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ABSTRACT

Objective: Many different marker sets have been used in marker trajectory based gait classification approaches. Little knowledge
exists about the effects of specific marker sets on the subsequent statistical modeling. Such analysis is often based on principal
component analysis. The aim of this study was to test the effect of marker set choice on marker trajectory and principal component
analysis based gait classification.
Methods: This study tested the performance of principal component analysis based gait classification models with various marker
sets on the basis of simulated gait impairments. Simulated gait impairments were used to enable a high level of control of the gait
patterns.
Results: Classification accuracies were similar across most tested marker sets. Improved performance could be detected for some
marker sets depending on the type of impairment.
Conclusion: Several potentially valid marker sets exist for a specific gait classification task even though trends could be found
suggesting that optimal marker set choice is dependent on functional aspects of the movement.
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1. INTRODUCTION

Kinematics of walking patterns can be represented by 3D
trajectories of point markers on specific body positions. Vi-
sualizations of such representations have been studied in
visual perception of human gait such as gender classifica-
tion[1] or recognition of individuals.[2] Troje[1] examined
the application of multivariate statistics for automatic gait
pattern recognition on 3D marker trajectory data. Direct
application of statistics on the marker trajectory data with-
out prior biomechanical modeling can save computational

costs and is independent of mechanical model assumptions.
This has been proposed as a holistic approach, resembling
human perception in some respects.[3] Several studies in the
gait analysis domain have applied variations of this approach
and various marker sets have been used across these stud-
ies.[1, 3–12] The marker sets can be differentiated based on
two major aspects. Firstly, whether the marker set covers
the full body or body parts; full body marker sets were used
most frequently.[1, 3–6, 11] Body part marker sets include uni-
lateral placement on the lower extremity,[7, 10, 12] unilateral
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placement on the upper and lower extremity[9] and bilateral
placement on the lower body and thorax.[8] Secondly, marker
sets can be differentiated based on whether the markers are
placed exclusively on specific anatomical landmarks. Marker
placement exclusively on anatomical landmarks was used
for most associated studies and these marker sets were based
on Vicon’s Plug-In-Gait R© model[3, 8, 11] or on customized
models.[6, 7, 9, 10, 12] Federolf, Boyer[4] included marker clus-
ters in addition to the markers on anatomical landmarks.[13]

As a result of the variety of marker sets in use the number
of markers ranges from 12 to 36 in the mentioned studies.
Despite this, little effort has been invested in examining the
effects of specific marker set choice (number and placement
of the markers) on the subsequent data analysis. For clinical
applications of automatic gait classification, it is important
to achieve accurate classification since incorrect diagnoses
can elevate costs for both, patients and clinicians. For exam-
ple, accurate diagnosis is needed to decide for an adequate
treatment. Therefore, it is important to use appropriate meth-
ods to solve specific gait classification problems. In marker
trajectory based gait classification the choice of the marker
set could be a crucial issue with uncertain implications, and
exactly how the marker set choice influences the subsequent
data analysis is of specific interest. In a typical pattern recog-
nition approach, this analysis consists of feature extraction
and classification,[14] therefore, the problem must investigate
specific feature extraction and classification methods. The
majority of the above mentioned studies applied Principal
Component Analysis (PCA) for feature extraction and di-
mensionality reduction. Recently, self-organizing maps have
also been used[7] but PCA has been favored mainly because
it is particularly powerful on high redundancy data such as
kinematic gait data. For classification methods, the linear
Support Vector Machine (SVM) algorithm has been used
in several approaches.[7–11] Other state of the art classifiers
such as Ada Boost,[15] Naïve Bayes[14] or Random Forest[16]

are capable of solving non-linear classification problems and
are commonly considered in machine learning applications.

In each application of marker trajectory and PCA based gait
classification, the question arises of which marker set should
be chosen to achieve optimal performance. Therefore, the
aim of this study was to investigate the impact of various
marker sets on the performance of marker trajectory and PCA
based gait classification models. The marker sets examined,
differed in number of markers and their distribution over the
body. To facilitate conclusions on the relationship between
the effects of specific marker sets and the functional aspects
of the gait patterns, the study was applied to artificially in-
duced impaired gait patterns. This type of simulation allowed
a high level of control while ensuring clear understanding of

the functional aspects of the gait patterns.

2. METHODS

2.1 Participants

Thirty healthy male participants were recruited for this study
(24±3 yrs; 180±5 cm; 77±7 kg; all values mean ± standard
deviation). All participants had no gait impairments, full
range of motion in their knee joints and any functional length
discrepancy was smaller than 1.5 cm. The study was ap-
proved by the institutional ethics board and written informed
consent was obtained from all participants.

2.2 Experimental protocol and measurements

Gait analysis was performed while participants walked on a
laboratory treadmill at a constant walking speed of 5 km/h.
Gait impairments were simulated by artificially induced re-
striction of knee extension or by artificially induced leg
length discrepancy. Knee extension was restricted to 170◦

and 140◦ extension by means of an orthosis. Leg length
discrepancy was induced by wearing differently soled shoes,
with one shoe having a 2 cm or 4 cm thicker sole than the
other shoe. The orthosis and the thicker soled shoes were
applied on the right leg of all participants. Restricted knee
extension (RKE) and leg length discrepancy (LLD) were
treated as separate independent conditions. Thus, when the
orthosis was applied, normal shoes were worn. When the
modified shoes were worn, no orthosis was applied. Each par-
ticipant walked under six different conditions: walking with
unrestricted orthosis (RKE-0); walking with the orthosis re-
stricted to 170◦ (RKE-1) and 140◦ (RKE-2) knee extension;
walking with equally soled shoes (LLD-0) and walking with
unequally soled shoes with 2 cm (LLD-1) and 4 cm (LLD-2)
difference. The 3D trajectories of 46 reflective markers on
the body were captured at 250 Hz by an eight camera opto-
electronic device (Vicon, Oxford Metrics Ltd., Oxford, UK).
Markers were placed according to Vicon’s Plug-in-Gait R©
full body marker set. Additionally, marker clusters were
placed on the shank and thigh.[4, 13]

2.3 Marker sets

The complete marker set consisting of all 46 markers con-
tained markers on all body parts (see Figure 1). It con-
tained markers on specific anatomical landmarks and mark-
ers placed arbitrarily on a specific segment; the former were
denoted as anatomical markers and the latter as movement
markers.
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Figure 1. Marker placement. Anatomical markers are
depicted as circles, movement markers as triangles

Six marker subsets were defined with respect to body parts
and inclusion of movement markers. Marker sets with only
anatomical markers were denoted as anatomical (A) marker
sets. Marker sets including anatomical and movement mark-
ers were denoted as combined (C) marker sets. The marker
sets are listed in Table 1 and illustrated in Figure 2.

Table 1. Six different marker sets were defined with respect
to body parts and the inclusion of movement markers

 

 

 
Body parts Type Name N° 

Full body Combined FB-C 46 

Full body Anatomical FB-A 30 

Lower body Combined LB-C 25 

Lower body Anatomical LB-A 12 

Modified leg Combined ML-C 12 

Modified leg Anatomical ML-A 5 

Figure 2. Six different marker sets. Included markers are marked black, excluded markers are marked gray

2.4 Data analysis
2.4.1 Preprocessing
The data analysis was implemented in Matlab R© version
R2015b using the statistics and machine learning toolbox
(The MathWorks Inc., Natic, MA, USA). The raw marker
coordinate data were low pass filtered at 6 Hz. For each trial
ten individual consecutive stride cycles from one heel strike
to the next heel strike of the left leg were extracted. To com-
pensate for anatomical differences and different positions
of the participants on the treadmill, the waveforms of each
marker and spatial direction were centered on their mean
value over the entire stride. Waveforms of each individual
stride were time normalized to 101 samples per stride and
averaged over the ten strides for each participant and condi-
tion. Subsequently, the data of each participant and condition

were arranged in a row vector to construct a spatio-temporal
representation of the gait pattern in a vector space.[4, 8, 10–12]

The waveforms of each marker and spatial direction were
concatenated to form the gait pattern vectors with m × 303
dimensions (m markers × 3 spatial directions × 101 points
in time). For further analysis, the gait pattern vectors (row
vectors) were vertically concatenated to construct an input
matrix. Thus, each column of an input matrix corresponded
to a dimension and each row to a participant walking at a
certain condition. One input matrix was constructed for each
marker set and classification task. Four binary classifica-
tion tasks were considered: RKE-0 vs. RKE-1, RKE-0 vs.
RNE-2, LLD-0 vs. LLD-1 and LLD-0 vs. LLD-2. This
resulted in a total of 24 input matrices (6 marker sets × 4
classification tasks). The subsequent statistical modelling
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was conducted on each input matrix independently based
on a typical pattern recognition scheme including feature
extraction, classification and model evaluation.[14] For sim-
plicity, the feature extraction and classification methods are
described independently from the model evaluation. Thus,
the feature extraction and classification sections describe how
the model was built on a set of training data. The evaluation
section describes how the generalization performance of the
model was estimated.

2.4.2 Feature extraction
Before applying PCA, each input dimension was z-
transformed to have zero mean and unit variance. The princi-
pal components were ranked in descending order according
to the fraction of explained data variance. The principal
components that contain together 95% of the variance were
selected as features for classification. The remaining com-
ponents were supposed to contain mainly noise and were
therefore discarded.[5]

2.4.3 Classification
Classification was conducted using four supervised machine
learning algorithms: Linear SVM, Naïve Bayes, AdaBoost
(AdaBoost.M1) and Random Forest. The parameters of the
algorithms were tuned by means of a leave-one-subject out
cross validation (more details below) within a range of preset
values. For the SVM, the penalization parameter C was tuned
(C = 10x; x = 4, 3,. . . , 4). For AdaBoost and Random Forest,
the number n of weak learners was tuned (n = 10, 20, 40, 80,
160, 320). The weak learners for AdaBoost were chosen to
be decision stumps.[17] All other parameters were set to their
default values.

2.4.4 Evaluation
A leave-one-subject out cross validation was used for model
evaluation,[17] and the input matrix was vertically split into
folds, where each fold contained only data of a single partic-
ipant (two data items per participant; one from each class).
Each fold was held out iteratively for testing while the re-
maining folds were used for training the model. Parameters
for the z-transformation and the principal components were
computed exclusively on the training data and later used to
transform the test data. The data were arranged and split in
the same order for each model to enable pairwise statistics
for model comparison. A confusion matrix was built for
each classification task. Algorithmically, the model evalu-
ation resulted in a nested cross validation design with an
internal loop for parameter optimization and an external loop
for performance estimation.

2.4.5 Statistics
The confusion matrices were used to compute the posterior
distribution of the accuracy of each model.[18] The mean
and the corresponding 95% credible interval of the posterior
distribution of the accuracy were calculated. The one-sided
probability to have a posterior accuracy greater than chance
level (50%) was computed for each model. A paired sam-
ples Wald test was used to compare the performance of the
models.[19] The tests were performed to compare each of
the marker subsets with the marker set including all avail-
able markers (FB-C) and to compare the anatomical marker
sets (FB-A, LB-A, ML-A) with the corresponding combined
marker sets (FB-C, LB-C, ML-C). The tests were performed
for each classifier independently. The significance level was
set to α = 0.05.

3. RESULTS
3.1 Comparisons with chance level classifier
The results of the evaluation are shown in Figure 3. For
task RKE-0 vs. RKE-1 all classifiers performed approxi-
mately at chance level for all marker sets except ML-A. With
the ML-A marker set all classifiers performed significantly
above chance level (Naïve Bayes: p < .01, AdaBoost: p =
.01, Random Forest: p = .02, SVM: p = .04) (see Figure 3A).
On the other classification tasks, all classifiers performed
significantly above chance level with each marker set (p <
.01) (see Figure 3B-3D).

3.2 Comparisons with FB-C marker set
For the RKE tasks, all significant differences indicated an
increased accuracy with a smaller marker set than with the
FB-C marker set. At least one significant increase could be
found for each classifier (see Figure 3A-3B). For the LLD
tasks all significant differences indicated a decreased accu-
racy with a smaller marker set than with the FB-C marker set
(see Figure 3C-3D). At least one significant decrease could
be found for AdaBoost and SVM.

3.3 Comparisons of combined and anatomical marker
sets

For the RKE tasks, two significant differences could be
found that indicate an increased accuracy with the anatomi-
cal marker set compared with the corresponding combined
marker set (see Figure 3A-3B). For the LLD tasks, two sig-
nificant differences could be found, of which one indicated
an increased accuracy and one a decreased accuracy with
the anatomical marker set compared with the corresponding
combined marker set (see Figure 3C-3D).
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Figure 3. Mean posterior accuracies and 95% credible intervals for six marker sets and four classifiers. Each classification
task is depicted in a separate chart. A: RKE-0 vs. RKE-1; B: RKE-0 vs. RKE-2; C: LLD-0 vs. LLD-1; D: LLD-0 vs.
LLD-2.
* refers to a significant difference to the full body marker set (p < .05);
+refers to a significant difference to the corresponding combined marker set (p < .05)

3.4 Number of principal components
Table 2 contains the number of principal components used
for classification. The full data set was used to compute these
results.

Table 2. Number of principal components containing 95%
of the data variance computed on the full data set

 

 

 
FB-C FB-A LB-C LB-A ML-C ML-A 

RKE-0 vs. 
RKE-1 

30 29 27 26 21 20 

RKE-0 vs. 
RKE-2 

31 30 27 26 20 19 

LLD-0 vs. 
LLD-1 

30 29 27 26 21 20 

LLD-0 vs. 
LLD-2 

30 29 27 25 21 20 

Note. Rows: classification tasks. Columns: marker sets. 

 
4. DISCUSSION
The results of the study show that for marker trajectory and
PCA based gait classification, a variety of marker sets can
yield similar accuracies on the same classification task in-
dependently of the used classifier. For an individual clas-

sification task and classifier, the accuracies were within a
range of approximately 10% for most marker sets. This is
a remarkable result as the number of markers ranged from
five in the smallest marker set (ML-A) to 46 in the largest
one (FB-C). This finding explains to some extent, the great
variety of marker sets used in various studies since the choice
of the marker set might not be a crucial aspect in the methods.
This suggests that the information carried by some markers
is highly redundant. The interdependency of the marker
movements is caused by the internal and external constraints
(e.g. mechanical, neurophysiological) that govern the human
motor system in order to control its degrees of freedom.[4]

For that reason, PCA is justified as it is specifically pow-
erful reducing the dimensionality of highly correlated data.
Therefore, PCA is capable of experimentally determining the
degrees of freedom of gait patterns.[20]

Even though the classification accuracies were generally sim-
ilar, several significant differences were detected and these
indicated two major tendencies depending on the type of clas-
sification task. Firstly, the RKE tasks accuracies tended to
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increase when using a smaller marker set. This is suggested
by the observation that all significant differences indicated
an increased accuracy with a smaller marker set than with
the FB-C marker set. Furthermore, for the RKE-0 vs. RKE-1
task each classifier achieved a significantly higher classifica-
tion rate than 50% only with the smallest (ML-A) marker set
for each classifier. For the RKE-0 vs. RKE-2 task all classi-
fiers achieved higher accuracies with the ML-A marker set,
even though only significant for Naïve Bayes and AdaBoost.
Thus, the same tendency can be observed in both RKE tasks
but the accuracies for the RKE-0 vs. RKE-2 task were gener-
ally much higher. This is reasonable as the effect of the 140◦

restriction on the gait pattern is expected to be larger than of
the 170◦ restriction (see Figure 3A-3B). Secondly, regarding
the LLD tasks accuracies tended to decrease when using a
smaller marker set. This is suggested by the observation
that all significant differences indicated a decreased accuracy
with a smaller marker set than with the FB-C marker set.
Furthermore, in both LLD tasks all classifiers had generally
decreased accuracies with the ML-C and the ML-A marker
set compared with the FB-C marker set, even though not sig-
nificant in all cases. To explain these two contrary tendencies,
the different functional aspects of the RKE and LLD tasks
can be considered. Restricting the knee extension has a large
impact on a well localized area of the body, in particular the
knee joint. It can be assumed that the whole body movement
is affected by this type of restriction but that the dominant
effects can be observed directly at and around the restricted
joint. In this case, the movement of the markers on the re-
stricted leg might be affected most. This means that these
markers carry more discriminative information, resulting in a
higher signal to noise ratio of the trajectory data compared to
markers on other body parts. Excluding markers with lower
discriminative power reduces the number of dimensions with
low signal to noise ratio. The exclusion of noisy dimensions
can have a significant impact on the performance of PCA.[21]

This weakness of PCA may be overcome by using other
feature extraction methods. Sources of noise are the natural
inter- and intra-subject gait variability. The intra-subject gait
variability was reduced by averaging the trajectories over
ten stride cycles. By contrast, the effects of the LLD on the
marker trajectories cannot be localized so clearly. It is not ob-
vious which markers carry more discriminative information
than others. The tendency of decreased accuracies with the
smaller marker sets might be caused by excluding markers
that contain valuable discriminative information. These two
contrary effects are thus functionally reasonable. For practi-
cal applications, functional aspects could be considered for
optimizing the choice of the marker set. In cases where large
effects are expected in a well-defined area of the body and

peripheral effects are not of particular interest, a specifically
chosen body part marker set should be preferred over the full
body marker set. Conversely, in cases, were the effects are
allocated over the body or little knowledge exists about the
localization, a full body marker set should be preferred. To
yield more detailed recommendations on how to optimize
the marker set choice in clinical applications further research
on specific gait classification problems is required.

For the comparisons between combined and anatomical
marker sets no clear statement can be made on which type is
preferable. The few significant differences observed did not
indicate a definite trend and from a practical perspective it is
notable that the use of additional movement markers does not
seem to be a crucial point when choosing the marker set. It is
obvious that movement markers augment redundant informa-
tion as they are placed on the same segments as anatomical
markers. The additional non-redundant information consists
of two different parts. Firstly, information about rotations
around the longitudinal segment axis, if there are only two
anatomical markers placed on the endpoints of the segment.
Secondly, information about non-rigid segment movements
mainly caused by skin displacement.[13] These sources of
information are essential for adequately fitting a mechanical
model to the data. For marker trajectory based gait classifi-
cation the rotation aspect might play a secondary role since
information about rotations around the longitudinal segment
axis can also be mediated by markers on adjacent segments in
some cases. For example, a rotation of the shank will neces-
sarily result in a movement of the foot. In non-rigid segment
movements, the movement markers have the potential of sup-
porting the noise filtering effect of the PCA. Since the marker
trajectory relationships on an ideally rigid segment would be
linear, PCA is best suited to separate the highly correlated
information from rigid segment movement and the random
noise resulting from non-rigid segment movement.[5] On the
other hand, movement markers can increase the interindi-
vidual variance of the marker trajectories because they are
placed on approximate locations. This could make it more
difficult to identify systematic group differences, although,
these mechanisms do not have a significant impact in the
current study, but may become more relevant in other gait
classification tasks.

For all classification tasks the number of principal compo-
nents used for classification was the smallest with the small-
est marker set and increased with the number of markers in
the set (see Table 2). This increase of about 10 principal
components is relatively small compared to the increase of
the input dimension from the smallest (5 × 303 = 1515) to
the largest (46 × 303 = 13938) marker set. This result in-
dicates the high correlation between the marker trajectories.
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For future studies it could be of interest to investigate the
effects of even larger or smaller markers sets.

While four classification algorithms were tested in this study
it should be emphasized that it was not the purpose to com-
pare the performance of the algorithms with each other for
classification accuracy on the same task. Rather, the aim
was to consider how each individual classifier reacted on the
different marker sets. The results showed that all classifiers
reacted in a similar way to the various marker sets. This
indicates that the observed results were not dependent on the
specific classification algorithm and allowed a more general
interpretation.

5. CONCLUSIONS
The present study investigated the effects of various marker
sets on the performance of marker trajectory and PCA based
gait classification models. It was shown that various poten-

tially valid marker sets exist for a certain gait classification
task. This explains the variety of marker sets used in pre-
vious approaches, since the differences between the marker
sets were rather small. However, notable tendencies could
be observed. The well-controlled simulated impairments
allowed linking of these tendencies with functional aspects
of the gait patterns. If the effects of the impairment can be
well-localized, it can be beneficial to select a smaller marker
set which only includes the most informative markers. A
larger or full body marker set can be beneficial, if the effects
of the impairment cannot be clearly localized. These findings
can be considered when arranging a marker set for future
studies or clinical applications of marker trajectory and PCA
based gait classification.
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