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Abstract 

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict 

future trends in economics, energy markets, and stock markets. It has not been widely applied to enrollment 

forecasting in higher education. The accuracy of the ARIMA model heavily relies on the length of time series. 

Researchers and practitioners often utilize the most recent 1- to 5-years of historical data to predict future 

enrollment; however, the accuracy of enrollment projection under different lengths of time series has never been 

investigated and compared. A simulation and an empirical study were conducted to thoroughly investigate the 

accuracy of ARIMA forecasting under four different lengths of time series. When the ARIMA model completely 

captured the historical changing trajectories, it provided the most accurate predictions of student enrollment with 

20-years of historical data and had the lowest forecasting accuracy with the shortest time series. The results of this 

paper contribute as a reference to studies in the enrollment projection and time-series forecasting. It provides a 

practical impact on enrollment strategies, budges plans, and financial aid policies at colleges and institutions across 

countries.  

Keywords: ARIMA, time series, forecasting, simulation, empirical analysis, enrollment prediction 

1. Introduction 

Time-series analysis has been used successfully to predict future changes in economics, energy markets, and stock 

markets (Wang, Hsu, & Lion, 2011; Zhang, 2003; Ward, 2007; Chen, 2008). Accurately predicting how many jobs 

are needed, how stocks will increase or decrease, and how oil prices will fluctuate has a significant impact on trade 

and business. Consequently, the accuracy of the time-series analysis is a significant focus of forecasting research due 

to its impact on investment and budget planning.  

In enrollment forecasting, multiple factors influence projection accuracies such as the forecasting method, length of 

time series, frequency of enrollment occurrence, and other institution-related predictors (e.g., enrollment policy, 

financial aid policy, and economic situation). Two traditional approaches to enrollment forecasting are causal 

modeling and time-series analysis (Brinkman & McIntyre, 1997). The causal modeling approach predicts future 

enrollment, regressing on factors that affect enrollment levels such as financial aid policy, students’ demographics 

(e.g., gender, ethnicity, age), employment status, and prior educational experience (Brinkman & McIntyre, 1997). 

This approach is challenging to apply to the context of higher education as these types of data are difficult to collect 

and are sometimes highly related to each other. The multicollinearity among predictors in causal modeling leads to a 

biased estimate of the enrollment outcome (Peng, Lee, & Ingersoll, 2002). Time-series analysis, as opposed to 

traditional approaches, predicts future enrollments by tracing the trajectories of historical enrollment data. It requires 

fewer predictive factors and is easier to understand and implement. 

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict 

future trends with high accuracy (Zhang, 2003; Contreras, Espinola, & Nogales, 2003; Conejo, Plazas, & Espinola, 

2005). This study focuses on exploring the impact of lengths of time series on the accuracy of prediction using the 

ARIMA model. 
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The rest of the paper is organized as follows. Section 2 reviews the ARIMA model forecasting based on the 

time-series data. Next, a simulation study is illustrated in section 3. In section 4, an empirical study is reported. 

Finally, section 5 includes the results of the two studies and discusses the implications for future research.  

2. Literature Review 

2.1 ARIMA Model 

The ARIMA model is an integrated model that combines an autoregressive (AR) model and a moving average (MA) 

model in time-series prediction based on the Box-Jenkins methodology (Box, Jenkins, & Reinsel, 2015). The 

prediction in the ARIMA model for a stationary or non-stationary time series is a linear function that includes lags of 

dependent variables (future values at specific time points) and lags of random errors. In a stationary time series, 

means and variances remain constant across time points without linear or nonlinear trends (Ward, 2007). The 

difference between the ARIMA model and the AR or MA model is that the ARIMA model is designed to analyze a 

non-stationary time series by differing the autocorrelations among lags of time series (Wang, Hsu, & Liou, 2011). 

Let 𝒀 = (𝑦1, 𝑦2 , … , 𝑦𝑡)  be a vector of values at time series 𝑻𝑺 = (1, 2, … , 𝑡) , 𝜇  be the conditional means, 

𝜺 = (𝜀1, 𝜀2, … , 𝜀𝑡) be a vector of random errors, and 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑡) be the coefficients in the linear function. If 

we let 𝑝 be the number of autoregressive terms in the AR model, the AR model can be expressed as: 

𝑦𝑡 = 𝜇 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝 + 𝜀𝑡                           (1) 

Here, 𝑦𝑡 is the predicted value at time point 𝑡 and 𝜀𝑡 is the random error at time point 𝑡, which falls in a normal 

distribution with a mean of 0 and a variance of 𝜎2. 𝜷 represents the strength of the relationship between the value 

at a previous time point and the predicted value at a future time point. The same methodology applies to the moving 

average (MA) model. If we let 𝑞 be the number of lagged errors in the MA model, the predicted value 𝑦𝑡  is 

regressed on past errors as:  

𝑦𝑡 = 𝑐 + 𝜗1𝜀𝑡−1 + 𝜗2𝜀𝑡−2 + ⋯ + 𝜗𝑞𝜀𝑡−𝑞 + 𝜀𝑡                          (2) 

Similarly, 𝜗 represents the strength of relationships between a measurement error at a previous time point and the 

predicted value at a future time point. Therefore, an autoregressive integrated moving average (ARIMA) model 

would be written in one equation as: 

𝑦𝑡 = 𝜇 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝑝𝑦𝑡−𝑝 − 𝜗1𝜀𝑡−1 − 𝜗2𝜀𝑡−2 − ⋯ − 𝜗𝑡−𝑞𝜀𝑡−𝑞            (3) 

Three parameters are included in the ARIMA model: 𝑝, 𝑞, and 𝑑. Parameters 𝑝 and 𝑞 refer to the numbers of 

autocorrelation and lagged random errors, respectively, while 𝑑 represents the level of changes across times (Chen, 

2008). When past data follows a non-stationary changing trajectory, such as an upward trend, a downward trend, or a 

seasonal trend, the ARIMA model includes the third parameter 𝑑 to account for differences and to adjust for 

stationarity in time series. When 𝑑 = 1, the difference is expressed as 𝑦𝑡 − 𝑦𝑡−1, and when 𝑑 = 2, the difference is 

expressed as (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2), and so forth.  

Based on three parameters, the ARMIA (𝑝, 𝑑, 𝑞) model captures at least six types of changing trajectories. ARIMA 

(1,0,0) is the first-order autoregressive (AR) model that accounts for the first autocorrelation among past time series. 

ARIMA (0,1,0) is the random walk model, which adjusts differences for stationarity. ARIMA (0,0,1) is the 

one-lagged moving average (MA) model, in which the future value is regressed on the one lagged random error. 

ARIMA (1,1,0) is the differenced first-order autoregressive model that consists of one autocorrelation as well as 

adjustments of seasonal differences. ARIMA (0,1,1) is the differenced one-lagged moving average model that 

consists of one lag of random error and differences adjustments for non-stationarity. ARIMA (1,1,1) is the integrated 

model that includes a first-order autoregressive model, one lagged moving average model, and non-stationarity 

adjustments. The number of 𝑝, 𝑞, and 𝑑 parameters is arbitrary and depends on the length of past time series, 

historical data trends, and autocorrelation among time series. When a long sequence of time series is involved, such 

as 20- or 30-years of data, the parameters 𝑝, 𝑞, and 𝑑 need to be larger to sufficiently cover the autocorrelation 

across times. By adjusting the 𝑝, 𝑞, and 𝑑 parameters, the ARIMA model captures previous data trajectories with 

high accuracy.  

2.2 Previous Studies 

The ARIMA model has been widely applied in fields such as economics, energy, and finance. Further, the accuracy 

of the short-term prediction of the ARIMA model has been validated in a variety of contexts (Contreras, et al., 2003; 

Morana, 2001; Gross & Galiana, 1987). Contreras et al. (2003) accurately predicted next-day electricity usage with 

the ARIMA model. In another study, Morana (2001) applied the ARIMA model to predict the short-term oil price. 

Gross & Galiana (1987) also successfully used the ARIMA model to forecast short-term loads. In fact, the superior 
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performance of the ARIMA model over other linear time-series models, such as AR, MA, ARMA, has been 

documented in many energy forecasting studies (Valipour, Banihabib, & Behbahani, 2013; Marriott & Newbold, 

1998; Chujai & Kerdprasop, 2013; Colak, Yesilbudak, Genc, & Bayindir, 2015; Wang, Hsu, & Liou, 2011). 

Additionally, the ARIMA model was found to have fewer residual errors than the ARMA model (Valipour et al., 

2013) and less bias than either MA or AR model (Wang, Hsu, & Liou, 2011).  

The application of the ARIMA model in higher education, however, has not been fully investigated. O’Bryant (1991) 

first introduced the ARIMA model in enrollment forecasting at Sinclair Community College and found that the 

ARIMA model accurately predicted budget expenses for the University. Brinkman and McIntyre (1997) compared 

traditional forecasting models (e.g., regression model) and the ARIMA model. They found that the time-series model 

did not need as much data as the traditional regression model. 

2.3 Statement of the Problem 

The accuracy of the ARIMA model heavily relies on the length of time series (Box, Jenkins, & Reinsel, 2015). In 

fact, projection accuracy increases concurrently with the length of the time series (Valipour, Banihabib, & Behbahani, 

2013; Zhang, 2003; Wang et al., 2011). Chen (2008) suggested using 45 to 60 years of past data to achieve a good 

prediction accuracy in the ARIMA model. Most institutions, however, only keep up to 30 years of historical student 

data in their student reporting database. Therefore, including 45- to 60-years of historical data in the ARIMA 

model is not realistic for enrollment projection in higher education. Institutional researchers and practitioners most 

often utilize the most recent 1- to 5-years of historical student data to predict future enrollment. The accuracy of 

enrollment projection with a 5-year series of historical data, a 10-year series of historical data, a 20-year series of 

historical data, and a 30-year series of historical data has never been investigated and compared.  

No previous study has focused on the impact of length of time series on the projection accuracy in enrollment 

forecasting using the ARIMA model. This study aims to provide a thorough investigation of differences in the 

projection accuracy under different conditions of the length of time series using the ARIMA model.  

3. A Simulation Study 

A simulation study was conducted to evaluate the impact of the length of time series on the forecasting accuracy of 

the ARIMA model.  

3.1 Data Generation 

Undergraduate student enrollment data from the top 10 Historically Black Colleges/Universities (HBCUs) were 

downloaded from the Integrated Postsecondary Education System (IPEDS) national database. The RStudio 

environment (Studio, 2012) was used to simulate enrollment data for four conditions corresponding to the length of 

the time series: 5-, 10-, 20- and 30-years. The enrollment data for the four conditions were simulated from a 

normal distribution with a mean of 𝜇 and a variance of 𝜎, where 𝜇 and 𝜎 were the average of the top 10 

HBCUs undergraduate enrollment and standard deviation, respectively.  

𝑦𝑡  ~ 𝑁(𝜇, 𝜎)                                          (4) 

A vector of 10 data was replicated 100 times under the first condition, in which the first 5 data were treated as 

the true future enrollment that was used to compare with the predicted values in the ARIMA model, and the 6
th

 to 

10
th

 data were treated as the historical data and was used to forecast in the ARIMA model. Likewise, a chain of 6
th

 to 

the 15
th

 vector, a chain of 6
th

 to the 25
th

 vector, and a chain of 6
th

 to the 35
th

 vector was also replicated 100 times 

under the 2
nd

, 3
rd

, and 4
th

 simulation conditions. The first five data were used as the true future enrollment, and the 

rest of the data was used as previous time-series data for forecasting. Therefore, a 5 𝑥 100 data matrix, a 10 𝑥 100 

data matrix, a 20 𝑥 100 data matrix, and a 30 𝑥 100 data matrix were used in the ARIMA model for time-series 

forecasting.  

3.2 Analysis 

The Tseries package (Trapletti & Hornik, 2018) in RStudio (Studio, 2012) was used to capture historical trajectories 

and forecast enrollment. The unique 𝑝, 𝑑, 𝑞  parameters of each replication were identified to recover past 

trajectories. The parameter 𝑝  (AR) and the parameter 𝑞  (MA) were identified by checking the partial 

autocorrelation function (PACF) and the autocorrelation function (ACF). The lags where the PACF cut off indicated 

the number of 𝑝 and the lags after where ACF cuts off indicated number of 𝑞. For example, a first-order MA model 

is characterized as a large autocorrelation at lag 𝑞 = 1 and the partial autocorrelations diminish to zero after the first 

lag (Kinney, 1978). The 𝑑  parameter (stationarity of time-series data) was checked by the Augmented 

Dickey-Fuller test (ADF) as following, 
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𝐴𝐷𝐹 =  
𝜌

𝑆𝐸(𝜌)
                                        (5) 

Where 𝜌 is the estimated coefficients of time-series data. Statistically significant results (𝑝 ≤ 0.05) suggest that 

the time-series is stationary. If the time-series data is non-stationary, the difference (𝑑 parameter) would be added in 

the ARIMA model to adjust the auto-correlation between lags.  

The ARIMA model uses the maximum likelihood algorithm (MLE) to estimate parameters. The maximum likelihood 

estimation identifies parameter values that maximize the log-likelihood of the data (Enders, 2010). When the MA 

model is not involved, the ARIMA model is simplified as a linear autoregression model, in which the ordinary least 

squares (OLE) algorithm is used to estimate parameters. OLE is used to identify parameter values that minimize the 

squared residual errors of the predicted values (Keith, 2014). In this study, MLE was used in the analysis to estimate 

parameters.  

Multiple indices were used to assess model fit: recovery rate, the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), and Mean Squared Errors (MSE). The recovery rate was assessed by comparing the true 

trajectories and the trajectories proposed by the model. When the full recovery of the trajectory was achieved, the 

best model was the one with the lowest AIC, BIC, and MSE indices. The bias of the prediction, an essential criterion 

to determine the performance of the ARIMA model, was calculated by the average of differences between the 

forecasted values and the simulated “true” data across 100 replications.   

𝐵𝑖𝑎𝑠 =
∑ |(𝑦𝑡

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
−𝑦𝑡

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)|

𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
                                 (6) 

3.3 Results 

(a) ADF test 

The Augmented Dickey-Fuller Test (ADF) showed that the time-series data were non-stationary (𝑝 ≥ 0.05) across 

100 replications under four conditions (𝑻𝑺 = 5, 10, 20, 30) in the simulation. The difference parameter, 𝑑, was 

added in the model to adjust the autocorrelation between lags. 

(b) ACF and PACF Test 

The example ACF and PACF plots are shown in Figure 1. The parameter 𝑝 for the AR model varied between 2 to 

4 when the time series was 5, varied between 5 and 8 when the time series was 10, varied between 12 and 16 

when the time series was 20 , and varied between 14  and 23  when the time series was 30  across 100 

replications. The parameter 𝑞 for the MA model varied between 1 and 3 when the time series was 5, varied 

between 3 and 7 when the time series was 10, varied between 1 and 11 when the time series was 20, and 

varied between 0 and 15 across 100 replications when the time series was 30.  

(c) Model Fit 

Four different types of ARIMA model were fit in the analysis: AR model (1,0,0), MA model (0,0,1), ARMA 

model (1,0,1), and differenced integrated model (1,1,1). By fitting the different values of 𝑝, 𝑑, and 𝑞 in the 

ARIMA model in each replication under four conditions of the length of time series, the selected model was the one 

that maximally recovered the past changing trajectories.  

One replication’s model fit is shown as an example in Figure 2. The solid red line indicates the changing trajectories 

of the true simulated data under different lengths of time series. The blue dashed line is the pattern captured by the 

ARIMA model. The blue line recovered the true data changing trajectories under four lengths of time series across 

100 replications. The high model-fit rates indicated that the ARIMA model was able to provide accurate forecasting 

based on the past changing patterns.  

(d) Forecasting 

The best-fitting model was then used to forecast future time-series data. As shown in Figure 3, the black lines 

indicate the past data trajectories, and the blue lines indicate the 10 forecasting values and its changing trajectories. 

The impact of length of time series on the forecasting accuracy was evaluated by comparing the forecasting values 

and the simulated “true” values across 100 replications under four conditions of the length of time series as shown 

in Table 1.  

One of the findings that were consistent with the earlier studies was that the most considerable bias between the 

predicted values and the simulated “true” data was found in the shortest time series (𝑇𝑆 = 5). The sequence of time 
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series at 10, 20, and 30 provided significantly higher accuracy in forecasting than the sequence of time series at 5 

(𝐹 = 6.8, 𝑝 <  .001). Contrary to prior research, where the most extended time series provides the most accurate 

forecasting, results in this study indicated that when the ARIMA model fit the past data the sequence of the time 

series at 20 provided the smallest bias between the forecasted values and the simulated “true” data (bias = 19.9); 

however, there were non-significant differences among the sequences of time series at 10, 20, and 30 (𝑝 >  .05).  

This result suggests two important implications. First, when the ARIMA model completely fit the past data, the 

longest time series might not be the one to provide the most accurate forecasting. Second, if the sequence of the time 

series at 20 is not achievable under any circumstances, the sequence of the time series at 10 would be able to 

provide a prediction with an acceptable accuracy; however, the sequence of the time series at 5 would be too short 

to provide a relatively accurate prediction. 

4. An Empirical Study  

We applied information gleaned from the simulation study to a real data set to explore the impact of the length of 

time series on the accuracy of an enrollment projection using the ARIMA model. A total of 35 years of fall term 

enrollment data of undergraduate students at Howard University (fall 1984 to fall 2018) was obtained from The 

Integrated Postsecondary Education Data System (IPEDS) database and used in this empirical study.  

4.1 Predictors 

Four lengths of time series (𝑻𝑺 = 5, 10, 20, 30) were compared to evaluate prediction accuracy. Using fall 2013 as 

the endpoint, the past five years of data from fall 2009 to fall 2013, the past ten years of data from fall 2004 to fall 

2013, the past twenty years of data from fall 1994 to fall 2013, and the past thirty-years of data from fall 1984 to fall 

2013 were applied as predictors to forecast the undergraduate enrollment from fall 2014 to fall 2018.  

4.2 Outcome  

The most recent five years of enrollment data (fall 2014 to fall 2018) were used as the true “future” data to compare 

with the predicted values from the ARIMA model based on the different lengths of time series. 

4.3 Analysis 

The AR model (1,0,0) and the differenced AR model (1,1,0) were applied in the ARIMA model in the analysis. 

ARIMA (4,0,0) captured the past five years’ time series trajectories, ARIMA (7,0,0) captured the past ten years’ time 

series trajectories, ARIMA (14,1,0) captured the past twenty years’ time series trajectories, and ARIMA (22,1,0) 

captured the past thirty years’ time series trajectories. The ARIMA model accurately captured the previous 

enrollment’s changing trajectories, as shown in Figure 4. The enrollment of fall 2014 to fall 2018 was forecasted 

based on the past five, ten, twenty, and thirty years’ trajectories, as shown in Figure 5.  

4.4 Results 

The differences between the forecasted enrollment and the true enrollment from fall 2014 to fall 2018 under four 

lengths of time series are summarized in Table 2.  

The results in the empirical study were consistent with the results in the simulation study. Under the condition that 

the ARIMA model completely fit the past years’ enrollment trajectories, the sequence of the time series at 20 had 

the smallest average discrepancy (𝐵𝑖𝑎𝑠3 = 375) between the forecasted enrollment and the true enrollment from 

fall 2014 to fall 2018.  

Three important findings came to light as part of this empirical study. The results are summarized in Table 3. First, 

when the ARIMA model completely fits the data, the sequence of the time series at 20 provided the highest 

accuracy in the enrollment forecasting. The differences between the forecasted enrollments based on the time series 

at 20 and the true enrollment were not significant (𝑡 = −189.41, 𝑝 =  0.97). However, there were significant 

differences between the forecasted enrollment based on the time series at 5, 10, and 30 and the true enrollment 

(𝑝 <  .001) . Second, the time series at 20  had significantly higher accuracy in forecasting undergraduate 

enrollment than the time series at 5, 10, and 30  in the empirical results 

(𝑡𝑇𝑆5 𝑣𝑠 𝑇𝑆20  =  1839, 𝑝 < 0.001; 𝑡𝑇𝑆10 𝑣𝑠 𝑇𝑆20 = 2369, 𝑝 <  0.001; 𝑡𝑇𝑆30 𝑣𝑠 𝑇𝑆20 =  1529, 𝑝 < 0.01) . Last, the 

differences among time series at 5, 10, and 30 were not significant (𝑝 > .05).  
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5. Conclusion and Implications 

This paper proposed two comparison studies to evaluate the impact of lengths of time series on the accuracy of the 

ARIMA model.  

A simulation study was first developed based on the average undergraduate enrollment across the top 10 HBCUs in 

the United States. The simulation results indicated that the shortest time series (𝑇𝑆 =  5) had the lowest forecasting 

accuracy, shown by the most considerable bias between the forecasted values and the simulated “true” data. When 

the ARIMA model accurately captured the historical changing trajectories with the lowest AIC/BIC values, the time 

series at 10, 20, and 30 had significantly higher accuracy in forecasting enrollment. Notably, the time series at 20 

provided the highest accuracy in forecasting future 10 years’ enrollment across 100 replications.  

Similar results were also found in the empirical study. The past 35 years of undergraduate enrollment data from fall 

1984 to fall 2018 at Howard University was used in the study. The most recent five years’ enrollment (fall 2014 to 

fall 2018) was used to compare against the predicted enrollment in the ARIMA model based on different lengths of 

previous enrollment data. The results in the empirical study also showed that the time series at 20 provided the 

highest accuracy in forecasting enrollment from fall 2014 to fall 2018. The average difference between the predicted 

enrollment based on the time series at 20 and the true enrollment was only around 370.   

In summary, based on the simulation and empirical studies, the ARIMA model is an effective and powerful statistical 

tool to perform time-series forecasting of enrollment in higher education. The lengths of time series lower than 10 

are not sufficient to provide a relatively accurate enrollment forecasting, however. When the ARIMA model 

completely recovered the past changing trajectories, the ideal length of time series is 20 in enrollment forecasting. 

The statement that the longer time series it is, the higher forecasting accuracy is obtained in the ARIMA model was 

not supported in this study. One potential reason for this discrepancy is the additional time-series data brought to the 

higher autocorrelation and residual error in the ARIMA model. This will lead to a higher bias in the ML estimations.  

The results of this paper contribute as a reference to studies in the enrollment projection and time-series forecasting. 

It provides a significantly practical impact on enrollment strategies, budges plans, and financial aid policies at 

colleges and institutions across countries. One possible way for future studies is to continue investigating the impact 

of lengths of time series on other time-series models, such as Holt-Winter or neural network.  
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Appendix A 

Tables 

Table 1. Average bias across 100 replications between the forecasted values and the simulated “true” data 

  TS 5 TS 10 TS 20 TS 30 

Bias at Future Time Point 1 -42 18.55 -46.16 -81.28 

Bias at Future Time Point 2 -57 -18.48 -3.69 -45.88 

Bias at Future Time Point 3 -61.38 6.44 49.27 14.78 

Bias at Future Time Point 4 -92.74 -11.32 7.49 -5.34 

Bias at Future Time Point 5 -57.99 16.2 23.08 5.69 

Bias at Future Time Point 6 -47.22 -26.5 39 4.24 

Bias at Future Time Point 7 -81.05 47.65 -8.82 63.74 

Bias at Future Time Point 8 -37.84 -9.31 1.4 -20.32 

Bias at Future Time Point 9 -51.63 45.73 -12.13 17.73 

Bias at Future Time Point 10 -22.18 -88.76 -7.89 -29.63 

Average Bias 55.1 28.9 19.9 28.9 

 

Table 2. Differences between the true enrollment and the forecasted enrollment from Fall 2014 to Fall 2018 

  

True 

Enrollment 
TS 5 Bias1 TS 10 Bias2 TS 20 Bias3 TS 30 Bias4 

Fall 2014 7013 7317 304 8827 1814 6773 -240 7243 230 

Fall 2015 6883 8910 2027 8950 2067 6940 57 7692 809 

Fall 2016 5899 7980 2081 9017 3118 6456 557 7854 1955 

Fall 2017 6354 8546 2192 8584 2230 6031 -323 7897 1543 

Fall 2018 6243 7885 1642 7913 1670 5544 -699 8406 2163 

Average 

Bias 

  

1649.2 

 

2179.8 

 

375.2 

 

1340 

 

Table 3. The t-test of the ARIMA model based on the true enrollment and four lengths of time series forecasting 

  True TS 5 TS 10 TS 20 TS 30 

True 0 
    

TS 5 t = 1649, *** 0 
   

TS 10 t = 2180, *** t = 530, ns 0 
  

TS 20 t = 189, ns t = 1839, *** t = 2369, *** 0 
 

TS 30 t = 1340, *** t = 309, ns t = 839, ns t = 1529, *** 0 

Note. *** p < .001; ns p > .05  
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Appendix B 

Figures 

 

Figure 1. ACF and PACF plots examples 

 

Figure 2. Model Fit of Simulated Data 
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Figure 3. Forecasting Future Changing Patterns 

 

 

Figure 4. Model Fit of Empirical Data 
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Figure 5. Forecasting of Enrollment from Fall 2014 to Fall 2018 


