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ABSTRACT

We report on a metric of single joint movement smoothness based on phase plane analysis of trajectories of the wrist about
the elbow. Overall smoothness was quantified as the Phase Area Ratio (PAR), comparing the total area circumscribed by the
acceleration-velocity (A-V) curve, to the area of its convex hull; PAR ranges from 0 (perfectly smooth) to 1 (gross motor
impairment). Elbow flexion records obtained from a cohort study showed that PAR was significantly different in intact
(P AR = 9.4 × 10−4 ± 6.6 × 10−4, group average, N = 18) versus chronic stroke patients (0.11 ± 0.15, N = 9; Wilcoxon
rank-sum on group means: P < .0001). Separate simulations showed that PAR was appropriately insensitive to velocity asymmetry
and to scale factors, e.g. range of motion, peak- and average velocity, and movement duration. We conclude that PAR is an
attractive smoothness measure, as it accomplishes four objectives: 1) insensitivity to scale factors unrelated to trajectory shape,
2) discrimination of an intact versus impaired cohort, 3) reporting a near-zero impairment for healthy actors, responding
appropriately to asymmetries commonly observed in human movement, and 4) operation on a fixed, closed scale.
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1. INTRODUCTION

Smoothness is a hallmark of healthy neuromotor control, and
its absence is diagnostic of neuromuscular pathologies that
accompany hemiparesis, including spasticity and hyperki-
nesis. Conceptually, smoothness is an intuitive and easily
identifiable trait, but its quantification is a complex enterprise,
with no single measure yielding consistent, interpretable re-
sults.

The current approach to quantifying smoothness predicates
on a hypothetical neuromotor strategy that attempts to opti-

mize a singular analytical function: jerk, the summed rate
of accelerative changes of during a movement.[1] Thus jerk
quantifies smoothness according to the degree which the
movement minimizes its accelerative transients. The problem
with this classification is that, given a set of initial conditions,
only a single trajectory can meet it. Instead, we know many
different motion trajectories can efficiently achieve the same
target. This fact is illustrated most clearly by skilled actors
such as blacksmiths, working their hammer precisely to the
anvil using a different trajectory for each cycle.[2] Moreover,
goal-directed movements in general are asymmetric in the ac-
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celeration and deceleration phases.[3] Jerk classifies many of
these visually smooth and accurate movements as un-smooth.
Perhaps because of this flaw, the jerk metric has reported
anomalous increases following intensive rehabilitation,[4, 5]

and has failed to identify performance deficits in clinical
populations with clear motor impairment.[6, 7] How do we
resolve these contradictions?

Here we define a smooth movement as one which transcribes
a trajectory consisting of a biphasic velocity profile with a
sigmoidal acceleration phase followed by a sigmoidal decel-
eration phase. The definition specifically does not assume
a symmetric bell-shaped velocity profile, since this ideal-
ized model is rarely executed.[3, 8, 9] Here, we propose a
robust measure of motion smoothness that meets the follow-
ing requirements: 1) complete insensitivity to scale-factors
including range of motion, duration, and peak- or average
velocity, 2) consistent and interpretable baseline values for
motions of healthy subjects, 3) ability to discriminate healthy
from impaired motions, and 4) a scale from zero to one, with
zero representing ideal or completely proficient performance
and one representing complete impairment. Such proper-
ties are prerequisite to reliable comparisons across diverse
populations.

Where kinematic analyses in the temporal domain data re-
quire corrections for bias due to scale factors,[10, 11] trans-
forming kinematic data into the acceleration-versus-velocity
(A-V) phase plane using a ratio-metric approach, avoids this
problem entirely. Specifically, our solution is the phase area
ratio (PAR), which compares the phase area occupied by
the trajectory against an ideal convex polygon, a minimally
fit convex hull. Completely smooth movements as defined
above, will produce phase portraits identical to their hulls,
whereas non-smooth movements would deform the convex
hull to varying degrees. In the case of uni-phasic acceleration
and deceleration and zero accelerative transients, PAR=0;
PAR will increase towards unity as accelerative transients
grow. Here, we test PAR on both simulated data and real
data from human subjects. We show that PAR meets all
four requirements for a valid smoothness metric, offering an
accurate and versatile metric of motor proficiency.

2. METHODS
2.1 Phase area ratio
The PAR is calculated as follows: first, position versus time
data are converted into the acceleration-versus-time phase
space. In the A-V phase plane, smooth traces yield a wholly
convex polygon; symmetric velocity data yield an ellipti-
cal portrait (Figure 1 Left panels). While asymmetrical
velocities yield irregular–but still strictly convex–pseudo-
ellipses (Figure 1 Center panels); data containing accelerative

transients create local deviations from the ellipse, yielding
two features not seen in the portraits of smooth movements:
1) self-intersecting loops, and 2) bulging prominences. We
take these disruptions to the polygonal complexity of the
phase portrait to represent degrees of improficiency.

Figure 1. Phase-plane portrayals of three simulated flexions:
proficient, asymmetric, and improficient. Left panels show a
completely proficient flexion (top), and its phase portrait
(bottom), which is smoothly convex and symmetrical.
Center panels show an asymmetric but smooth flexion (top),
and phase portrait (bottom) which is distorted, but remains
convex. Right panels show an improficient flexion with
transient second peak in velocity, yielding it’s a distorted
phase portrait with multiple convex or overlapping traces.

Figure 2. Depiction of PAR calculation for 3 simulated
trajectories. Left panels show a transient deceleration with
modest concavity in phase portrait. Center panels show a
two-peaked velocity profile with concavity and overlapping
region; the overlap area contributes doubly to the phase area.
Right panels show a highly irregular velocity portrait with
multiple convex features and overlaps; overlaps contribute
doubly- or triply to total phase area, as appropriate. Ah =
Hull area, the region encompassed by the convex hull fitted
around the entire phase portrait. Af = Footprint area, the
region enclosed by the perimeter of the phase portrait.
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PAR is a single number that quantifies the motor behavior
illustrated by these phase portraits. Calculations involve mea-
suring three features: area of the “footprint” of the phase
portrait (Af), area of the convex hull enclosing the phase
portrait (Ah), and the area of any additional overlaps within
the phase plot created by the self-intersecting loops (Al), as
depicted in Figure 2.

We define the PAR as 1 − (Af ÷ (Ah+Al)). In the case of
no accelerative transients and monophasic acceleration and
deceleration, the phase plane is a wholly convex polygon,
Af = Ah, Al = 0, and PAR = 0; as accelerative transients
grow, Ah−Af > 0, Al > 0 and PAR > 0.

2.2 Human subjects data collection
Subject testing was approved by the Rutgers University In-
stitutional Review Board. Subjects were introduced to the
study methods and goals by one of the authors, and were
entered into the study after they read, consented and signed
the approved informed consent. Eighteen healthy controls
(10 male, 8 female; age range 20-64) and nine subjects with
stroke were studied (6 male, 3 female, age range 41-79 years,
and time post-CVA ranged from 5 to 72 months). Clinical
documentation and testing were done at Rutgers University
and the Kessler Institute for Rehabilitation (Edison, NJ). The
patient cohort comprised a mix of right-affected and left-
affected subjects, and only their affected arm was tested; all
control subjects were right-dominant and tested on the right
side. Subjects were seated with their arms supported against
gravity and comfortably held with VelcroTM by the Mechan-
ical Arm Supporter and Tracker (MAST), which restricts
movement about the shoulder and wrist, allowing isolated
single-joint articulation of the forearm about the elbow.[7]

All participants were instructed to flex and extend their elbow
at a comfortable pace and to a comfortable range; there were
not temporal or spatial targets to achieve.

2.3 Signal processing
The MAST was equipped with a potentiometric goniometer,
located on axis with the elbow, to register elbow position and
an accelerometer (ADXL330) located near the wrist. Sig-
nals were sampled at 40 Hz, bi-directionally filtered with a
low-pass Butterworth filter (4 Hz cutoff), and differentiated
with a point-wise difference. To reduce noise generated by
differentiation, filtering was applied after both the first and
second differentiation; this was done serially so as to allow
for obtaining a low-pass filtered trace for each differentiation,
i.e. a low-pass filtered position, a low-pass filtered velocity,
and a low-pass filtered acceleration trace. Flexion cycles
were segmented from the goniometric data stream by auto-
matic extraction of local angular extrema. Since fixed criteria

could not reliably detect the angular extrema in impaired sub-
jects who often stalled within a traverse, motion endpoint
was defined as a stop followed by a sustained reversal, and
identified visually. Individual flexions and extensions were
thus segmented from the angular position data and further
analyzed.

2.4 Cohort study
The most fundamental test for a performance measure is its
ability to discriminate an impaired cohort from an otherwise
comparable group comprised of neurologically intact persons.
Additionally, it is equally important that a valid performance
measure should yield consistently good scores for reason-
able movements performed by healthy actors. Our objectives
in this study are, firstly, to test whether PAR yields scores
approaching zero for the movements performed by healthy
actors, and secondly, to test whether PAR scores observed
among the cohort of stroke patients are significantly greater
than those in the control group. We thus devised the fol-
lowing hypotheses: H1: individual PAR averages < 0.01 for
each healthy subject, and H2: that a statistically significant
difference would be observed between the group-averages of
PAR scores between the two groups, at P < .05.

2.5 Simulations
2.5.1 Velocity asymmetry
In order to test PAR performance in the case of asymmetry,
velocity profiles of various symmetries were simulated via a
Fisk log-logistic probability distribution function, given by

(1)

where t is time (here set to 1 ≤ t ≤ 500 in increments of
0.5), 100 ≤ a ≤ 250 is a breadth parameter, and 3 ≤ b ≤ 20
is a parameter that determines length of the distribution tail.
Skewness for each simulated velocity profile was calculated
via the standard definition

(2)

where γ = 0 is perfectly symmetrical, γ < 0 indicates a
large tail before the peak, and γ > 0 indicates a large tail
after the peak.

We systematically compared the performance of PAR
with previously used smoothness measures: 1) non-
dimensionalized jerk, and 2) phase jerk. Both jerk measures
are based on the standard definition of smoothness as the
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minimization of the integral of the square of the first time
derivative of acceleration, but non-dimensionalized jerk pred-
icates on the conventional velocity-versus-time trace

(3)

where A = movement amplitude and T = total time (duration
of movement) (Takada et al., 2006), and phase jerk

(4)

Where θ̇(θ∗) is angular velocity θ̇ = dθ(t)/dt as a function
of normalized position 0 ≤ θ∗ ≤ 1.[11] We note that by
design, ϕ is the scale-independent phase-plane analog of
η, and therefore the closest comparator between PAR and
jerk-derived measures based in the time domain. Here, our
objective was to test whether PAR would be insensitive to
even moderate asymmetry in otherwise smooth movements
(i.e. free of accelerative transients); our operating hypothesis
was expressed as H3: PAR would remain below the P < .01
threshold for all movements, regardless of their skewness.

2.5.2 Scale factors
We tested PAR for its possible dependency on range of mo-
tion (ROM) or duration, similarly to a previous study of
jerk based measures.[12] To make this comparison, PAR was
computed for 12 repetitions each of both simulated and hu-
man movement cycles on original ROM and following three
decimations (to 0.1×A, 0.01×A, and 0.001×A, where A is
amplitude of ROM), and at three different durations (original
sampling rate and down-sampled to one-half and one-quarter
sampling rate). Our objective was to test whether PAR was
sensitive to scale factors unrelated to trajectory shape; our
hypothesis was H4: variance in PAR across all permutations
would yield less than 1% change from the true observed PAR
score in the un-perturbed record.

3. RESULTS

3.1 Cohort study
In total, 688 movement records were observed from 27 sub-
jects. The movements observed in our subjects would be
considered “typical” of any cohort study, with descriptive
statistics within the expected range: 91.8 ± 16.2◦ versus
72.3 ± 25.1◦ ROM (healthy versus stroke), 58.8 ± 7.3◦ ver-
sus 37.6 ± 11.9◦/s peak velocity, 33.0 ± 4.7o versus 15.6
±8.9◦/s average velocity, and 2.7 ±0.9s versus 8.8 ± 7.4s
movement duration. Examples of trajectories are shown in
Figure 3.

Figure 3. Sample flexion trajectories from unimpaired
subject (Top) and subject with chronic stroke (Bottom). The
left panels show kinematic portraits of position versus time,
and velocity versus time (Left Insets). Note the smooth
sigmoidal angle versus time curve, and (inset) the smooth,
moderately asymmetric bell-shaped velocity profile. The
right panels show the corresponding phase portraits of
acceleration versus velocity. Note the relatively smooth hull
for the control subject in contrast to the distorted profile and
multiple inner loops in the phase portrait of the stroke
subject.

The within-subject PAR scores for healthy subjects was
uniformly low: Range 0.00012 to 0.00243; PAR for the
chronic stroke patients was modest to moderate: Range
0.01247 to 0.46493. PAR was significantly different in in-
tact (PAR = 9.4 × 10−4 ± 6.6 × 10−4, group average,
N = 18) versus chronic stroke patients (0.11±0.15, N = 9);
Wilcoxon-rank sum on group means: P < .0001. Thus, H1
and H2 were confirmed: PAR yields uniformly low < 0.01
score for healthy actors, and significantly higher score for
impaired subjects.

3.2 Asymmetry
A skewed probability distribution was employed to simulate
velocity data of variable symmetries. The range of skew-
ness data was large: −1.4 ≤ γ ≤ 1.4, and as expected, all
three measures, PAR, non-dimensionalized jerk η, and phase
jerk ϕ, responded equally whether the skew was positive
or negative (i.e. the outcomes were reflected about the γ =
0 axis). For all data, PAR yielded a low score well below
the pre-defined threshold for healthy movements; we thus
confirm H3.

As context, we report that the two jerk-derived measures re-
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port very large scores for these data, and –counterintuitively–
larger scores for symmetric movements than for asymmetric
movements.

Figure 4. PAR yields nearly perfect scores (PAR�0.01) for
all traces, regardless of symmetry. Top row shows snapshots
of the simulated velocity traces, viz. Equation 1, across a
range of symmetries; Bottom row shows response of three
smoothness measures: PAR, non-dimensionalized jerk, and
phase jerk; only PAR shows an appropriate decrease with
symmetry, and all values are well below the PAR < 0.01
threshold for high proficiency.

3.3 Scale factors
PAR was tested with varying scale factors: amplitudes and
durations of movement, and their features, and peak and av-
erage velocities. With amplitude variations, PAR maintained
6-digit precision across all amplitudes of both human and
simulated data. Variations of duration, however, introduced
large (orders of magnitude) changes in PAR from human
subject data, but no changes in simulated data.

As a possible explanation for the apparent inconsistency be-
tween simulated and real data, we posited that the inherent
irregularities in empirical as opposed to simulated data, made
re-sampling an unsuitable basis for testing PAR consistency.
To test this, we up-sampled the raw position-versus-time
human data through interpolation to twice its original sam-
pling density, then down-sampled back to its original length,
twice differentiated both datasets (both raw, and the up-then-
down sampled data), and correlated both sets (representing
acceleration). The correlations were in general very low (0.5-
0.6), meaning that the acceleration traces of observational
data looked very dissimilar after re-sampling. By contrast,
the simulated data were little changed (correlation typically
greater than 0.99). Here we draw the specific conclusion that
PAR’s sensitivity to movement duration cannot be reasonably
tested via re-sampling of observational data, but that the test-
ing via re-sampling of simulated data is appropriate. More

generally, we conclude that PAR is completely independent
of scale factors, and thus, H4 is confirmed.

4. DISCUSSION

4.1 Significance
It has long been established that measures of human mo-
tor performance are sensitive to and can be confounded by
asymmetries in the velocity profile.[9] Measures such as jerk,
that operate strictly in the temporal domain, are highly sen-
sitive to motion asymmetry, and thus are unreliable metrics.
For example, jerk analysis of arm motions in subjects with
Parkinson’s disease, do not always report significant impair-
ment, despite the obvious impairment and large asymmetry
of movements.[13]

PAR represents a paradigm shift for standardizing movement
performance analytics and more reliable and straightforward
assessment of motor proficiency.

4.2 Implications
PAR has four useful features: (1) sensitivity only to the shape
of the motion and insensitivity to scale factors, (2) reliable
discrimination between patient and control cohorts, (3) con-
sistent and interpretable baseline values for healthy subjects,
and (4) performance rating on a bounded scale of 0 to 1.
While the first two features are not novel, the third and fourth
are not only novel, but potentially transformative. The jerk
coefficients, η and ϕ, have a “bottom” but no “top”, meaning
that an ideal performance could –in principle– yield a score
of 0 (notwithstanding potentially unrealistic assumptions
about velocity symmetry), but can reach arbitrarily large
values (see Figure 4). Too often, integrated measures are
normalized or re-dimensionalized, limiting their ability to be
compared across studies. PAR is unit-less, dimension-less,
and scale-free; healthy actors yield scores uniformly very
near zero (PAR < 0.01). These are attractive features that
cannot be replicated by integrated measures. Thus PAR val-
ues are universal, and can be immediately compared across
all platforms and populations.

From a broader perspective, PAR is agnostic with respect
to neuromotor organization: Performance measures tend to
intertwine with specific theories of motor planning. For in-
stance, jerk metrics are inextricably linked to the principle
that a motor plans seek to minimize them. While it is be-
yond the scope of this article to discuss any theories of motor
planning, we note that there are many competing theories,
each of which yields its own optimization-based measure.
PAR works backwards from this paradigm, looking purely at
the trajectory shape, and making no assumptions about the
underlying motor plan.
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4.3 Limitations

The concept that the PAR range of zero to one spans the clin-
ical range of complete proficiency to complete impairment
was not proven. For our cohort of 18 healthy subjects, PAR
ranged from 0.00012 to 0.00243. The question of whether
zero PAR can be humanly achieved is unanswered, but is
probably not important to the utility of the measure. Since
zero is a very hard number to achieve in any measure, we
arbitrarily set a benchmark test for complete proficiency at
an arbitrarily close to zero, PAR = 0.01, which was achieved
by our healthy cohort. Stroke cohort PAR values ranged
from 0.01247 to 0.46493, which translates to impairment
levels ranging from slightly worse than healthy to about half
fully-impaired. These outcomes, i.e. statistical significance
in the presence of a high standard, validates PAR, and more
definitive categorization of impairments by PAR can be doc-
umented with further testing on larger populations.

4.4 Implementing PAR

While there are methods for calculating convex hull in
large dimensional datasets,[14, 15] most commercially avail-
able computational software packages only support hull find-
ing in the planar case (i.e. the two-dimensional A-V plane for
single-joint motion). However, with regard to the computa-
tion of PAR reported here, we executed our calculations using
Octave, a freeware computational environment with highly
similar design and syntax to Matlab;[16–18] these computa-

tions could have also been performed using R or a lower-level
language. Thus, for at least the computationally tractable sce-
nario of single-joint motion, this computation can be made
without the purchase of expensive proprietary software or
toolboxes: PAR is an accessible measure.

4.5 Future work
As technology advances our ability to record human motions
in more natural conditions and with finer resolutions, the
need for better biomechanical metrics is increasing. For ex-
ample, the Computer Assisted Rehabilitation Environment
(CAREN) system can record motions and forces from an al-
most unlimited number of sites on the freely moving body at
high temporal and spatial resolution, yielding over 1 million
data points per session. An initial use of this technology has
been to assess jerk and asymmetry of arm motions during
walking by persons with Parkinson’s disease.[13] Phase-plane
analysis offers a more efficient and standardized means to
reduce these voluminous data into meaningful and accurate
measures, and holds great potential as a bioinformatic ap-
proach to clinical diagnoses.
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