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Abstract 
With the significant progress in sequencing technologies over the last 10 years, a concomitant increase in the detection of 
variants of uncertain significance (VUSs) has been reported with an increasing amount of data. The interpretation of VUSs 
has been challenging due to the discordance of prediction results and their classification in different locus-specific 
databases (LSDBs). The evolving nature of variant classification systems poses the question as to the best strategies for 
variant interpretation. With the increased complexity of data analysis in a clinical setting, the pathogenicity of a variant 
should be determined through integrating and interpreting the data as a whole. Here we demonstrate the problems that are 
commonly encountered when interpreting VUSs and show that data integration helps in determining the pathogenicity of a 
variant. 
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1 Introduction 
Breast cancer is the most frequently registered cancer and the second leading cause of cancer death among women in New 
Zealand. Compared to the second half of last century, the incidence of breast cancer has been increasing in New Zealand [1]. 
Germline mutations in the BRCA1/2 genes account for approximately 10% to 15% of all breast and ovarian cancers and are 
known as hereditary breast and ovarian cancers (HBOC) [2, 3].  

The BRCA1/2 genes, which are tumor-suppressor genes, were identified by positional cloning in the 1990s. These genes 
encode for proteins that are responsible for controlling cellular growth and differentiation [3-5]. Patients who have known 
pathogenic mutations identified in the BRCA1/2 genes carry a genetic predisposition to developing breast, ovarian, 
prostate, and/or pancreatic cancer. According to Stratton and Rahman [6], patients carrying known pathogenic mutations 
have a 10 to 20-fold increased risk of breast/ovarian cancer compared to those in the general population. Mutation 
screening of the BRCA1/2 genes using either Sanger-based or Massively Parallel Sequencing approaches provide 
improved prognosis and clinical management for HBOC patients. Patients who carry known pathogenic mutations are 
offered enhanced surveillance strategies, chemoprevention and risk-reducing surgery [7, 8].  
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The majority of germline pathogenic mutations in the BRCA1/2 genes are either nonsense or frame-shift mutations, while 
approximately 5% to 6% of HBOC patients in the United States are reported as carrying an “unclassified variant” (UV) or 
a “variant of uncertain clinical significance” (VUS) in the BRCA1/2 genes [9]. The remaining 80% of patients carry variants 
that are common polymorphisms. These polymorphisms are detected in greater than 1% of the population, which are not 
predicted to have any impact on protein function [10].  

With the increasing demand of multi-gene panel sequencing and advanced sequencing technologies, such as whole- 
genome sequencing (WGS) and whole-exome sequencing (WES), there has been a concomitant increase in the detection 
of VUSs [7, 11, 12]. The detection frequency of VUSs ranges from 2% to 21% among laboratories [9, 12, 13]. VUSs are 
sometimes referred to as unclassified variants (UVs). The two terminologies are interchangeable but the interpretation 
differs between the two. VUSs refer to variants that may or may not be previously studied and their clinical significance is 
unknown, whereas UVs refers to unstudied variants. VUSs can be either i) missense substitutions or in-frame deletions 
and insertions (IFDIs), in which the effect on protein structure and function is unknown, ii) silent substitution or intronic 
variants, which may potentially affect mRNA splicing, or iii) variants located in regulatory regions [10]. 

The findings of a VUS always complicate genetic counselling and cancer risk estimation, as the clinical interpretation 
remains unclear in relation to the phenotype of the patient, thus bringing challenges to family counselling and 
decision-making regarding preventive surgery. A retrospective study [8] has compared the risk management strategies of 
patients with a deleterious mutation and patients with a VUS. Patients with a VUS were observed to have a twofold lower 
likelihood of having risk-reducing surgery and lower rates of surveillance in their first five years of being tested.  

In order to interpret the pathogenicity of UVs and VUSs, and hence their roles in tumour development, different 
multifactorial likelihood models have been developed and applied in order to aid the interpretation [14-17]. The 
multifactorial likelihood model, also known as an integrated evaluation or posterior probability model, consists of three 
components: prior probability of causality, combined likelihood ratios of observational data, and posterior probability of 
causality [14-16].  

The prior probability of causality primarily focuses on analysing a VUS at the protein level by evolutionary conservation 
and physiochemical properties of the amino acid [14]. If the substitution is located in a highly conserved position of the 
protein, such as the RING and BRCT domains of BRCA1 or the DNA-binding domain of BRCA2, then in silico prediction 
tools (e.g. Align-GVGD) can be used to calculate the prior probability of being pathogenic [15]. With respect to calculating 
a combined likelihood ratio of observed data, four types of information can be included that comprise the following:  
i) co-segregation analysis, ii) co-occurrence (in trans) with known deleterious variants, iii) personal and family history, 
and iv) histopathology of the tumour [10, 15]. Co-segregation analysis relies on genotype data from the pedigree; if most 
family members who develop breast cancer carry the same VUS, it is highly suggestive that this VUS is disease- 
causing [10, 16]. The identification of co-occurrence (in trans) with known deleterious variant(s) is another powerful 
approach as it helps exclude the pathogenicity of a VUS. Individuals who are homozygotes for pathogenic mutations in the 
BRCA1 or BRCA2 genes are embryonically lethal or develop Fanconi anaemia, respectively [10, 16]. Information regarding 
particular features such as the age of onset, number of cancers and the types of cancers allows comparisons to be made 
between families with a deleterious mutation and families with a VUS, hence establishing the likelihood of a VUS with the 
disease phenotype [10, 16]. Histopathological features of the tumour from VUS carriers can be compared with tumours from 
patients who carry known pathogenic BRCA gene mutations. These features include estrogen receptor (ER) status, tumor 
grade and cytokine status. By deriving the likelihood ratios from these data, and combining the prior probability, the 
posterior probability of causality can be calculated for a VUS for classification purposes (see Figure 1) [10, 16]. 

A number of studies have used multifactorial likelihood modelling for variant classification. Lindor et al. [10] combined the 
odds or likelihood ratios of segregation analysis results, variant co-occurrence, personal and family history and pathology 
profiles to calculate the posterior probability of causality for each variant. This approach led to reclassifying VUSs into 
five classes according to the IARC (International Agency for Research on Cancer) Working Group on Unclassified 
Genetic Variants (classification classes will be discussed below). Kuo et al. [18] used a multifactorial model that involved 
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be categorised into three major groups: i) evolutionary conservation and sequence homology-based, ii) protein 
structure-based and iii) supervised learning [22].  

Against the background described above, 29 unique missense variants (see Table 1) detected by the authors in the 
BRCA1/2 genes were analysed by interrogating multiple LSDs and in silico prediction programmes The aims here were 
two-fold: first, to achieve a classification status for the 29 variants; and secondly, to determine an optimum strategy for 
future variant analysis. 

Table 1. Summary of missense variants 

BRCA1 gene  BRCA2 gene  

Nucleotide change Predicted Protein change  Nucleotide change Predicted Protein change  

c.140G>A p.(Cys47Tyr) c.865A>C p.(Asn289His) 
c.1067A>G p.(Gln356Arg) c.1114A>C p.(Asn372His) 

c.1487G>A p.(Arg496His) c.2680G>A p.(Val894Ile) 

c.2077G>A p.(Asp693Asn) c.2971A>G p.(Asn991Asp) 

c.2315T>C p.(Val772Ala) c.4258G>T p.(Asp1420Tyr) 

c.2612C>T p.(Pro871Leu) c.5744C>T p.(Thr1915Met) 

c.3113A>G p.(Glu1038Gly) c.6100C>T p.(Arg2034Cys) 

c.3119G>A p.(Ser1040Asn) c.6101G>A p.(Arg2034His) 

c.3548A>G p.(Lys1183Arg) c.6323G>A p.(Arg2108His) 

c.4039A>G p.(Arg1347Gly) c.8149G>T p.(Ala2717Ser) 

c.4535G>T p.(Ser1512Ile) c.8215G>A p.(Val2739Ile) 

c.4837A>G p.(Ser1613Gly) c.8351G>A p.(Arg2784Gln) 

c.4956G>A p.(Met1652Ile) c.8359C>T p.(Arg2787Cys) 

c.5525T>C p.(Val1842Ala) c.8851G>A p.(Ala2951Thr) 

  c.9038C>T p.(Thr3013Ile) 

2 Methods 
Patients were referred to Genetic Health Services New Zealand (Northern Hub) for BRCA1/2 gene mutation screening. 
DNA was extracted from peripheral ethylenediaminetetraacetic acid (EDTA) blood samples using the Gentra® 
Puregene® Blood Kit (3 ml) (Qiagen, Venlo, Limburg, Netherlands), according to manufacturer’s instructions. Informed 
consent underpinned the diagnostic referrals. The National Multi-Region Ethics Committee has ruled that cases of patient 
management do not require formal ethics committee approval. The quality and quantity of extracted gDNA were measured 
using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). 

Genomic DNA from 120 patients were subjected to BRCA1/2 gene sequencing using Massively Parallel Sequencing (MPS) 
technology. Any identified variants were subsequently confirmed by bi-directional Sanger-based sequencing. Sequence 
data was aligned against the reference sequences NC_000017.10 (BRCA1; LRG_292t1; NM_007294.3) and 
NC_000013.10 (BRCA2; LRG_293t1; NM_000059.3) from the Human Genome assembly (HG19 build). HGVS v2.0 
nomenclature was used to describe all variants with nucleotide numbering starting from the first nucleotide of the 
translated sequence. 

2.1 MPS sequence data 
Amplicons encompassing BRCA1/2 gene exons with flanking intronic regions of 3-20bp upstream and downstream were 
analysed using SeqPilot (SeqNext module, Version 3.4.2 Build 504; JSI medical systems GmbH). Customised settings, as 
described in other studies, were used to achieve a Phred score equivalent of 33 [29, 30]. 
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2.2 Sanger-based sequencing data 
Amplicons encompassing BRCA1/2 gene exons and, if necessary, 20 bp of flanking intronic DNA were analysed using 
commercially available software (Variant Reporter; Applied Biosystems, USA). 

2.3 Pathogenicity prediction 
The interrogation of databases and online bioinformatic programmes were carried out using Reference Sequences 
indicated above, together with RefSeq protein and Uniprot accession numbers: BRCA1 (NP_009225.1; P35398) and 
BRCA2 (NP_000050.2; P51587). 

2.4 Classification based on data from Locus-specific Databases (LSDs) 
Five locus-specific databases were assessed for variant classification: Breast Cancer Information Core (BIC)  
Database [23, 31], Human Gene Mutation Database (HGMD®) Professional [26], BRCA Share™ (formally known as 
Universal Mutation Database [UMD]) [27], Leiden Open Variation Database (LOVD), and ex-VUS LOVDatabase (known 
as LOVD-IARC) [28]. 

The BIC database [23] has been the leading locus-specific database for breast cancer susceptibility genes and, to date, more 
than 1500 variants are listed in the database as of unknown clinical significance [14, 19, 24]. This database has evolved to be 
one of the variant classification platforms for scientists and clinicians [25]. Prior to 2006, the pathogenicity of a variant was 
solely based on the submitter’s data, which could be potentially biased due to insufficient data and incorrect use of the BIC 
Classification system; interestingly, the BIC database uses a unique nomenclature to describe each variant. The HGMD® 
Professional [26] is a paid subscription database that is maintained by the Institute of Medical Genetics in Cardiff, 
containing comprehensive mutation data with published literature and in silico prediction results. The LOVD is 
maintained by the Leiden University Medical Center, The Netherlands, in which variants are listed with dual HGVS and 
BIC nomenclature, together with information from the literature. BRCA Share™ (formally known as UMD) [27], is 
maintained by the French BRCA GGC Consortium and contains data collected from 16 French laboratories. Finally, the 
ex-VUS LOVDatabase (known as LOVD-IARC) [28] contains missense variants that are listed in LOVD but have been 
reclassified using a quantitative “posterior probability model”.  

For simplicity, the classification of these missense variants in five locus-specific databases were categorised as “benign”, 
“pathogenic”, “uncertain”, and “not listed” (see Table 2). 

Table 2. Definition of variant classifications between five locus-specific databases 

Classification 
HGMD® 
Professional 

BIC BRCA Share LOVD 
ex-VUS 
LOVDatabase 

Benign DP-1 
DF-1 
DFP-1 

Not Path 
1-neutral 
2-likely neutral 
polymorphism 

-/?  
 

Class 1 
Class 2 

Uncertain DM? 
DP-2 
DFP 

Unknown 
3-UV 
 

Combination of +/? , -/? 
and/or ?/? 

Class 3 

Pathogenic DM 
DP 
FTV 

Path 
4-likely causal  
5-causal 

+/? 
Class 4 
Class 5 

Not listed Not listed Not listed Not listed Not listed Not listed 

Note. HGMD® = Human Gene Mutation Database Professional 2015.1. Variant Classes: DM = disease causing mutation, DM? = disease causing mutation?, DP= 
disease-associated polymorphism; DFP = disease-associated polymorphism with additional supporting functional evidence, FTV = frameshift or truncating variant,  
1 = associated with a decreased risk, 2 = functional polymorphism; BIC = breast cancer information core database. Variant Classes: Not Path = Not pathogenic, Unknown = 
unknown pathogenic significance, Path = pathogenic; LOVD = leiden open variant database. Variant Classification: +/? = predicted to be deleterious, -/? = predicted to be 
neutral,?/? = inconclusive or no comment on pathogenicity; ex-VUS LOVDatabase Variant Classes: Class 1 = no known pathogenic, Class 2 = probably no pathogenicity, 
Class 3 = effect unknown, Class 4 = probably pathogenic, Class 5 = pathogenic 
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2.5 Classification based on data from population databases 
Three population databases were accessed for allele frequency data: Database of Single Nucleotide Polymorphisms  
(dbSNP) [32, 33], Exome Aggregation Consortium [34] and Exome Variant Server [35]. Variants listed with a minor allele 
frequency (MAF) of 1% or greater were assigned a benign classification. Data from the 1,000 Genomes project was 
available on the dbSNP database, therefore a separate entry was not carried out. 

2.6 Classification based on data from in silico splice site bioinformatic 
analysis 
Four in silico splice prediction programmes were used to check for possible splicing effects of the missense variants: the 
Splice Site Prediction by Neural Network online tool of the Berkeley Drosophila Genome Project [36, 37]; the Alternative 
Splice Site Predictor [38, 39] tool; and Human Splicing Finder [40, 41] using the prediction algorithms of HSF and MaxEnt [42]. 
Prediction outcomes from these programmes were compared for each variant. 

2.7 Classification based on data from in-silico protein bioinformatic 
analysis 
Thirteen online in silico protein analysis programmes were used to predict the pathogenicity of each missense variant and 
the prediction algorithm for each of these programmes is shown in Table 3. 

Table 3. Summary of in silico protein prediction program algorithms used in our analysis 

Online in silico 
programmes 

Programmes  input 

Type of prediction algorithms 

Evolutionary conservation 
& sequence homology 

protein sequence & 
protein structure 

Supervised 
learning 

PolyPhen2 UniProt annotation 
Mutation Assessor RefSeq Protein ID 
I-Mutant 2.0 FASTA Protein sequence 
PhD SNP UniProt annotation  
MutPred FASTA Protein sequence  
SNP&GO UniProt annotation  
PANTHER FASTA Protein sequence 
Align-GVGD FASTA Protein sequence ¹

SNAP FASTA Protein sequence  
SIFTBLink RefSeq Protein ID 
PROVEAN RefSeq Protein ID 
Mutation Taster NCBI Gene ID ² 

Note. √1 together with biophysical characteristics of the amino acid; √2 together with data from different mutation databases. PolyPhen2 =  polymorphism phenotyping v2; Mut 
Ass = mutation assessor; PhD-SNP = predictor of human deleterious single nucleotide polumorphisms; MutPred = application tool for classifying an amino acid substitution as 
disease-associated or neutral; SNPs&GO = server for predicting human disease-related mutations in proteins with functional annotations; PANTHER = protein analysis 
through evolutionary relationships; Align-GVGD = Align-Grantham variation grantham deviation; SNAP = predicts effect of non-synonymous polymorphisms on protein 
function; SIFTBLink = sorting intolerant from tolerant analysis on single protein using precomputed BLAST from NCBI Blink; PROVEAN = protein variation effect 
analyzer. 

Polymorphism Phenotyping Version 2 (PolyPhen 2) [43] predicts the effect of a missense variant on protein structure and 
function, based on sequence conservation using a Naїve Bayes Classifier, with prediction outcomes as either “Probably 
damaging”, “Possibly damaging”, or “Benign” for the variant of interest. Two pairs of trained PolyPhen-2 models were 
available: HumDiv- and HumVar-trained models. HumDiv model predicts pathogenicity by comparing Mendelian disease 
variants to the divergence of close mammalian homologs of the human protein, whereas the HumVar model compares all 
disease-associated variants to reported benign polymorphisms. Predictions made using the HumVar model are considered 
more suitable for diagnostic purposes.  
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Align-GVGD [44, 45] predicts the pathogenicity of missense variants based on multiple protein sequence alignments and the 

biophysical characteristics of the amino acids. The classification ranges from Class C65 (most likely disease-causing) to 

Class C0 (less likely disease-causing). 

Mutation assessor [46] predicts the functional effect of a missense variant on a protein based on evolutionary conservation 

patterns derived from multiple sequence alignments.  

I-Mutant 2.0 [47, 48] assesses the stability of a missense variant based on the changes in protein sequence and structure and 

classifies the variant as either “neutral” or “disease” with a reliability index that ranges from 0 (less reliable) to 9 (most 

reliable).  

MutPred [49] predicts the pathogenicity of a missense variant based on the protein sequence and structure, and classifies the 

change as either disease-associated (denoted as D) or neutral (denoted as N), with a probability score. 

SNPs&GO [50] predicts the pathogenicity of a missense variant based on information derived from the sequence and 

function of a protein from the Gene Ontology (GO database). The prediction result is presented as either a neutral 

polymorphism or a disease-related polymorphism with a reliability index ranging from 0 (unreliable) to 10 (reliable).  

Protein analysis through evolutionary relationships (PANTHER) [51, 52] predicts the functional impact of a missense variant 

on the protein based on the alignment of evolutionarily-related proteins, and calculates a subSPEC (substitution 

position-specific evolutionary conservation) score ranging from -10 (most likely to be deleterious) to 0 (neutral), while -3 

is the cut-off value for functional significance.  

Screening for non-acceptable polymorphism (SNAP) [53] predicts the effect of a missense variant on protein function and 

structural annotation, which classifies the variant as non-neutral or neutral with reliability index and accuracy calculated.  

Predictor of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP) [54] works in a similar fashion iMutant 2.0 

as it assesses sequence homology to classify a missense variant as disease-related (Disease) or a neutral polymorphism 

(Neutral), with a reliability index. 

Protein variation effect analyser (PROVEAN) [55] predicts the functional impact of a missense variant. The PROVEAN 

Human Protein Batch tool compares homologous sequences between human and mouse and generates a PROVEAN score 

with a predefined threshold of -2.5. A deleterious prediction corresponds to a PROVEAN score of less than or equal to -2.5, 

otherwise it is considered neutral. This programme also provides a prediction based on the SIFT algorithm.  

Sorting intolerant from tolerant (SIFT) blink [56] predicts the pathogenicity of a missense variant based on the sequence 

homology from multiple sequence alignments, and a conservation value and scaled probability are calculated. The variants 

are classified as either “tolerated” or “affect protein function” with a SeqRep score. This score refers to the fraction of 

sequences containing one of the basic amino acids. Poorer predictions are made from unaligned sequences or are severely 

gapped for the position of interest; the poorer the predictions, the lower the SeqRep scores.  

MutationTaster2 [57] classifies missense variants as either neutral or disease-causing, with an associated P value. The  

P value refers to the probability of the prediction, which is not the probability of error as used in t-test statistics. The closer 

to the value of 1, the higher the security of the prediction, but not the reliability of the prediction; incorrect predictions are 

not usually reflected by low probabilities. This programme assesses evolutionary conservation and integrates data from 

different databases: dbSNP, 1,000 Genome, ClinVar and HGMD® Pro, in order to provide a comprehensive analysis of the 

variant. 
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3 Results 

3.1 Searching Locus-Specific Databases (LSDs) 
Twenty-nine missense variants were checked for pathogenicity in five locus-specific databases. Detailed data are given in 
Table 4. The results for each variant are shown graphically in Figure 2 to provide a visual summary regarding the 
classification of each variant. 

Table 4. Classification of 29 BRCA1/2 gene missense variants in five locus-specific databases 

BRCA1 gene 

Nucleotide 
Predicted 
Protein 

HGMD® 
Professional 
2015.1 

BIC BRCA Share 
LOVD 
Database

ex-VUS 
LOVDatabase 

Nucleotide

c.140G>A p.(Cys47Tyr) DM Not listed 5 - Causal Not listed Not listed  
c.1067A>G p.(Gln356Arg) DP Unknown 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.1487G>A p.(Arg496His) DM? Unknown 1 - Neutral Mixed -/? & ?/? 1 

c.2077G>A p.(Asp693Asn) DP Not Path 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.2315T>C p.(Val772Ala) DM Unknown 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.2612C>T p.(Pro871Leu) DFP-1 Not Path 1 - Neutral Mixed -/? & ?/? &+/? Not listed 

c.3113A>G p.(Glu1038Gly) DP Not Path 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.3119G>A p.(Ser1040Asn) DM? Unknown 1 - Neutral Mixed -/? & ?/? 1 

c.3548A>G p.(Lys1183Arg) DP-1 Not Path 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.4039A>G p.(Arg1347Gly) DM? Unknown 1 - Neutral Mixed ?/?, -/?, +/? 1 

c.4535G>T p.(Ser1512Ile) DM? Not Path 1 - Neutral Mixed -/? & ?/? 1 

c.4837A>G p.(Ser1613Gly) DM? Not Path 1 - Neutral Mixed ?/?, -/?, +/? 1 

c.4956G>A p.(Met1652Ile) DM? Unknown 1 - Neutral Mixed ?/?, -/?, +/? 1 

c.5525T>C p.(Val1842Ala) Not listed Not listed Not listed Not listed  Not listed 

BRCA2 gene 

Nucleotide 
Predicted 
Protein 

HGMD® 
Professional 
2015.1 

BIC BRCA Share 
LOVD 
Database

ex-VUS 
LOVDatabase 

Nucleotide

c.865A>C p.(Asn289His) DP-1 Not Path 1 - Neutral Mixed -/? & ?/? &+/? Not listed 
c.1114A>C* p.(Asn372His) DFP Not listed 1 - Neutral Mixed -/? & ?/? Not listed 

c.2680G>A p.(Val894Ile) Not listed Unknown
2 - Likely  
Neutral  

Neutral -/? 1 

c.2971A>G p.(Asn991Asp) DM? Not Path Polymorphism Mixed -/? & ?/? &+/? Not listed 

c.4258G>T p.(Asp1420Tyr) DM? Not Path 1 - Neutral Mixed -/? & ?/? &+/? 1 

c.5744C>T p.(Thr1915Met) Unknown Unknown 1 - Neutral Mixed -/? & ?/? Not listed 

c.6100C>T p.(Arg2034Cys) DM? Unknown 1 - Neutral Mixed -/? & ?/? 1 

c.6101G>A p.(Arg2034His) DM? Unknown Not listed Not listed  Not listed 

c.6323G>A p.(Arg2108His) DM? Unknown 1 - Neutral Mixed -/? & ?/? 1 

c.8149G>T p.(Ala2717Ser) DM? Not Path 1 - Neutral Mixed -/? & ?/? 1 

c.8215G>A p.(Val2739Ile) Not listed Not listed 3 - UV Mixed -/? & ?/? Not listed 

c.8351G>A p.(Arg2784Gln) DM Unknown 3 - UV Pathogeni +/? Not listed 

c.8359C>T p.(Arg2787Cys) Not listed Unknown 3 - UV Pathogeni +/? Not listed 

c.8851G>A p.(Ala2951Thr) DM? Not Path 1 - Neutral Mixed -/? & ?/? Not listed 

c.9038C>T p.(Thr3013Ile) DM? Not Path 1 - Neutral Mixed -/? & ?/? Not listed 

Note. HGMD® = human gene mutation database professional 2015. Variant Classes: DM = disease causing mutation, DM? = disease causing mutation?, DP= disease- 
associated polymorphism; DFP = disease-associated polymorphism with additional supporting functional evidence, 1 = associated with a decreased risk; BIC = breast cancer 
information core database. Variant Classes: Not Path = not pathogenic, Unknown = unknown pathogenic significance, Path = pathogenic; LOVD = leiden open variant 
database. Variant Classification: +/? = predicted to be deleterious, -/? = predicted to be neutral, ?/? = inconclusive or no comment on pathogenicity. 
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database; however, during the course of this study, data in the BIC database was found to be “out-of-date”. The HGMD® 
Professional was found to over-score the variants, with common SNPs listed as mutations [58]. 

Table 8.  Summary of integrated data for 29 missense variants 

Nucleotide change 
Classification 

Benign Uncertain Pathogenic Not listed 

BRCA1:c.140G>A 23% 0% 54% 23% 

BRCA1:c.1067A>G 58% 8% 35% 0% 

BRCA1:c.1487G>A 62% 23% 12% 4% 

BRCA1:c.2077G>A 85% 4% 12% 0% 

BRCA1:c.2315T>C 42% 23% 31% 4% 

BRCA1:c.2612C>T 88% 8% 0% 4% 

BRCA1:c.3113A>G 65% 12% 23% 0% 

BRCA1:c.3119G>A 62% 19% 19% 0% 

BRCA1:c.3548A>G 96% 4% 0% 0% 

BRCA1:c.4039A>G 54% 31% 15% 0% 

BRCA1:c.4535G>T 54% 27% 19% 0% 

BRCA1:c.4837A>G 77% 15% 8% 0% 

BRCA1:c.4956G>A 81% 12% 8% 0% 

BRCA1:c.5525T>C 31% 8% 35% 27% 

BRCA2:c.865A>C 73% 12% 8% 8% 

BRCA2:c.1114A>C 46% 15% 8% 31% 

BRCA2:c.2680G>A 73% 15% 4% 8% 

BRCA2:c.2971A>G 85% 8% 4% 4% 

BRCA2:c.4258G>T 50% 23% 27% 0% 

BRCA2:c.5744C>T 65% 15% 12% 8% 

BRCA2:c.6100C>T 46% 27% 27% 0% 

BRCA2:c.6101G>A 58% 19% 8% 15% 

BRCA2:c.6323G>A 58% 27% 15% 0% 

BRCA2:c.8149G>T 54% 27% 19% 0% 

BRCA2:c.8215G>A 62% 15% 4% 19% 

BRCA2:c.8351G>A 31% 23% 38% 8% 

BRCA2:c.8359C>T 35% 15% 31% 19% 

BRCA2:c.8851G>A 38% 31% 23% 8% 

BRCA2:c.9038C>T 50% 23% 19% 8% 

Six of the 29 missense variants were listed as disease-causing mutations in the HGMD® Professional database. BRCA 
ShareTM classified the majority of the variants, with only 5 of the 29 missense variants recorded as “classification unknown” 
(comprising those of “uncertain significance” and “not listed”). The data available from BRCA ShareTM, based on the 
French population, is not a true reflection of the general population. Only three of the 29 missense variants were not listed 
in the LOVD database; however, more than three-quarters of the variants were listed as “unknown clinical significance”, 
so this database was of limited use. In contrast, the ex-VUS LOVDatabase, which uses a rigorous posterior-probability 
approach, classified 17 of the 29 missense variants as benign; the remaining 12 missense variants were unreported in this 
database. Due to the perceived clarity of the classifications made in the ex-VUS LOVDatabase, it was considered to be the 
“gold standard” database for variant classification. 
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However, the analysis was carried out using a relatively small sample size and was limited to missense variants. Further 
analysis should be undertaken using a larger sample set with different types of VUSs. Furthermore, the control group was 
not well established in the analysis. Control cohorts using clearly pathogenic and clearly benign classifications could be 
considered to determine those in silico protein prediction programs that should be used for classifying variants in the 
BRCA1/2 genes. As has been described elsewhere [22], the most appropriate repertoire of in silico programmes to use must 
be determined for each gene.  

In the diagnostic environment, data from locus-specific databases and in silico prediction programmes are given weight in 
establishing the classification of a VUS and hence aiding clinicians in supporting a diagnosis and for subsequent predictive 
testing in family members of the proband. Population data has gradually been implemented as part of the analysis 
approach in diagnostic laboratories; however, allele frequency data are ethnic-specific. Furthermore, while data can be 
aggregated from a disease cohort, caution should be taken during interpretation.  

The current classification approaches using population allele frequencies, entries in disease databases and computational 
analysis cannot always clearly classify missense variants. Segregation data, as well as functional data, would be beneficial 
to assist in the interpretation of the clinical significance of variants.  

The newly introduced online visualisation tool, BRCA1Circos [59], might change the face of the current analysis approach 
in diagnostic laboratories. This tool compiles and displays all the functional data for all documented variants in the BRCA1 
gene, which allows direct comparisons between functional data and strengthens the classification system of VUSs. 
Furthermore, an international collaboration by the ENIGMA (Evidence-Based Network for the Interpretation of Germline 
Mutant Alleles) Consortium has been established to facilitate studies of the clinical significance of VUSs [24]. The 
consortium comprises six working groups focusing on either: VUS interpretation for cancer risk, VUS classification in 
relation to clinical details, ENIGMA database maintenance, functional assays for VUS, histopathological studies of VUS, 
and large-scale splicing studies. Recently published guidelines by the American College of Medical Genetics (ACMG) has 
introduced a comprehensive evaluation system for variant interpretation [60]. The system involves assessing the strength of 
all the available evidence and integrating it to classify a sequence variant by following pre-defined criteria. Furthermore, 
two different systems have been suggested to classify variants as “pathogenic or likely pathogenic” and “benign or likely 
benign”. This published system reflects the increasing complexity of data analysis in a clinical setting, and suggests that 
the pathogenicity of VUSs should be determined through integrating and interpreting the data as a whole. With 
increasingly accessible functional data, the multidisciplinary approach by the ENGIMA consortium, and a more 
comprehensive classification system, determining the pathogenicity of VUS should improve in the near-future. 
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