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Abstract 

The advantage of using grid-cell data for socio-economic analysis should be the feasibility to incorporate satellite 

data that will enrich the regional analysis and has an important role to observe the relationship between 

socio-economics and nature. This advancement corresponds to the sustainable development goals that balance the 

socio-economic quality in harmony. In order to perform the analysis, formulation of a spatial adjacency matrix has an 

important role to project the spatial relationship within regions. However, no precedent research provided a practical 

formulation for the spatial adjacency matrix in grid-cell data structure (Fitrianto & Tanaka, 2017). 

The general process that used shapefiles solely, which store geometry and attribute information for the spatial 

features (ESRI, 1998) to construct the adjacency matrix is not suitable. The problem arises due to the existence of 

NA cells that represent non-inhabitant areas such as water bodies, yet the shapefile does not contain this information 

inside the municipal body. The NA cells create a non-rectangular lattice and it is important to exclude them in the 

analysis to correctly project the real information.  

This article provides a method to precisely project the real information by using Kronecker product to construct the 

adjacency matrix and applying a projection matrix to eliminate the NA cells (Tanaka & Nishii, 2009). It showed 

eminent efficiency compared with commonly used R package called spdep. Experimental results verified that this 

method, even for huge dimension with a trillion elements, produces more than 2000 times faster elapsed time than 

the package. 

Keywords: grid-cell data, Kronecker product, spatial adjacency matrix, sustainable development goals 

1. Introduction 

The establishment of sustainable development goals (SDG) and the targets by United Nations General Assembly on 

25 September 2015 encouraged every nation to balance the improvement of socio-economic quality with the 

environmental sustainability (UNDP, 2015). Let us use some of the goals and targets of SDG (see details in Table 1) 

as an example of related analysis that can be achieved by the incorporated data. This approach enables us to 

comprehend not only for sustainable per capita economic growth by increasing economic productivity in the 

agricultural sector (Goal 8) but also for the impact of improper agricultural production causing deforestation and 

desertification (Goal 15). 

In order to simultaneously analyze those two elements, the incorporation of grid-cell data for socio-economic 

variables and satellite data shall become a key role. The advantage of using this grid-cell data type of socio-economic 

variable enriches the regional analysis by incorporating satellite data (Tanaka & Nishii, 2015), such as night-time 

lights, carbon-dioxide concentration, and vegetation index. It becomes realized due to the availability of grid-cell 

database for socio-economic variables such as GPWv4, GRUMP, Landscan, Worldpop, and GeoStat (see examples in 

Table 2). 
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Table 1. Examples of related sustainable goals and targets for incorporated analysis 

Goals Targets 

Goal 8. Promote sustained, inclusive and 

sustainable economic growth, full and 

productive employment and decent work 

for all. 

8.1 Sustain per capita economic growth in accordance 

with national circumstances and, in particular, at 

least 7 per cent gross domestic product growth per 

annum in the least developed countries. 

8.2 Achieve higher levels of economic productivity 

through diversification, technological upgrading 

and innovation, including through a focus on 

high-value added and labor-intensive sectors. 

Goal 15. Protect, restore and promote sustainable 

use of terrestrial ecosystems, sustainably 

manage forests, combat desertification, 

and halt and reverse land degradation and 

halt biodiversity loss  

15.2 By 2020, promote the implementation of 

sustainable management of all types of forests, halt 

deforestation, restore degraded forests and 

substantially increase afforestation and 

reforestation globally. 

15.3 By 2030, combat desertification, restore degraded 

land and soil, including land affected by 

desertification, drought and floods, and strive to 

achieve a land degradation-neutral world. 

 

This incorporated data set should become more convenient due to the improvement of accessibility for earth 

observation satellite data provided by a database such as NASA ongoing project Open Data Cube (ODC) (ODC 

Documentation, 2017). The ODC allows storing rich information for full spatial and temporal coverage of earth 

observation (Lewis et al., 2017).  

The objective of this project is to provide an open and freely accessible analysis ready data to increase developing 

countries capability for the usage space-based Earth observation technologies (Killough, 2017). The web-based 

architecture providing user-friendly features for data preparation, processing, and visualization. There are ten 

features available in the ODC such as cloud-free mosaic, NDVI anomaly, water quality, landslide, and urbanization 

(Open Data Cube, 2018). This recent improvement allows future research to analyze the interrelation between 

socio-economics and satellite data as a component of achieving the SDG goals and targets. 

 

Table 2. Examples of grid-cell data source for socio-economic variables 

Database Method Data Sets Data Availability 

GPWv4 

(source: 

CIESIN, 

Columbia 

University) 

Population estimates are created by 

extrapolating the raw census estimates 

and proportionally allocated to raster 

cells using a uniform areal weighting 

approach to produce the population 

surfaces. 

a.  Population density. 

b.  Population count. 

c.  Land and water area 

d.  National identifier grid. 

All data contains 2000, 

2005, 2010, 2015 with 

1 km
2
 grid resolutions. 

LandScan 

(source: Oak 

Ridge National 

Laboratory) 

The modeling process uses 

sub-national level census counts for 

each country and primary geospatial 

input or ancillary datasets. For each 

country, they calculate a “likelihood” 

coefficient for each cell and applies it 

to total population. 

Global population 

distribution data. 

There are data from 

1998 to 2016 (except 

1999 data) with 1 km
2
 

grid resolutions. 

Worldpop 

(source: 

GeoData 

The dataset produced by 

disaggregating census data for 

population mapping using random 

forest with remotely-sensed and 

a. Population  

b. Birth 

c. Pregnancies 

Dataset a, d, and e are 

created based on 100 m 

resolution data. Dataset 

b and c are 1 km 
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Institute, 

University of 

Southampton) 

ancillary data (Stevens et al., 2015) d. Urban change 

e. Age structure 

The data covers for Africa, 

Asia, Latin America and the 

Caribbean.  

resolution data. 

 

Let us consider an instance of a spatial analysis with socio-economic variables based on Anselin (1988) spatially 

lagged autoregressive model, 

𝑌 = 𝛼𝑖𝑁 + 𝛿𝑊𝑌 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 

where Y is the crime rate, x1 and x2 represent household income and housing value respectively, the data size 𝑁 

is the 49 areas in Columbus, Ohio, 𝛼 is a constant, i𝑁 is a column vector, 𝛿 is the spatial regression coefficient, 

and ε ~ 𝑁(0, 𝜎2I𝑁) . All of the variable matrices have 𝑁 × 1  dimension. The spatial W  matrix stores the 

neighborhood relationship for each area, which is an 𝑁 × 𝑁  adjacency matrix. Therefore, the WY  variable 

represents the influence of neighborhood’s crime rate. 

The role of W matrix in the above model is to represent the impact of each neighborhood’s crime rate to the 

neighboring locations. Anselin (1988) and Anselin (1992) showed that based on several estimation methods, the �̂� 

values are always positive (0.3 < �̂� < 0.5) and significant. This implies the existence of strong spatial spillover that 

the crime rate for each location affected by the neighboring values. From those results, we see the importance of the 

W matrix to capture the spatial relationship of neighboring locations on the analysis. 

Bivand, Pebesma, and Gómez-Rubio (2008), Arbia (2014), Dmowska and Stepinski (2017), and Baddeley, Turner, 

and Rubak (2018), proceeded to carry out the grid-cell data analysis with the extraction of base data by overlaying it 

with specific regional shapefile in general (ESRI, 1998). The output object and data created by this process then 

become the base information for the succeeding analysis, which is summarized in Figure 1. Based on those data 

types, we can analyze the neighborhood relation inside the data and store it in spatial adjacency matrix W. 

 

 
Figure 1. General shapefile handling process for spatial analysis 

 

However, this general process based on shapefile is not suitable to derive the W matrix from grid-cell data because it 

does not exclude the NA cells inside the administrative area. To demonstrate this drawback, we choose the 

neighborhood area of Lake Apopka, Florida as shown in Figure 2. 

Figure 2 map (a) shows that the shapefile does not reflect the surface information of the lake area in map (b). It is 

clear that there is no population in water body areas in map (b), which are denoted by NA cells. By using the 

shapefile, we have rectangular lattice matrix D9×9, without identifying the non-inhabitant area as seen on land 

indicator (a). Thus, we will misidentify that there is the possibility of a human settlement exists over non-inhabitant 

areas. By applying a projection matrix (Tanaka & Nishii, 2009) to exclude the NA cells of non-rectangular D9×9 

lattice based on land indicator (b), then we will have the correct W53×53
∗  instead of W81×81. 

The importance of correctly formulate W∗ are shown by several precedent researches such as: residential values 

analysis based on surrounding land use (Geoghegan, Wainger, & Bockstael, 1997), land use change impact to 

economic and ecological condition (Irwin & Geoghegan, 2001) or rural-urban interface (Bell & Irwin, 2002), and 

roads impact on deforestation (Nelson & Hellerstein, 1997). Their analysis, in particular, indicated the role of spatial 
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W matrix to represent windborne seeding effects that the neighboring locations are more likely to have the same 

vegetation type. By using the correct W∗, they exactly observed that effect for a vegetative cover area. 

Fitrianto and Tanaka (2017) found that very few precedent researches focused on the practical method of formulation 

W, especially for grid-cell data structure with big data size. No practical paper was found for the real-projected W∗ 

for non-rectangular case. To remove the non-inhabitant cells, we overhauled the whole process of formulation and 

found the Kronecker product provides the best results (Note 1). 

 

 

Figure 2. Comparison of formulation of w for the neighborhood of eastern area of Lake Apopka, Florida 

 

2. Utilization of Kronecker Product: Formulation of W Matrices  

Construction of spatial adjacency matrix based on a spatial lattice matrix, 𝐃, inherit a spatial information of a lattice 

cell denoted by 𝑠𝑖 at (𝑥𝑖 , 𝑦𝑖) position 

𝐷 = {𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖) ∶ 𝑖 = 1,… , 𝒵}                                (1) 

where, 𝑥𝑖 = 1,… , 𝑐 and 𝑦𝑖 = 1,… , 𝑟, given that 𝑟 and 𝑐 are row and column of 𝐃 respectively, and 𝒵 = 𝑟𝑐 is 

the data size on a given rectangular lattice. The neighborhood information for each 𝑠𝑖 cell is defined as follows 

(Cressie 1991, pp. 384-385), 

𝑁𝒊 = {𝑠𝑗 = (𝑥𝑗 , 𝑦𝑗) ∶ 𝑠𝑗  is a neighbor cell of 𝑠𝑖}, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,… , 𝒵                  (2) 

𝑁𝒊 consists of horizontal-vertical and diagonal neighborhood of each cell. 
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Figure 3. Nonrectangular Lattice D3×3 

 

We focused on nearest neighbor case for each cell, which divided into two groups, primary and secondary 

neighborhood. The vertical and horizontal neighbors called as primary neighbors and the diagonal neighbors called 

as the secondary. Let us use Figure 3 as an example, we construct the neighborhood of cell (1,1), (2,2), and (3,2) 

on non-rectangular D3×3 as shown in Figure 4. 

 

 

Figure 4. Neighborhood Examples for cell (1,1), (2,2), and (3,2) on D3×3 

 

All the neighborhood information is stored on spatial adjacency matrix, W𝒵×𝒵 which includes NA cells. However, 

as shown in Figure 4, NA cells should be excluded from the analysis. Therefore, we apply the projection matrix on a 

rectangular case W based on Tanaka and Nishii (2009) to obtain the real projected W∗. 

We consider the formulation of W as the basis neighborhood information prior to the projection matrix. In nearest 

neighbor case, based on Cressie and Wikle (2011, p. 167), the W ≡ (𝑤𝑖𝑗) as a 𝒵 × 𝒵 matrix with 𝑤𝑖𝑖 = 0 and 

𝑤𝑖𝑗 = 1 if cell 𝑠𝑗 is the neighbor of 𝑠𝑖 as defined on equation (2). The formulation utilizes Kronecker product of 

an identity matrix I𝑚 and an A𝑚 matrix which constructed as follows, 

𝐀𝑚 =

[
 
 
 
 
 
0 1 0 0 0
1 0 1 … 0 0
0 1 0 0 0

⋮ ⋱ ⋮
0 0 0 … 0 1
0 0 0 … 1 0]

 
 
 
 
 

(𝑚×𝑚)

                    (3) 

where A𝑚 has a 𝑚 × 𝑚 dimension which is either 𝑟 × 𝑟, or 𝑐 × 𝑐 given that 𝑟 and 𝑐 is the number of row and 

column of D respectively. Thus, we can formulate W matrix as follows, 

WP,𝒵×𝒵 = A𝑟 ⊗ I𝑐 + I𝑟 ⊗ A𝑐,   WS,𝒵×𝒵 = A𝑟 ⊗ A𝑐,   and   W𝒵×𝒵 = WP,𝒵×𝒵 + WS,𝒵×𝒵         (4) 

The W𝒵×𝒵 consists of two components, primary (WP,𝒵×𝒵) and secondary neighborhood (WS,𝒵×𝒵). Practically, in R 

language program, equation (4) can be run by Script 1 which applies sparse matrix library by using Matrix package 

(Bates & Maechler, 2017). 
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## Constructing the Function* ## 

A.mat <- function(dims){ 

  B <- as(diag(1, dims-1, dims-1), "CsparseMatrix") 

  D <- as(matrix(rep(0, dims), nrow = dims, ncol = 1), "CsparseMatrix") 

  E <- cbind(rbind(t(D[1:(dims-1),]),B), D) 

  return(t(E) + E) 

} 

 

library(Matrix) 

r = r; c = c 

ic  <- as(diag(1, ncol =  𝑐, nrow =  𝑐), "CsparseMatrix") 

ir  <- as(diag(1, ncol =  𝑟, nrow =  𝑟), "CsparseMatrix") 

ac <- A.mat(c); ar <- A.mat(r) 

 

W  <- kronecker(ar, ic) + kronecker(ir, ac) + kronecker(ar, ac)   

Script 1. Kronecker Product to Construct W 

Note: *) 𝑟 and 𝑐 is the number of rows and columns of 𝐃 and ‘dims’ is referred to the value of 𝑟 or 𝑐. 

 

3. Non-rectangular Lattice Case 

To eliminate NA cells, we apply a projection matrix (P) based on Tanaka and Nishii (2009) as follows, 

W𝒱×𝒱
∗ = P𝒵×𝒱

𝑇  W𝒵×𝒵P𝒵×𝒱                                    (5) 

where 𝒱 represents the number of valid value cells. By using Figure 3 as an example of non-rectangular case, we 

will get a correctly projected W∗ matrix as shown in Appendix (see Script 2 to run equation (5)).  

 

# Let us assume the spatial lattice matrix denotes as D # 

# Identify the valid value cells on D and store the information in ‘no.na’ object* # 

# The ‘NA’ values are originated from grid-cells such as GPWv4 # 

no.na <- which(as.numeric(t(D)) != 'NA', arr.ind = TRUE) 

 

library(Matrix) 

P <- as(matrix (0, nrow = (ncol(D)*nrow(D)), ncol = length(no.na)), “CsparseMatrix”) 

 

count=0 

for (i in 1:nrow(P)){ 

  if (is.element(i, no.na)){ 

    count = count+1; 

    P[i, count] <- 1; 

  } 

} 

Script 2. R Script for projection matrix 

Note: *) The transpose of D matrix is necessary due to the default system of cell-indexing matrix in R which started 

from the row and the cell-indexing format for equation (4) is inserted by column. 
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4. Computational Efficiency Comparison: A Simulation 

In this section, we compare the performance of our Kronecker Product method with ‘cell2nb’ and ‘nb2mat’ functions 

in spdep package. Note that ‘poly2nb’ function is commonly used based on the polygon object, but that is not 

suitable for the purposes of this article focusing only on grid-cell data. Based on several D matrices, we measured 

their actual computational space and time. All simulations were conducted using the computational environment in 

Table 3 and a basic assumption that: 

Assumption: There are no NA cells for all D. 

The assumption is used to simplify the simulation process since the processes of equation (5) are common and easily 

applied to the system. 

 

Table 3. Computational environments for simulations 

Computational Environment 

Processor Intel core i7-6700K, 4 GHz, 8 MB 

Memory DDR4-2133 64 GB (16 GB x 4 slots) 

R version 

Main Body 3.4.2 (64-bit) 

Library (Matrix) 1.2-11 

Library (spdep) 0.7-7 

Library (raster) 2.5-8 

 

In Table 4, our program based on Script 1 showed more than 2000 times faster for the largest W. All the results 

obviously indicate that our method produces the best result, especially for larger dimension cases. In Table 5, we 

have actual object memory size comparison of both methods. The results also show that our method consumed 1/3 

times less memory compared to ‘cell2nb’ and ‘nb2mat’. Figure 5 and Figure 6 provides the graphical comparison for 

those simulation results. 

 

Table 4. Total elapsed time comparison for all methods
*
 

Spatial Lattice Matrix 

(𝐃𝑟×𝑐) 

W Elements 

(𝒵2) 
Script 1 ‘cell2nb’ and ‘nb2mat’ 

𝐃3×3           81 0.005           0.012 

𝐃60×60  1.296 × 10
7
 0.006      1.223 

𝐃120×120  2.074 × 10
8
 0.008      4.838 

𝐃180×180  1.050 × 10
9
 0.011     10.932 

𝐃240×240  3.318 × 10
9
 0.018     19.722 

𝐃300×300  8.100 × 10
9
 0.025     31.117 

𝐃330×330   1.186 × 10
10

 0.052     37.790 

       𝐃500×500  6.250 × 10
10

 0.137     108.191 

       𝐃1000×1000  1.000 × 10
12

 0.234     492.589 

Note: *) Each elapsed time for our generic function in Script 1 is an average of 100 times iteration. On the other hand, 

‘cell2nb’ and ‘nb2mat’ method is measured once by considering the amount of time needed to run. 

 

The main reason why ‘cell2nb’ and ‘nb2mat’ function consumed a lot of space during the formulation process is that 

there is no option inside the function to utilize sparse matrix. However, there is a function to convert the produced 

matrix to sparse matrix. Even though we applied the function, we still found that ‘cell2nb’ and ‘nb2mat’ required 

more space compared to Script 1 in the process due to the intermediate list-class presence by ‘cell2nb.’ The ‘cell2nb’ 

function create the neighbor list object from the information for grid-cell dimension. Thus, ‘nb2mat’ function use this 

neighbor list object to construct the W matrices. 
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Table 5. Actual object memory size comparison between all methods
*
 (in MB) 

Spatial Lattice Matrix 

(𝐃𝑟×𝑐) 

W Elements 

(𝒵2) 
Script 1 ‘cell2nb’ and ‘nb2mat’ 

𝐃3×3            81     0.008           0.006 

𝐃60×60  1.296 × 10
7
     0.462     1.247 

𝐃120×120  2.074 × 10
8
     1.838           4.997 

𝐃180×180  1.050 × 10
9
     4.136     11.252 

𝐃240×240  3.318 × 10
9
     7.355     20.013 

𝐃300×300  8.100 × 10
9
   11.496     31.280 

𝐃330×330   1.186 × 10
10

   13.912     37.853 

       𝐃500×500  6.250 × 10
10

   31.955     86.931 

       𝐃1000×1000  1.000 × 10
12

  127.903     347.902 

Note: *) All the simulations were done by one-shot run due to the same results produced by any iteration. 

 

 

Figure 5. Comparison of elapsed time between Script 1 and spdep (‘cell2nb’ and ‘nb2mat’) Method 

 

Figure 6. Object size comparison between Script 1 and spdep (‘cell2nb’ and ‘nb2mat’) Method 
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5. Kronecker Product Method Performance for Very Large W Matrices 

By using Script 1 as the best method, we formulate larger W matrices. The simulation is essential due to the attempt 

to incorporate satellite images for higher resolution. Note that Landsat 8 images have the size of 4650 × 2571 

pixels and generate a W matrix with more than 1.42 × 1015 elements. 

We observed the performance to handle larger spatial lattice dimension. Table 6 summarizes our experiment of the 

elapsed time and object memory size. The results show the Kronecker product’s handy availability to the formulation 

of huge W. Even for 5.063 × 10
16

 (more than 50 quadrillion) elements, it can produce the matrix in less than one 

minute.  

 

Table 6. Kronecker product method performances for larger W Matrices
*
 

Spatial Lattice Matrix 

(𝐃𝑟×𝑐) 

W Elements 

(𝒵2) 

Elapsed Time 

(in seconds) 

Object  

Memory Size 

𝐃2500×2500      3.906 × 10
13

    1.45404  799.75 MB 

𝐃5000×5000      6.250 × 10
14

    5.91074      3.20 GB 

𝐃7500×7500      3.164 × 10
15

  13.49425      7.20 GB 

𝐃10000×10000      1.000 × 10
16

     25.14439    12.80 GB 

𝐃15000×15000      5.063 × 10
16

  55.90863    28.80 GB 

Note: *) Each elapsed time is an average of 100 iteration times, but for the memory size run once. 

 

6. Concluding Remarks and Future Works 

To achieve the SDGs, we should focus not only on the increasing economic growth, but also on the environmental 

sustainability. To simultaneously observe them, the incorporation of grid-cell data for socio-economic variables and 

satellite data plays the key role. 

Nonetheless, there were still few precedent researches that utilize those data for the analysis, which counts the 

adjacency interaction, such as Nelson and Hellerstein (1997) and Tanaka and Nishii (2015). It should be more 

desirable to carry out multi-dimensional quantitative analysis, such as dynamic spatial panel analysis (Elhorst, 2014). 

By taking spatio-temporal changes into account, we can generate more sophisticated analysis for sustainable 

development based on SDG indicators (UNSTATS, 2018).  

For example, we can analyze the temporal relation between volume of production per labor unit by classes of 

farming/pastoral/forestry enterprise size and output growth of agricultural sector (indicators of Goal 2.3 and 8.2) and 

proportion of land that is degraded over total land area (indicator of Goal 15.3). This analysis can monitor the 

objectives of promoting sustainable agriculture that goes hand in hand with responsible production. 

To capture the interrelations between the two indicators, the use of spatial adjacency matrices (W) provides much 

more precise and sophisticated analysis as stated in the Introduction. The general approach by using shapefiles is 

failed to project NA cells inside the municipal body, then we provided the utilization of Kronecker product to 

formulate a rectangular W and to apply the projection matrix to correctly construct the non-rectangular W∗.  

Our method provides an eminent efficiency to construct the W. We can generate them more than 2000 times faster 

and with three times less space than the commonly used R package, ‘cell2nb’ and ‘nb2mat’ functions of spdep. This 

efficient process is important to handle huge data size, due to the increase of resolution, especially to deal with the 

satellite data. This approach would give practical insights for statistical imputation such as NA cell case of the 

neighbors and spatial interpolation. 
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Note 

Note 1. All the source programs and the 𝐖 and 𝐖∗  matrices for the example Figure 2 are available at: 

https://github.com/G-Fitrianto/2018-RWE-Article 

 

 

Appendix. W Formulation for Non-rectangular D3×3. 

The W9×9 based on rectangular D3×3 can be constructed by applying equation (4) as follows, 

W9×9 = A3 ⊗ I3 + I3 ⊗ A3 + A3 ⊗ A3 =

[
 
 
 
 
 
 
 
 
0 1 0 1 1 0
1 0 1 1 1 1
0 1 0 0 1 1
1 1 0 0 1 0 1 1 0
1 1 1 1 0 1 1 1 1
0 1 1 0 1 0 0 1 1

1 1 0 0 1 0
1 1 1 1 0 1
0 1 1 0 1 0 ]

 
 
 
 
 
 
 
 

             (A1) 

The non-rectangular D3×3 in Figure 3 consist of NA cells and we should exclude them by calculating W6×6
∗  as 

follows,  

W6×6
∗ = P9×6

T W9×9P9×6= 

[
 
 
 
 
 
 
0 1 1 0

1 0 1 1

1 1 0 1 1 1

0 1 1 0 1 1

1 1 0 1

1 1 1 0 ]
 
 
 
 
 
 

,  P9×6 =

[
 
 
 
 
 
 
 
 
1 0 0
0 1 0
0 0 0

0 0 0 0
0 1 0 0
0 0 1 0

0 0 0
0 1 0
0 0 1 ]

 
 
 
 
 
 
 
 

                       (A2) 
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