Morning report decreases length of stay in emergency general surgery patients

James R. Gardner¹, John D. Wolfe¹, William C. Beck¹, Kevin W. Sexton¹, Avi Bhavaraju¹, Ben Davis¹, Mary K. Kimbrough¹, Hanna K. Jensen¹, Ronald D. Robertson¹, Rebecca J. Reif², Saleema A. Karim², John R. Taylor*¹

¹Department of Surgery, Division of Trauma and Acute Care Surgery, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
²Department of Health Policy and Management, University of Arkansas for Medical Sciences, Little Rock, AR, United States

Received: May 30, 2019 Accepted: September 8, 2019 Online Published: September 23, 2019
DOI: 10.5430/jha.v8n6p1 URL: https://doi.org/10.5430/jha.v8n6p1

ABSTRACT

Objective: Communication in the hospital setting is an easy target for quality improvement. Capturing this change via communication between providers during hand-offs is necessary to reduce delays and errors. While this process has been more widely characterized in medical specialties, we designed this study to address the knowledge gap in surgical specialties.

Methods: Our institution’s division of Acute Care Surgery (ACS) implemented Morning Report (MR) in October of 2015. At MR, all admissions and service transfers were discussed from Trauma, Emergency General Surgery (EGS), and Surgical Critical Care services from the previous 24 hours. This study compared patients who underwent a surgical procedure during their hospital stay before and after protocol implementation.

Results: 974 patients were included in this study. The average patient was 50.3 years of age, 65.4% were white, and 51.7% were male. The average length of stay (LOS) was 8.3 days with 1.75 days to procedure. The post-MR cohort LOS was 2.7 shorter and had 0.85 fewer days to procedure. In an adjusted regression analysis, days to procedure and LOS decreased by 33% ($p < .01$) and 17% ($p < .01$) respectively.

Conclusions: Implementation of MR led to a decrease in the overall LOS and days to procedure for operative patients. Our results advocate for the standard use of structured hand-offs in surgical units.

Key Words: Emergency general surgery, Morning report, Length of stay, Quality, Communication

1. INTRODUCTION

Communication in the hospital setting is an easy target for quality improvement. The clinical condition of patients can be rapidly changing. Capturing this change via communication between providers during hand-offs is a necessary function to reduce delays as well as errors and to provide the best possible patient care. Modern work hours restrictions for residents in academic medical centers have encouraged most programs to turn to a night float model for resident call[1–4]. As a result, shift changes in surgery often happen early in the morning or late at night and can occur at a brisk pace as there are no Accreditation Council for Graduate Medical Education (ACGME) limitations placed on the number of patients a surgical resident can cover.[5–10] Where there are handoffs of information, miscommunication can occur, and lead to patient errors and litigation.[11] Recently, it has been shown that academic medical centers are at greater risk for these types of medical errors.[12] To deal with the problem.
of miscommunication in healthcare, interventions have been
aimed at the standardization of transferring patient infor-
mation and have shown that structured use of standardized
hand offs have been the most efficient and most effective
intervention.[13, 14]

Morning conferences are a means of providing a mandatory,
standardized patient hand off procedure in many fields of
medicine, and is an effective strategy according to physi-
cian survey data.[15] These conferences allow for consistent
data transmission, opportunity for collaboration between care
providers, and allow for junior residents and faculty to ob-
serve more experienced faculty transfer information. This
process has been shown to impact patient care in the form of
decreased length of stay (LOS) and hospital charges.[15, 16]
This process has been more widely characterized in medical
specialties; thus, we designed this study to address the
non-standardized gap in surgical specialties.

The UAMS Division of Acute Care Surgery (ACS) imple-
mented a morning conference style patient hand off called
Morning Report (MR) in October 2015. Previous hand offs
were unsupervised communications between the night call
resident team and the day call team through the use of email
or personal conversation. At MR all admissions and ser-
vice transfers were discussed from the Trauma, Emergency
General Surgery, and Surgical Critical Care services for the
previous 24-hour time period. Attendees included the night
resident team, day resident team, and the staff surgeons for
the Trauma, ACS, and Surgical Intensive Care Units (SICU).
The patients discussed have a plan of care formulated with
input from all teams in attendance.[17] During this same
period, there were no other significant lab, operational, or
faculty changes made. The role of the current study was to
determine the impact of this newly implemented MR model
on surgical EGS patient outcomes.

2. METHODS

This retrospective, observational study was conducted by
querying the Enterprise Data Warehouse of the Arkansas
Clinical Data Repository (AR-CDR) for all EGS patients
between 2014 and 2018 who underwent a procedure during
their hospital stay.[18] All patients with a LOS of 0 were
excluded from the analysis because of their absence from a
MR. Patients without procedure codes were also excluded
as the aim of this study was to analyze the effect on sur-
gical patients. Nonsurgical patients were excluded due to
inconsistencies in admission codes, and to ensure that the
patients would have been managed solely by the EGS team
instead of as a consult. This ensures that the patients would
be discussed in MR.

Patients were placed into two cohorts based on date of ad-
mission (prior to or after October 1st, 2015). Population
statistics on age, gender, race, CPT codes for region of pro-
cedure, Elixhauser readmission score, LOS, and days to
procedure were gathered and then analyzed to create a bi-
variate analysis of group means and proportions. Patients
were defined as “multigroup” if more than one anatomical
region was impacted and operated on in their first procedure.
Patients were defined as “multiple procedure” if they under-
went more than one procedure during their admission. To
assess significant differences between the two cohorts, t-tests
were used for continuous variables and chi-square tests were
used for categorical variables. Statistical significance was
set at \(\alpha = 0.05 \) for all analyses. Correlation analysis was
completed to identify potential multicollinearity among the
independent variables. The analysis was conducted using
Stata 14.0 (College Station, Texas). To adjust for selection
bias and the differences between the two cohorts, propensity
score weighting was performed using the TWANG pack-
age developed by RAND to balance the two cohorts to aid
in the determination of a causal inference.[19] Propensity
scores are used to ensure the two patient cohorts have sim-
ilar characteristics to those that would be created through
random assignment. Propensity score weighting was used
over the matching method because weighting ensures that
all the patients in the sample are used, whereas propensity
score matching results in a reduction in sample size because
of unmatched patients. Due to the nature of the outcome
variables and the skewness of the distribution, count mod-
els were used to analyze the impact of MR on the outcome
measures. The Pearson Chi2 dispersion statistic was used
to determine model fit between a negative binomial regres-
sion and Poisson model. LOS and days to operation were
treated as count models, and subsequently negative binomial
regression was used for both LOS, and days to first procedure
using the propensity score weighted sample. The coefficients
were to be exponentiated to allow for easier interpretation of
percentage change.

This study was conducted in accordance with all applicable
government regulations and UAMS research policies and pro-
cedures. The UAMS Institutional Review Board approved
this study and granted a waiver of informed consent for this
research because it involved no more than minimal risk to
the subjects.

3. RESULTS

Table 1 displays the descriptive statistics of the population.
The patients were typically around 50 years of age and pre-
dominately white with a roughly even balance of males and
females. The average LOS for all 974 patients was 8.85 days with 1.92 days to procedure. The most common CPT code for region of procedure was for abdominal procedures in this population.

Table 2 shows that there post cohort was slightly older (48 vs. 51 years) than the pre protocol implementation cohort. Additionally, the post cohort had a lower LOS by 2.7 days and days to procedure by 0.85 days. The two populations did not differ significantly in gender, race, or CPT region of procedures performed.

Table 3 demonstrates that after propensity score matching, the post-MR cohort has a close to 17% decrease in LOS compared to the pre cohort. Being identified as white, having multiple regions operated on, injuries to the cardiovascular system, and having multiple operations all demonstrated significantly increased LOS.

Table 4 demonstrates that MR has a similar effect on days to procedure as it does on LOS. MR demonstrates a close to 33% decrease in days to procedure.

Table 1. Study population descriptive statistics (n = 974)

<table>
<thead>
<tr>
<th>Study population Descriptive Statistics (n = 974)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Male, n (%)</td>
</tr>
<tr>
<td>Race</td>
</tr>
<tr>
<td>Black, n (%)</td>
</tr>
<tr>
<td>White, n (%)</td>
</tr>
<tr>
<td>Other, n (%)</td>
</tr>
<tr>
<td>Unknown, n (%)</td>
</tr>
<tr>
<td>Pre or Post Morning Report</td>
</tr>
<tr>
<td>Pre, n (%)</td>
</tr>
<tr>
<td>Post, n (%)</td>
</tr>
<tr>
<td>CPT Region for Procedure</td>
</tr>
<tr>
<td>Genitourinary, n (%)</td>
</tr>
<tr>
<td>Chest, n (%)</td>
</tr>
<tr>
<td>Cardiovascular, n (%)</td>
</tr>
<tr>
<td>Soft Tissue, n (%)</td>
</tr>
<tr>
<td>Abdomen, n (%)</td>
</tr>
<tr>
<td>Readmit score</td>
</tr>
<tr>
<td>Length of Stay, days</td>
</tr>
<tr>
<td>Days to first procedure</td>
</tr>
</tbody>
</table>

Table 2. Pre vs. post MR bivariate analysis

<table>
<thead>
<tr>
<th></th>
<th>Pre Morning Report (n = 386)</th>
<th>Post Morning Report (n = 1,425)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>47.9 ± 17.7</td>
<td>51.0 ± 18.3</td>
<td>.034</td>
</tr>
<tr>
<td>Male n, (%)</td>
<td>90 (46.2)</td>
<td>414 (53.1)</td>
<td>.081</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>123 (63.1)</td>
<td>514 (66.0)</td>
<td>.446</td>
</tr>
<tr>
<td>CPT Region for Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitourinary, n (%)</td>
<td>1 (0.5)</td>
<td>9 (1.2)</td>
<td>.426</td>
</tr>
<tr>
<td>Chest, n (%)</td>
<td>14 (7.2)</td>
<td>50 (6.4)</td>
<td>.701</td>
</tr>
<tr>
<td>Cardiovascular, n (%)</td>
<td>20 (10.3)</td>
<td>75 (9.6)</td>
<td>.791</td>
</tr>
<tr>
<td>Soft tissue, n (%)</td>
<td>55 (28.2)</td>
<td>221 (28.4)</td>
<td>.964</td>
</tr>
<tr>
<td>Abdomen, n (%)</td>
<td>105 (53.8)</td>
<td>424 (54.4)</td>
<td>.884</td>
</tr>
<tr>
<td>Readmit score</td>
<td>15.0</td>
<td>12.6</td>
<td>.064</td>
</tr>
<tr>
<td>Length of Stay, d</td>
<td>11.0</td>
<td>8.3</td>
<td>< .01</td>
</tr>
<tr>
<td>Days to first procedure</td>
<td>2.6</td>
<td>1.75</td>
<td>< .01</td>
</tr>
</tbody>
</table>
Table 3. Coefficients for negative binomial regression of LOS with propensity score matching

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post MR</td>
<td>-0.019</td>
<td>.007 [-0.33, -0.053]</td>
</tr>
<tr>
<td>Age</td>
<td>0.0037</td>
<td>.057 [-0.00011, 0.0076]</td>
</tr>
<tr>
<td>Male</td>
<td>0.046</td>
<td>.49 [-0.083, 0.18]</td>
</tr>
<tr>
<td>Race, Black</td>
<td>-0.13</td>
<td>.055 [-0.26, 0.003]</td>
</tr>
</tbody>
</table>

CPT Region

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multigroup (> 1 CPT regions)</td>
<td>0.82</td>
<td>< .01 [0.69, 0.95]</td>
</tr>
<tr>
<td>Multiple Procedure</td>
<td>0.53</td>
<td>< .01 [0.403, 0.67]</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>0.057</td>
<td>.43 [-0.085, 0.199]</td>
</tr>
<tr>
<td>CV</td>
<td>0.29</td>
<td>< .01 [0.084, 0.49]</td>
</tr>
<tr>
<td>Chest</td>
<td>0.19</td>
<td>.028 [0.021, 0.37]</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>-0.0086</td>
<td>.98 [-0.616, 0.598]</td>
</tr>
<tr>
<td>Readmit Score</td>
<td>0.0091</td>
<td>< .01 [0.0047, 0.013]</td>
</tr>
</tbody>
</table>

Note. Gender referent is “female”; Race referent is “white”; “Multigroup” refers to patients who had multiple anatomical regions affected based on their CPT codes; “Multiple procedure” refers to patients who underwent multiple procedures during their stay; CPT region referent is “abdominal”.

Table 4. Coefficients for negative binomial regression of days to first procedure with propensity score matching

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post MR</td>
<td>-0.41</td>
<td>< .01 [-0.596, -0.223]</td>
</tr>
<tr>
<td>Age</td>
<td>0.003</td>
<td>.301 [-0.0027, 0.0086]</td>
</tr>
<tr>
<td>Male</td>
<td>-0.109</td>
<td>.24 [-0.29, 0.072]</td>
</tr>
<tr>
<td>Race, Black</td>
<td>-0.075</td>
<td>.36 [-0.234, 0.0849]</td>
</tr>
</tbody>
</table>

CPT Region

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multigroup (> 1 CPT regions)</td>
<td>-0.038</td>
<td>.69 [-0.224, 0.148]</td>
</tr>
<tr>
<td>Multiple Procedure</td>
<td>0.0439</td>
<td>.62 [-0.129, 0.217]</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>-0.151</td>
<td>.12 [-0.341, 0.0387]</td>
</tr>
<tr>
<td>CV</td>
<td>-0.219</td>
<td>.084 [-0.467, 0.0296]</td>
</tr>
<tr>
<td>Chest</td>
<td>0.0641</td>
<td>.67 [-0.231, 0.359]</td>
</tr>
<tr>
<td>Genitourinary</td>
<td>-0.0787</td>
<td>.86 [-0.937, 0.78]</td>
</tr>
<tr>
<td>Readmit Score</td>
<td>-0.0000377</td>
<td>.99 [-0.00631, 0.00624]</td>
</tr>
</tbody>
</table>

Note. Gender referent is “female”; Race referent is “white”; “Multigroup” refers to patients who had multiple anatomical regions affected based on their CPT codes; “Multiple procedure” refers to patients who underwent multiple procedures during their stay; CPT region referent is “abdominal”.
4. DISCUSSION

In this study, we hypothesized that implementing a mandatory MR would improve outcomes in emergency general surgery patients who underwent a procedure during their hospital stay. Analysis of the data showed that the most significant effect of MR was a decrease in the overall LOS from 11 to 8.3 days, and decreased time to procedure by approximately one day (0.85 days) between pre- and post-MR patients. Additionally, the data indicates that patients requiring multiple procedures, procedures involving multiple body regions, injuries to the cardiovascular system, or a higher readmission score will have a longer LOS.

Decreasing LOS is an important focus of efforts to improve healthcare outcomes because the majority of patients, regardless of admission service, have been shown to have increased risk of mortality with increasing LOS. The increased risk of mortality is most notably attributed to the correlation between LOS and hospital acquired bloodstream infections.

While the importance of structured hand-offs has been better characterized in medical fields, there is limited data regarding Acute Care Surgery (ACS). One comprehensive study by Pringle et al. described how the strategic implementation of MR could lead to better outcomes, but how variability in team member attendance and lack of structured protocol can lead to under-utilization and suboptimal benefit of the model.

In our own institution, we wanted to address a previously identified issue of deficiencies in the patient hand-off systems, resulting in a gap in resident education in these necessary skills. Studies have shown that MR is a valid format for resident education in efficient and effective patient handoffs. In our institution, there has been a drastic improvement in the culture and commitment to structured patient hand-offs since the implementation of MR.

The benefit of MR handoff systems comes from the increased collaboration between care providers during the conference. Allowing all providers involved in care management to help formulate treatment and discharge planning created increased efficiency in the care of patients. Additionally, standard patient handoff procedures compared to informal procedures allow intervention at earlier time points in a patient’s hospital course. All of these factors contribute to increases in efficiency of care.

5. CONCLUSIONS

This study demonstrates that the implementation of a MR led to a shorter time to procedure, and a shorter overall LOS in emergency general surgery patients who underwent an operation. Also, it is an intervention that improved the outcomes of operative EGS patients. Our data advocates for the standard use of structured handoffs, such as MR, across emergency general surgery units nationwide. Further work is needed to describe the more detailed mechanism by which LOS and days to procedure are decreased. Another limitation of this study is exclusion of nonsurgical patients due to lack of reliability in using admission codes to categorize patients. Future work would benefit from prospectively categorizing patients in order to increase sample sizes for analysis, and from comparison of private vs public hospital systems since there evidence has shown that outcomes differ between the two systems. Furthermore, more studies are needed to be able to fully characterize the differences in outcomes between private and public institutions.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Judy Bennett for her help with data handling and analysis for this project.

CONFLICTS OF INTEREST DISCLOSURE

The authors declare they have no conflicts of interest.

REFERENCES

[27] University of Arkansas for Medical Sciences UoAFM. Arkansas Clinical Data Repository. 2018. Available from: https://ar-cdr.uams.edu/
