal solution is able to become
the influencing factor of the new iteration direction. There-
fore, in this paper, the optimal solution is unit vectorized and
added to the randomly generated direction vector.

−→
bg = xg

||xg||
, (7)

−→
b t = c

−→
b t−1 + (1− c)

−→
bg , (8)

Where
−→
bg denotes the unit vector of the global optimal so-

lution x, constant c ∈ [0, 1] denotes the proportion of the
direction vector. Here, in order to increase the probability
that the beetle approaches the optimal solution. The direction
vector unitization is not performed again.

2.3 Local Fast Search Iteration
During the test of BAS algorithm, we found that the search
step of the beetle has a strong guiding effect, so that in some
cases, the optimal solution will be missed. Therefore, this
paper adds a local fast search ability to the original BAS
algorithm. Just like a beetle in the predation process, then it
is discovering a place with a high concentration of odor, but
it does not want to stop, so it split itself, this split beetle is
very small and can quickly search in the area and feed the

final search results back to the original beetle.

One thing to note here is that local fast search is limited.

(1) Local fast searches require lag. Performing a local fast
search from the beginning not only takes up a lot of
computing resources, but also has poor convergence.
So it is best to start after a certain number of iterations.

(2) Local fast searches need to be done after getting better
results. A better fitness function values mean poten-
tially more optimal solutions.

This paper establish the linear relationship between the dis-
tance of two antennas and the step size,

dt = δt

c
, (9)

In order to speed up the local search, this paper introduces
two simpler centroid x iterative models,

xmbst = xl, (fr > fl),
xmbst = xr, (fr < fl), (10)

xmbst = xm−1
bst − δ

m−1−→b sign(f(xr)− f(xl)),(11)

Where xbst denotes the optimal value in the local search, m
is a pre-set constant, and the step size δm is also independent
of the global search step δ. Here m determines the number
of local fast searches, and the step attenuation is based on
(4).

The algorithm structure is shown as pseudo code 2. The
following is the search step attenuation mode for local fast
search,
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δt2 = λb/(a+γi/n) · δt−1, (12)

Where λ ∈ [0, 1] denotes a constant that determines how fast
the step size decays. a, b and γ are constants. The following
search step attenuation model is similar to it,

δt3 = δmin + δt−1cos(π2 ·
i

n
), (13)

Where δmin is the minimum value of the search step deter-
mined in advance.

The original step attenuation mechanism and the two step
attenuation mechanisms proposed by us are shown in the
Figure 1.

3. BENCHMARK VALIDATION
In order to verify the effectiveness of the bas algorithm and
the proposed two improved algorithms, this paper selects 23
classical benchmark functions for testing research. These
benchmark functions are reported in Table 1. Among them,
functions f1 ∼ f7 are unimodal high-dimensional bench-
mark functions, functions f8 ∼ f13 are multimodal high-
dimensional benchmark functions, and functions f14 ∼ f23
are fixed-dimension multimodal benchmark functions.

There we set the number of variables is 10, which is the di-
mension of the benchmark function. The Range in the table
represents the optimal interval for each variable. Moreover,
the theoretical optimal values of the benchmark functions in
the table are reported in the last column of the table.

Figure 1. Step attenuation rate comparison. The blue line is
the attenuation figure of the original step size δ1 with the
number of iterations. The red line in the figure indicates that
the step size δ2 decays with the number of iterations, where
λ is 0.99, a is 0.1, b is 1 and γ is 10. The orange line
represents the attenuation figure of step size δ3, where δmin
is 0.001. Their initial step size is 100.

Figure 2 is a typical shape of three types of reference func-
tions. As shown, Figure 2(a) presents a shape that converges
around the center. Figure 2(b) shows that the function con-
sists of many local peaks, but only one optimal value, which
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Table 1. Description of unimodal high-dimensional, multimodal high-dimensional and fixed-dimension multimodal
benchmark functions

Function Range fmin

f1(x) =
∑n
i=1(x2

i ) [−100, 100]10 0

f2(x) =
∑n
i=1(|xi|) +

∏n
i=1(|xi|) [−10, 10]10 0

f3(x) =
∑n
i=1(

∑i
j=1(xj))2 [−100, 100]10 0

f4(x) = max
i
|xi|, {1 ≤ i ≤ n} [−100, 100]10 0

f5(x) =
∑n−1
i=1 ([100(xi+1 − (xi − 1)2)]) [−30, 30]10 0

f6(x) =
∑n
i=1((xi + 0.5)2) [−100, 100]10 0

f7(x) =
∑n
i=1(ix4 + random[0, 1)) [−1.28, 1.28]10 0

f8(x) =
∑n
i=1−xisin(

√
|xi|) [−600, 600]10 -4189.8

f9(x) =
∑n
i=1([x2

i − 10cos(2πxi) + 10]) [−5.12, 5.12]10 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1(x2

i ))

− exp( 1
n

∑n
i=1(cos(2πxi))) + 20 + e [−32, 32]10 0

f11(x) = 1
4000

∑n
i=1 x2

i −
∏n
i=1[ xi√

i
] + 1 [−600, 600]10 0

f12(x) = π
n{10sin(πy1) +

∑n−1
i=1 ((yi − 1)2[1 + 10sin2(πyi+1)]

+(un − 1)2)}+
∑n
i=1(u(xi, 10, 100, 4))

[−50, 50]10 0

yi = 1 + xi+1
4 , u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

f13(x) = sin2(3πx1)/10 +
∑n
i=1(u(xi, 5, 100, 4))

+
∑n
i=1((xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]) [−50, 50]10 0

f14(x) = [ 1
500 +

∑25
j=1 1/

∑2
i=1(x2 − aij)6]−1 [−65, 65]2 0.9980

f15(x) =
∑n
i=1[ai − xi(b2

i +bix2)
b2

i
+bix3+x4

]2 [−5, 5]4 0.00030

f16(x) = 4x2
1 − 2.1x4

1 + 1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5]2 -1.0316

f17(x) = (x2 − 5.1
4π2x

2
1 − 6)2 + 10(1− 1

8π )cosx1 + 10 [−5, 5]2 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)2 × (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)] [−2, 2]2 3

f19(x) = −
∑4
i=1(ci exp(−

∑3
j=1((xj − pij)2)) [1, 3]3 -3.36

f20(x) = −
∑4
i=1(ci exp(−

∑6
j=1((xj − pij)2)) [0, 1]6 -3.32

f21(x) = −
∑5
i=1([(X − ai)(X − aTi + ci)]−1) [0, 10]4 -10.1532

f22(x) = −
∑7
i=1([(X − ai)(X − aTi + ci)]−1) [0, 10]4 -10.4028

f23(x) = −
∑10
i=1([(X − ai)(X − aTi + ci)]−1) [0, 10]4 -10.5363
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Table 2. Comparison of optimization results of fixed-dimension multimodal benchmark functions

F
BAS P SO GA

ave std t(s) ave std t(s) ave std t(s)

F14 0.9980 1.62E-16 0.503 0.9980 0 3.110 0.9980 0 3.820

F15 0.0021 5.93E-19 0.306 0.0042 0.0117 0.499 0.0039 0.0071 1.515

F16 -1.0316 1.21E-15 0.297 -1.0316 0 0.427 -1.0316 0 1.244

F17 0.3980 2.02E-17 0.307 0.3979 0 0.576 0.3979 0 1.217

F18 3.0235 1.13E-15 0.299 3.0000 0 0.403 3.9000 4.9295 1.214

F19 -3.8627 9.72E-15 0.278 -3.6913 0.124 0.6400 -3.8627 0 1.592

F20 -3.3167 5.51E-15 0.318 -2.1198 0.556 0.6541 -3.2625 0.0605 1.894

F21 -6.3933 6.64E-15 0.363 -1.0902 0.832 0.9072 -5.9724 3.3730 1.934

F22 -6.3739 3.48E-15 0.359 -1.0196 0.406 1.0713 -7.3119 3.4237 2.129

F23 -7.0295 2.95E-15 0.380 -1.2161 0.627 1.3545 -5.7112 3.5424 2.421

requires the algorithm to be able to search globally. Figure
2(c) shows a fixed 2-dimensional function with four local
peaks, but only one optimal value.

In order to illustrate the effectiveness of the algorithm, this
paper compares the bas algorithm with PSO and GA using
the test data of the fixed-dimension multimodal benchmark
function, and the comparison results are reported in Table
2. Moreover, 50 search agents were used, the maximum
number of iterations was set to 1000, and each test function
was run 30 times to generate statistical results. Meanwhile,
the maximum number of iterations we set for the BAS al-
gorithm is 500. Test results is performed using the average,
standard deviation, and average single performance time of
three performance indicators.

From the comparison of the results of BAS algorithm with
PSO and GA algorithm in Table 2, it can be seen that BAS
algorithm has great search ability. Compared with the PSO
algorithm, it has better global search ability and higher search
accuracy. It is also faster than the GA algorithm, and its stan-
dard deviation is smaller, which meaning that the value of
the convergence function is more concentrated.

In order to verify the validity of the two variant algorithms
proposed by us, this paper compares the test results of the
two variants with the original BAS algorithm, and this pa-
per sets the maximum number of iterations is 500, each test
function is run 30 times to generate statistical results. The
average, standard deviation and average single performance
time obtained from the test are reported in Table 3.

The BASF and BASL test results with the original BAS al-
gorithm are shown in Table 3, from the table we can see
that the three algorithms are almost the same in each run
time, but the BASF and BASL perform more accurately in
the results. Especially for function f2 f5 f9 and f12, the
accuracy of the results calculated by the BASL algorithm is
more better than other results. This means that when deal-
ing with some optimization issues, the BASL algorithm can
solve the problem that the search of BAS algorithm is not
comprehensive enough. But at the same time, we can also
see that in the optimization problem of function f21 f22 and
f23, all three algorithms are not performing well. This also
reflects the shortcomings of the single-particle search algo-
rithm compared to the swarm intelligence algorithm. In the
future, the population structure can be introduced into the
BAS algorithm.

Figures 3 and 4 show the behavior of 2D search trajectories
and function values for three typical models. From the a, d
and g in Figure 3, we can intuitively see that the BAS algo-
rithm is less efficient when it converges, and the search tra-
jectory seems a bit messy, especially when the f8 benchmark
function test is performed, it misses the global optimal value.
In contrast, the searching trajectories of BASL algorithm
is more efficient, and when performing the f8 benchmark
function test, it explores a larger range and can accurately
find the global optimal value. From c and f in Figure 4,
we can also see that the BASL algorithm converges from a
higher function value to the optimal value.
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Table 3. Comparision of optimization results obtained for the unimodal, multimodal, and fixed-dimension multimodal
functions

F
BAS BASF BASL

ave std t(s) ave std t(s) ave std t(s)

F1 2.82E-9 1.43E-21 0.289 0.0021 1.09E-15 0.289 1.07E-4 3.95E-20 0.308

F2 41.0627 1.88E-14 0.328 31.6048 5.89E-28 0.301 6.7123 1.52E-24 0.317

F3 3.59E-9 1.96E-17 0.279 4.70E-9 5.89E-28 0.285 6.40E-9 1.52E-24 0.293

F4 0.7266 7.09E-17 0.279 0.0953 6.08E-17 0.293 0.0284 2.91E-17 0.326

F5 55.7363 4.15E-14 0.313 33.2297 1.68E-15 0.297 3.4581 8.42E-16 0.358

F6 0.0010 4.55E-14 0.287 4.12E-4 3.36E-19 0.307 3.37E-7 2.07E-22 0.386

F7 0.1328 3.04E-17 0.301 0.1799 4.46E-18 0.320 0.0373 3.80E-18 0.339

F8 -2667.6 3.07E-12 0.304 -2985.8 1.32E-12 0.304 -3001.3 5.14E-12 0.351

F9 44.6961 5.08E-15 0.330 24.4517 1.29E-15 0.295 2.9556 1.16E-14 0.321

F10 1.5403 6.08E-16 0.321 0.0320 1.01E-17 0.326 0.0394 2.15E-17 0.320

F11 0.4930 1.82E-16 0.320 0.0300 5.05E-16 0.304 0.0514 2.02E-17 0.352

F12 0.5067 1.21E-16 0.332 0.2744 1.31E-16 0.314 1.20E-5 1.85E-21 0.362

F13 0.0094 2.85E-18 0.326 5.52E-5 2.47E-20 0.319 2.88E-4 7.91E-21 0.332

F14 0.9980 1.62E-16 0.503 0.9980 1.79E-15 0.583 0.9980 3.63E-16 0.434

F15 0.0021 5.93E-19 0.306 0.0066 9.97E-18 0.290 0.0012 5.54E-19 0.342

F16 -1.0314 1.21E-15 0.297 -1.0316 5.87E-16 0.286 -1.0316 1.90E-15 0.294

F17 0.3980 2.02E-17 0.307 0.3979 9.72E-16 0.288 0.3979 8.10E-17 0.289

F18 3.0235 1.13E-15 0.299 3.0306 9.72E-16 0.258 3.0038 1.21E-15 0.297

F19 -3.8627 9.72E-15 0.278 -3.8477 1.37E-15 0.299 -3.8607 1.78E-15 0.319

F20 -3.3167 5.51E-15 0.318 -3.3220 7.29E-16 0.324 -3.3207 4.86E-16 0.304

F21 -6.3933 6.64E-15 0.363 -6.9808 2.59E-15 0.341 -7.3138 3.24E-15 0.365

F22 -6.3739 3.48E-15 0.359 -8.0610 1.03E-14 0.361 -8.0519 3.24E-16 0.382

F23 -7.0295 2.95E-15 0.380 -7.6920 1.31E-14 0.375 -8.1145 3.24E-15 0.502

Figure 2. Benchmark function 3D space model. The three reference functions selected are f1, f8 and f14, where their x
and y axes denote the two-dimensional argument x, and the z-axis denotes the function value. 3D version of unimodal
function (a), multimodal function (b) and fixed-dimension multimodal function (c).
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Figure 3. Behavior of BAS and its variant algorithms on the 2D benchmark problems. The 2D optimization trajectory of
the BAS algorithm a, d and j. The 2D optimization trajectory of the BASF algorithm b, e and h. The 2D optimization
trajectory of the BASL algorithm c, f and i.

Figure 4. Behavior of BAS and its variant algorithms on the function values. The function value behavior j,m and p of
BSA algorithm. The function value behavior b,e and h of BASF algorithm. The function value behavior l,o and r of BASL
algorithm. The red line indicates the current optimal fitness fbst, the blue line indicates the optimal value of each iteration
f(x) of the algorithms.
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4. CONCLUSION

In this paper, two variant algorithms based on BAS algo-
rithm are proposed, and the mathematical models of two
variant algorithms are established. This paper completed the
optimization problem of the BAS algorithm in 23 classical
benchmark functions, and given three attenuation mecha-
nisms for the search step size. Meanwhile, the performance

and effectiveness of the bas algorithm are verified based on
the comparison with PSO and GA algorithms. Finally, it is
verified that the two variant algorithms are still improved by
comparing the original BAS algorithm. Experiments show
that the bas algorithm has strong robustness and stability.
Considering that BAS algorithm has very fast optimization
ability, we will continue to study the application of BAS and
its improved algorithms in 3D path planning.
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