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Abstract 

Word of mouth has long been recognized to be an influential variable in marketing. With the growth of Internet 

applications, traditional word of mouth has evolved into the online form where individuals spread their perceptions 

via the written word. With the rapid growth of comments by consumers over the Internet, in-depth purchasing related 

information is available to markers. In this paper we try to extract the essence of consumers’ attitudes from the online 

reviews posted on kbb.com through text-mining approach, which is the most popular and highly visited website in 

automobile industry. Thus we can identify the key features that are related to the prediction of positive/negative 

overall attitudes of online users. Then with the diagnostic of these identified key features through Gini indexing, they 

can be used to help to marketers in designing their keyword choices for more effective application of search engine 

marketing strategies for positive associated key features while identification of the negative associated key words 

will lead to discovery of problematic areas. 
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1. Introduction 

It is widely known that user recommendations play a role in affecting potential purchasers of products and services. 

(Senecal S, Nantel J., 2004) found that individuals who consulted online product recommendations selected 

recommended products twice as often as individuals who did not consult recommendations. This is one reason why 

user reviews are prominent in numerous web sites (e.g., at Amazon.com). With the rapid growth of comments by 

consumers over the Internet, in-depth purchasing related information is available to markers. The wide availability of 

lengthy and numerous text-based online reviews provides a treasure trove of information that can potentially reveal a 

much wider set of variables that determine whether a recommendation is made or not. With the large amount of 

information, data-mining methodologies are needed to uncover the hidden information in order to discover the 

patterns in customer behavior (Sebastiani F., 2002) (Lee SJ, Siau K., 2001) (Hoontrakul P, Sahadev S., 2008).  

However, as there has been ample research on text mining, they aim at improving the methodology it self a lot like 

classification performance of text classifier, feature selection methods, etc. (Pang B, Lee L, Vaithyanathan S., 2002) 

(Bast E, Kuzey C, Delen D., 2005). In the literature of marketing, (Ghose A, Li B, Ipeirotis P., 2012) applied text 

mining approach to complement numerical variables to help predict products sales; (Mostafa M., 2013) evaluated 

consumers’ sentiments toward well-know brands using tweets. These researches focus on the prediction power of the 

words itself and are missing the diagnostic aspect of using reviews, which is of important use to marketers. The 

identification of these key features can be used to help to marketers in designing their keyword choices for more 

effective application of search engine marketing strategies for positive associated key features while identification of 

the negative associated key words will lead to discovery of problematic areas. 

In our research we extract the most relevant information from online text reviews and then we conduct 

pre-processing and indexing in order to get the data formatted for classification analysis. The dependent variable is 

whether users recommended the product or not while the independent variables in our predictive model were words 

from online reviews. Then we use Gini-index to help us identify the most relevant features of the products that drive 

the overall attitude of the consumers.  

The rest of the paper is organized as follows: in section 2 we discuss the fundamentals of our text modeling 

methodology and Gini-index. In section 3 we discuss the details how we implement this for online reviews and 
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recommendations. In section 4 we analyze the results we get and provide the insights of our discussions. Section 5 

provides a summary of our findings and suggests future directions for research. 

2. Method 

In this section we describe the overall approach that we use for analysis of text content. Text classification will use a 

machine-learning algorithm to classify the word based text documents into one of previous defined categories 

(Sebastiani F., 2002). In the following sections, we will explain the complete process of how we used text mining.  

2.1 Preprocessing  

Before a learning method can be applied, several preprocessing steps are required to get the data in ready format for 

further analysis. First, the raw text is divided into tokens (single word, special symbols, etc.). The second step is case 

conversion where the words are modified to be all in lower cases. The third step is removal of stop-words. The 

purpose of stop-words removal is to reduce the size of the classification matrix by reducing the number of irrelevant 

terms. Lots of very commonly used words like “the”, “I”, “to”, etc., are of little use in classifying documents into 

predefined categories. Lastly, different variations of a word are converted into a single common form that is termed 

stem.  

2.2 Indexing 

The result so far is a term-by-document matrix with each cell representing the raw frequencies of occurrence for each 

term in each document. The columns of the matrix represent terms (words), and the rows represent documents 

(reviews for example). (Jones KS., 1972) showed that there is a significant improvement in retrieval performance by 

using weighted terms vectors. The term weight is generated by multiplying Term Frequency (TF) and the Inverse 

Document Frequency (IDF) (Jones KS., 1973) (Coussement K, Van D., 2008) (Salton G, Buckley C., 1988). 

2.3 Classification Technique 

We use the Support Vector Machine (SVM) approach for classification purposes. SVM was invented by Vapnik and 

Chervonenkis (Vapnik V, & Chervonenkis A., 1964) and has been used a lot in various areas (Pang B, Lee L, 

Vaithyanathan S., 2002) (Bast E, Kuzey C, Delen D., 2015). SVM are supervised learning models that can classify 

data into the groups. There are various algorithms used for SVM classification models and the most popular one is 

the Sequential Minimal Optimization (SMO), which is conceptually simple, easy to implement and fast to compute 

(Cristianini N, Shawe-Taylor J., 2002).  

2.4 Evaluation Criteria 

For evaluating the performance of different classification models, we used Area Under the receiving operating Curve 

(AUC) (Coussement K,Van D., 2008) (Powers DM., 2007).  

AUC (Metz CE., 1978): In order the get the AUC, we need to first draw the Receiver Operating Characteristics 

(ROC) curve. ROC curve illustrates the diagnostic ability of a binary classifier as its discrimination threshold varies. 

ROC considers the sensitivity (true positive rate) and 1-specificity (false negative rate) in a two-dimensional graph 

(Coussement K,Van D., 2008). The sensitivity is the likelihood of identifying a positive case when presented with 

one while the specificity is the likelihood of identifying a negative case when presented with one (Gopal K, 

Sacchettini JC, Ioerger TR., 2007). A ROC curve depicts relative trade-offs between sensitivity and 1- specificity. 

The area under this ROC curve is calculated to compare the performance of a binary classifier (Hanley JA, McNeil 

BJ., 1982). When classifying randomly, the ROC curve is a line joining points (0, 0) and (1, 1) with the area under 

the curve equals 0.5. In general, any classification performance should be better than a randomly made classification.  

2.5 Gini Index 

Gini index was proposed and sudied by Aggarwal & Chen (Aggarwal CC, Chen C, Han JW., 2010). It aims to decide 

which feature variables are decision variables for a decision support appication. In the training data the key decision 

variables are identified and trained to predict the decisions classes. Training dataset Dtrian contains n reviews and each 

review q belong to a predefiend class with lables s which is drawn from the set {1…k}. Overall we have a dxn 

feature-review matrix with each feature is denoted i with i range from 1 to d and each review is denoted by q with q 

range from 1 to n. In our case since the lables will be a binary situation of reconmend or not. Now the Gini index is 

calculated to define the level of class dscrimination among the data points of each feature as follows:  
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Then we can use gini index to help us find the key features that are important to the decisions. With a bigger Gini 

index, it indicates a higher discriminating abillity of that word. 

3. Results 

In our paper, we tried to first to predict whether consumers will recommend or not of a car as a binary classification 

problem using only text data (reviews posted for the car) from consumers on kbb.com. The good prediction 

performance indicates that the written reviews are a good flection of consumers’ thoughts toward the cars. Then we 

tried to extract top key features with recommendation or not from the accurately predicted models for managerial 

implications using Gini index. 

3.1 Data Collection  

In our study, we use data obtained from kbb.com, which is a leading website in automobile industry. We collect the 

data of three auto models from three carmakers: Ford Focus, Nissan Sentra, and Toyota Avalon. These three cars are 

chosen because they are very popular models and make in the US market and attracts a good number of reviews. 

Also they belong to the same strategic group with the same target market, which makes sense to compare and 

contrast them. 

3.2 Empirical Analysis 

The first part of the analysis is the prediction of the positive/negative polarity of the reviews as indicated as 

recommend or not. We use overall ratings to classify the reviews into recommend (9 and 10 out of 10) or 

not-recommend (below 9) as our dependent variable and form this binary text classification problem. We follow the 

steps described in section 2. A common 10-folds cross validation for classification testing and prediction is used to 

avoid over-fitting and also train-test purpose. The classification model confirms our expectation that there is 

information content in the reviews that can help predict consumers’ overall attitude toward the cars: whether the 

consumers recommend it or not. 

The second part of the analysis is a key focus of our analysis: diagnostics of the key features. We used Gini index 

(discriminant) and the frequency (important) together to identify the top features associated with positive/negative 

attitudes. 

3.2.1 Classification Performance 

In this section, we report the performance results of online reviews’ classification models.  

Table 1. Prediction results of Bally, TI and Venetian (Accuracy) 

Automobile Ford Focus Nissan Sentra Toyota Avalon 

ROC .751 .704 .695 

As shown in Table 1, the predictive performances of the three cars using ROC are reported. All the ROCs are better 

than random classification performance 0.5 indicating a good prediction. 

Based on accurate prediction, we can do further analysis of key words and the applications in the following sections. 

Prediction itself also has managerial applications. Especially on the aggregate level, the over all tends of 

recommending or not can indicate the changing directions of the performance of the company so company can make 

some arrangements accordingly. 

3.3.2 Diagnostics 

The second part of the result focuses on the diagnostic use of the text mining methodology and Gini index analysis. 

For each feature, we calculated the Gini index of that feature and select only the ones with a Gini value higher then 

0.75 (Metz CE., 1978) and also frequency is higher than the average frequency of the words appearence. 
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Table 2. Gini index selection  

Ford Focus Nissan Sentra Toyota Avalon 

voice (p) efficiency (P) roomy (p) 

junk (n) room (p) matainance (p) 

navigation (p) family (p) acceleration (p) 

fix (n) touch (n) fix (n) 

command (p) gear (n) power (p) 

stereo (p) camera (p) size (p) 

sport (p) leg (p) sport (p) 

package (p) horsepower (p) dealership (p) 

mountain (p) engine (n) fuel (p) 

suspension (p) button (p) look (p) 

leather (p) freeway (n) hybrid (p) 

recall (n) city (n) camera (p) 

repair (n) music (n) cruise (p) 

warranty (n) performance (n) engine (p) 

service (n) Style (p) technology (p) 

friend (p) dealer (n) brake (p) 

dealership (n) brand (p) cabin (p) 

performance(p) fuel (p) family (p) 

family (p) mile (p) leg (p) 

trade (n) power (n) style (p) 

color (p) highway (p) price (p) 

convenience (p) base (p) luxury (p) 

clutch (n) design (p) space (p) 

shudder (n) wife (p) mile (p) 

maintenance (p)  radar (p) 

noise(n)  vibration (n) 

economy (p)  comfort (p) 

hatchback (p)  option (p) 

Option (p)  dash (p) 

camera (p)  seat (p) 

upgrade (p)  sound (p) 

size (p)  trunk (p) 

titanium (p)  wife (p) 

computer (p)  color (p) 

city (p)  console (n) 

design (n)  panel (n) 

toyota (n)  transmission (p) 

nissan (n)   

price (p)   

highway (p)   

brand (n)   

p: positive 

n: negative 
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As shown in table 2, we can identify the features strongly associated with recommending to others. These can really 

help us identify what aspects the car is doing well and valued by the consumers so they can be used as ad-words for 

online advertising. We can also identify the features strongly associated with not recommending, which can lead to 

the problematic aspects identification.  

For Ford Focus, overall brand image is negative with problems is repair/fix/warranty/service/dealership and low 

trade-in value. Consumers do like some of the car features like navigation systems (command, voice, etc.) and the 

low price (economy). For Nissan Sentra, engine/power seems to be a downside while other accessory features 

(design, style, camera, etc.) are valued as positive and the fuel efficiency. For Toyota Avalon, overall very positive 

attitudes of the consumers toward various aspects of the car except a few problems of vibration and the console part.  

4. Discussion  

In the previous section, we empirically show that the text mining models can classify the users’ recommendations for 

the cars very well. What the consumers put on websites can truly represent their real thoughts about their experience 

with the cars. Additionally we identified those top features, which are really important from the viewpoint of 

providing diagnostic information to the companies. These features positive or negative can both be of use to 

managers from different angles. Especially for the negative ones, they lead the direction of problematic areas. For 

Ford they should really work on to improve the reliability of the car as well as the perception of the consumers 

towards the car. For Nissan Sentra, the biggest problem sits on the engine, which can become a very critical issue. 

For Toyota Avalon, the design of the console should be looked and this should be an easier area to improve. 

Now we would like to compare the three cars to see the difference across the three cars.  

Table 3. Comparisons of 3 automobiles (Gini index based) 

Ford Focus Nissan Sentra Toyota Avalon 

Performance (performance) 

Quality (voice, navigation, 

command, stereo, package, 

suspension, leather, service (n), 

color, convenience, clutch (n), 

shudder (n), noise (n), option, 

camera, upgrade, size, titanium, 

computer, design (n)) 

Reliability (fix (n), recall (n), 

repair (n), warranty (n), 

dealership (n), Maintenance,) 

Styling (sport, mountain, friend, 

family, hatchback, city, 

highway)   

Value (junk (n), trade (n), value, 

economy, toyota (n), nissan (n), 

price, brand (n)) 

Comfort () 

Performance (horsepower, 

engine (n), performance (n), 

power (n)) 

Quality (room, touch (n), gear 

(n), camera, leg, button, music 

(n), base, design) 

Reliability (dealer) 

Styling (family, freeway (n), 

city (n), style, highway, wife) 

Value (efficiency, brand, fuel, 

mile,) 

Comfort () 

 

Performance (power, engine, 

vibration (n), transmission) 

Quality (roomy, acceleration, 

size, look, camera, cruise, 

technology, brake, cabin, leg, 

space, radar, option, dash, seat, 

sound, trunk, color, console, 

panel) 

Reliability (Maintenance, fix 

(n), dealership) 

Styling (sport, family, style, 

wife,) 

Value (fuel, hybrid, price, 

luxury, mile) 

Comfort (comfort) 

 

n: negative 

otherwise positive 

From table 3, we can see, these three hotels have lots of important features in common fall into the following aspects 

including performance, quality, reliability, styling, value and comfort. However among the common categories, there 

are same as well as unique features to each car. For the same features listed, then ranking is not the same either really 

indicates the attitudes differences across the three cars. Lots of product features are indicated under quality with 

unique features to each car. For Ford Focus, there are several negative features including service, clutch, shudder, 

noise and design, which should draw the manager’s attention. For Nissan Sentra, it is the tough, gear and music that 

are problematic. While for Toyota Avalon, all features are listed as positive. Engine and powers seems to be a 

problem for Nissan Sentra while vibration is problematic for Toyota Avalon. Nissan Sentra has the best reliability 

comparing to the other two both has negative features related to reliability. Dealership is also a downside for Ford. 
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All three cars are considered as for the family while Nissan and Toyota particularly indicated the wife preference. 

From consumers’ review Nissan and Toyota are seen as major competitors to Ford while Ford’s brand image lean 

more towards to the negative comparing with the other two brands. The two Japanese brands are seen as efficient 

brands are consistent with the long history. Ford is catching up on this but the trade value of the car seems still low. 

Toyota is the only one identified as comfortable by consumers out the three brands studied.  

The comparisons of the three major economy cars in the automobile industry indicated the current brand positioning 

of the three brands. Ford is still considered less reliable comparing to the two Japanese cars with Toyota seen as the 

leader. But we do see a small change in the minds of the consumers of improved performance and maintenance of 

Ford. Ford has spent resource in improving this and it worked. So they should continue on doing so. The internal 

features are positively valued by consumers and can be used as key words of advertising. Nissan has a big problem is 

engine/performance. This is critical for automobiles. Nissan should really pay attention to this area and started 

thinking on how to solve this issue before it is too late. Toyota is still recognized as the leader in this market and 

rated well on most aspects. One particular standing-out feature different from the other two is comfort. As now it is 

becoming harder and harder to differentiate and break the clutter, this feature might shine as the unique value 

proposition.  

5. Conclusion 

Online reviews of products and services are present all over the Internet. Potential consumers value these greatly. 

Marketers can also get valuable information from reading these reviews. These reviews predominantly contain 

text-based information. In our present research we utilize text-mining methodology to show that consumers’ attitudes 

can be accurately predicted by text mining.  

In addition to making predictions of recommendations, marketers would benefit tremendously if they can identify 

key words from many thousands of reviews; we suggest a framework by which companies can get this important 

diagnostic information. This framework consists of reliance on the importance of words based on frequency of 

occurrence and a new way to look at how certain words have greater power to discriminate/distinguish between 

existence and non-existence of recommendations (Gini index). Words identified by this diagnostic approach will be 

of use to advertising managers when they plan on designing messages appropriate for search engine advertising as in 

Google Adwords; a single ad here can use only a small number of words, and the choice of the keywords could 

become crucial from the viewpoint of revenue generation.  

While the contribution of this research is clear, there is still limitation of it. In this research we performed diagnostic 

analysis using online reviews and suggested managerial applications of it. It would be more beneficial if we can 

actually test the using of the key words identified from the research can improve the advertising effect. Also we 

compared the three car brands. It will be more beneficial we can use the identified features to construct the 

positioning map of the three brands.  

The potential future directions for this research stream are numerous. The overall methodology designed in this paper 

is a foundation that can be applied to a variety of marketing situations. In today’s digital era consumers freely 

express their opinions about products and services on many websites. This provides numerous information sources 

that can help academicians and practitioners in analyzing consumer attitudes. We can extend this methodology to 

study a tremendous variety of research questions that would benefit from the analysis of text content posted by web 

users all over the Internet. Advertisers and marketers would be among the prime beneficiaries once they can glean 

the appropriate information from text-based reviews. 
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