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Abstract 

In this paper, we document a novel machine learning-based numerical framework to solve static and dynamic 

portfolio optimization problems, with, potentially, an extremely large number of assets. The framework proposed 

applies to general constrained optimization problems and overcomes many major difficulties arising in current 

literature. We not only empirically test our methods in U.S. and China A-share equity markets, but also run a 

horse-race comparison of some optimization schemes documented in (Homescu, 2014). We record significant excess 

returns, relative to the selected benchmarks, in both U.S. and China equity markets using popular schemes solved by 

our framework, where the conditional expected returns are obtained via machine learning regression, inspired by (Gu, 

Kelly & Xiu, 2020) and (Leippold, Wang & Zhou, 2021), of future returns on pricing factors carefully chosen. 

Keywords: portfolio optimization, machine learning, hierarchical clustering, k-means clustering, deep learning 

regression, mean-variance-skewness-kurtosis, reinforcement learning, monte-carlo simulation, top-down and 

bottom-up approaches 

1. Introduction 

1.1 Outline of This Paper 

In this paper, we propose a novel Monte-Carlo simulation and machine learning-based (unsupervised and supervised 

learning) static and dynamic portfolio optimization framework. This framework supports arbitrary objective 

functions and constraints, which can be either linear or nonlinear. Moreover, the number of assets being considered 

can be very large. Our methodology is fast, accurate and convergent to the global optimum under mild assumptions, 

which are easy to verify for static portfolio optimization problems, extending the original method introduced in 

(Zhang, 2020b). 

The framework consists of an input preparation module, a hierarchical clustering-based asset space decomposition 

module, a simulation and portfolio weights computation module and a profit and loss evaluation module. We will 

mainly introduce the second and third modules as they are of most importance to this paper. The input preparation 

module applies supervised-learning approach to estimate the inputs that feed into the portfolio optimization module. 

The hierarchical or regular clustering-based asset space decomposition module tries to partition the entire asset 

universe, which often includes a large number of individual assets, based on a predetermined set of firm 

characteristics. This results in similar factor values for the assets in each cluster. The third module, which is the 
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simulation and portfolio weights computation module, generates uniformly distributed portfolio weights in the 

constrained region and selects the globally optimal one corresponding to a certain objective utility function with 

nonlinear constraints. The method in this module is fast and convergent under mild assumptions. Most importantly, 

this module does not require the computation of joint higher order moments (Note 1) of a random vector (e.g., the 

rate of returns), which is computationally expensive especially in high dimensions. The last module evaluates the 

profit and loss of the selected portfolios and performs backtesting. We empirically test our methodology with 

numerical examples covering various objective functions and constraints, in U.S. and Chinese stock markets. 

1.2 Literature Review 

Portfolio optimization is an important topic in financial economics that attracts both academic researchers and 

financial practitioners. Starting from the seminal work of modern portfolio theory in (Markowitz, 1952), where it 

was suggested that correlations between different assets should be included as inputs to portfolio optimization 

practice, in addition to volatility and expected returns, the theory of portfolio selection has become rigorous science 

rather than art. The modern portfolio theory later inspired the famous CAPM model proposed in (Treynor, 1962) and 

later extended in (Merton, 1973) to a dynamic setting. Through years, we have witnessed an explosion of the number 

of results on portfolio optimization as the advancement of theoretical and empirical research, and the increase of 

computational power. Refinements on modern portfolio theory have been studied in (Brodie, Daubechies, De Mol, 

Giannone & Loris, 2008) in a context of sparse portfolios that stabilizing the output of mean-variance model. The 

carrier portfolio strategy, described in (Kusiak, 2013), is another approach which can deliver sparse and stable 

portfolios. It relies on a simple, mathematical linear program that directly considers and treats each return 

observation as individual data, with no assumptions on joint return distributions. Other examples, in a single period 

setting, include the Black and Litterman approach that was extended by (Black & Litterman, 1992), in which a 

Bayesian type analysis was used to incorporate investors’ ex-ante views that correct the equilibrium CAPM expected 

asset returns. Because the first order moments of asset returns are notoriously hard to estimate, simple 

return-agnostic strategies were created to account for this phenomenon. For example, the minimum variance 

portfolio and equal weight (1-over-N) portfolio are studied in (Demiguel, Plyakha, Uppal & Vilkov, 2013) and 

(Allen, Lizieri & Satchell, 2012). In addition to the first and second moments, there have been strategies based on 

higher order moments, namely, skewness and kurtosis, appearing in the work of (Harvey, Liechty, Liechty & 

Mueller, 2010) and many others. The computation of higher order co-moments may rely on factor models, such as 

the single-factor method considered in (Martellini & Ziemann, 2010), or forward-looking information obtained from 

option prices as documented in (Christoffersen, Jacobs & Chang, 2012). But whichever approach we choose, the 

methods suffer greatly from the curse of dimensionality as the dimension of asset span increases. Since the proposal 

of (Ang, 2013) on factor investing, factor-based strategies start to emerge. References can be found in (Koedijk, 

Slager & Stork, 2014) and (Roncalli & Weisang, 2012), among others. Additional return agnostic, or risk-based 

strategies, such as maximum diversification strategy, risk-parity strategies, and their variations have been proposed. 

Research results can be found in (Anderson, Bianchi & Goldberg, 2014) and references therein. Another strand of 

literature focuses on dynamic portfolio allocation in a randomly varying market environment and considers 

multi-period optimization problems. The pioneering work attributes to (Merton, 1971) with numerous later 

refinements, see (Cvitanic & Karatzas, 1992) and (Schroder & Skiadas, 1999) for example. The characteristics of 

this type of problems are that they often involve dynamic programming and in a continuous time setting, a PDE, or 

equivalently a BSDE, system often needs to be solved. 

Theoretically being sound, the Markowitz’s mean-variance optimization method, still popular in financial industry, 

has many obvious drawbacks, which are well-documented in the literature, for example, (Homescu, 2014) and 

(Perrin & Roncalli, 2019). There are three major difficulties with respect to the mean-variance approach. The first is 

that the method output is extremely sensitive to the model input, which is often difficult to estimate accurately. The 

second is that the analytical solution of the quadratic programming problem involved requires the computation of a 

large covariance matrix and its inverse, when the number of assets is large. Third, the computational burden 

increases sharply if multiple linear or nonlinear constraints are added. To address the input estimation problem, many 

deep-learning based methods have been proposed recently, such as (Yang, Liu & Wu, 2018), (Gu, Kelly & Xiu, 

2020), (Babiak & Barunik, 2020) and references therein. To address the second and third questions, (Perrin & 

Roncalli, 2019) reviewed machine learning optimization approaches to solve the constrained quadratic programming 

problem in high dimensions. In (Homescu, 2014), general formulations of static portfolio optimization are outlined, 

taking into consideration the reward, risk and various constraints on optimal portfolios. Compared to the reference in 

the literature, our method enjoys all the advantages while being theoretically simple and easy to implement in 

practice. 
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1.3 Main Contributions 

The contributions of this paper are five-folds. First, it proposes a fast and convergent numerical framework, which is 

universal and applies to arbitrary constrained optimization problems with unique solutions without calling explicitly 

any optimization routines, unlike the current problem-specific deep learning-based methods in the literature. Second, 

our methodology involves no estimation of cross higher order moments of the asset span by its construction. This is 

crucial for the methodology to overcome the curse of dimensionality when higher order moments are involved, and 

the number of assets is large. Third, the paper proposes to use the (hierarchical) clustering method to reduce the 

dimension of the optimization problem, when there are many assets in the portfolio. Fourth, the paper advocates 

using deep learning techniques to estimate the model inputs. Fifth, we provide empirical studies on portfolio choice 

among a large number of stocks in China and U.S. equity markets and evaluate the performance. 

1.4 Organization of This Paper 

The paper is organized as following. Section 2 describes the methodology and the optimization framework. Section 3 

performs numerical experiments and Section 4 concludes. 

2. Main Methodology 

In this section, we document and present first three of the aforementioned 4 modules. As the first step, we prepare 

the inputs for the optimization process, which are often the first and higher order moments of asset return vectors. 

Second, we decompose the asset span, which usually consists of thousands of assets, with the help of a set of risk 

factors, into small subsets in a hierarchical manner, perform optimization on each sub-level and obtain the final 

optimal weight on every asset based on the intermediate weights on each cluster. Third, most importantly, we 

perform portfolio optimization at each clustering level in the hierarchy based on Monte-Carlo simulation. The last 

step is to compute the results of the back testing and present the transaction cost at each point in time. Theoretical 

convergence results are provided in this section and we will illustrate how to perform portfolio choice numerically 

for static problems. 

2.1 Input Preparation and Orthogonalization 

The current portfolio choice literature often requires users input various moments of the asset returns. To compute 

the th order conditional moments , where  

 denotes the vector of asset returns and  represents the standard 

multi-index notation, i.e., , we first look at the general semi-martingale 

decomposition below, written in matrix and vector notations 

 

 

 

Here the random source term  satisfies  and it has unit variance-covariance matrix. We will 

have the higher order moments of  as functions of  if we assume that its distribution is elliptic. 

Single or multi-variate time series models have been proposed to estimate , and even higher order joint 

moments of the asset return vector. From the simplest single variable linear autoregressive (AR) and moving average 

models (MA) of order 1 to vector auto-regressive Models (VAR) or even non-linear parametric models, we can 

develop complicated tools for the estimation purposes, dependent on the availability of sufficient data set. This set of 

parametric models often assumes a predetermined functional dependency of the moments on the past data. Another 

route resorts to non-parametric models, to recover the unknown functional relationship between the quantities that 

we want to estimate and the available data, like the kernel density estimation approach, to name a few. However, the 

problem with both approaches are that they are either too stringent on the model assumptions, or too sensitive to the 

data sets chosen for the estimation task. Both suffer severely from the curse of dimensionality problems. 

Alternatively, the conditional moments of asset returns can be assumed to be functions of some selected risk factors 
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. For example,  and  can be computed via machine learning methods (see (Gu, Kelly & Xiu, 2020)) or a 

Monte-Carlo simulation and clustering-based method introduced in (Zhang, 2020) More detailed analysis of the 

choice of factors and a review of popular regression methodologies can be found in (Gu, Kelly & Xiu, 2020) for U.S. 

market and (Leippold, Wang & Zhou, 2021) for China A-share market. The machine learning methods, as (Gu, Kelly 

& Xiu, 2020) reviewed, range from linear regression, LASSO, ridge regression, elastic-net, partial least squares 

(PLS), to methods introducing non-linearity, such as artificial neural networks, which constitute a big category with 

deep neural networks, convolution neural networks, recursive neural networks, generative adversal networks, 

graph-based neural networks and so on. Popular methods also include regression trees, random forests and support 

vector machines. Those tools listed above are quite flexible and are able to approximate any continuous functions in 

a compact domain of the Euclidean space. Empirically being effective, the machine learning methods also enjoy 

certain mathematical rigor, e.g., the universal approximation theorem that neural networks rely upon. One might 

argue that the machine learning methods are not only complicated to implement but also require huge amounts of 

data for inference purposes because they often depend on a large number of unknown parameters that one needs to 

recover. On the contrary, as computational power becomes cheaper and the development of programming languages, 

those are no longer the obstacles that prevent people from using ML tools. In Python programming language, there 

are multiple packages, such as keras, sklearn or even xgboost, that enable users to build machine learning structures, 

i.e., DNN, boosting regression trees, and perform regression or classification prediction tasks. The packages are quite 

efficient in terms of computational speed with moderate memory requirements for most financial applications. To 

implement the methods, we need to determine the most effective ML method for the data set we choose, as well as a 

set of factors, features or characteristics on which we can express the conditional expected moments of asset returns, 

as a known function. The choice of factors is very important and directly relates to the accuracy of the predictions. In 

what follows, we will outline the factors in the empirical studies for the completeness of the paper. 

In empirical studies, we often have , meaning that we will only compute the first order moments. The 

estimation of cross higher order moments, for example, the second order moments, also known as the covariance 

matrix, is not necessary. To understand this, consider a lead-lag panel regression of .  

The second order moment of the weighted assets  can be represented by , where 

 is the associated factor value of the synthetic asset . This is an interpolation problem when , on 

which the machine learning methods work well. The same applies to higher order cross moments. 

2.2 Asset Space Decomposition 

In order to apply the bottom-up approach to construct the optimal portfolios, we first use a topdown (hierarchical) 

clustering method (see (Raffinot, 2019) as an introduction to hierarchical clustering in portfolio choice) to 

decompose the asset universe into stratified sub-spaces. To understand this, suppose we are dealing with a portfolio 

optimization problem of 6400 assets, which is a very large number. Each assets  is associated with a vector of 

characteristics . Our methodology aims at decomposing the asset universe into, say, 80 small clusters, according to 

the factor values , meaning, in each cluster, the factor values of the associated assets are sufficiently close (Note 2). 

On average, there are 80 assets in each of the clusters. If we determine that 80 is still a relatively large number, we 

can, inside each cluster, divide it into 10 sub-clusters. Now, we have 80 X 10 = 800 clusters with each cluster 

containing 8 assets on average. Then, we perform portfolio optimization separately in each of the sub-clusters. After 

portfolio optimization is done on each of the sub-clusters, we treat each optimized sub-cluster as one synthetic asset 

based on the optimal weights and perform portfolio optimization among the 10 synthesized assets. 

In this way, starting from the sub-clusters of the lowest level, we obtain the optimal portfolio weights based on the 

parameters input from Section 2.1 and the methodology to be illustrated in Section 2.3. By working from the lowest 

to highest level, we will obtain the optimal portfolio weights corresponding to each of the intermediate sub-spaces, 

and finally the weights on each asset. 

The above analysis uses iterated clustering approach to build the hierarchy of clusters. Of course, hierarchical 

clustering can be directly applied here. In addition to the clustering approach, we can create various criteria, industry 

classification, as an example, based on the factor values to partition the asset universe into small buckets, with the 

assets in each bucket representing some similar behaviors (Note 3). 
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2.3 Portfolio Optimization 

2.3.1 Static Portfolio Optimization 

The Algorithm 

Assume that we are going to maximize an objective function  (Note 4), where  denotes the portfolio 

weights and  is the rate of return vector of a certain class of assets. There are constraints on , namely 

 

 

 

 

 

and  are, potentially, nonlinear functions of . A general formulation of the static portfolio optimization 

problems can be found in (Homescu, 2014). In this section, we outline a simulation and machine learning-based 

approach to obtain the optimized weights . Assume that Equation (4) can be rewritten 

 

 

The method works as following: 

 

Sometimes, the constraints can be complicated, highly nonlinear and therefore difficult for users of our framework to 

generate valid samples falling in the constrained region. A brute-force way, of course, is to generate sample weights 

and only keep those in the valid hyper-surface. Alternatively, we can transform the problem to make the users life 

easier. Consider the same problem as shown above in Equations (3), (4) and (5). For Constraint (3), we add an 

indicator function  to the objective. For Constraint (4), we can introduce an -regularization type term 

 to the objective function. Last, the Constraint (5) can be addressed by introducing, again, an indicator 

function . To summarize, the new objective function is, then, 

, where the candidate weights  lie in the whole Euclidean 

space.  are three positive real numbers, representing the importance of the constraints. 
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It would be interesting to discuss the utility loss introduced by this hierarchical construction. It can be easily 

understood that, at the last level of clustering, we perform optimization for each of the subsets and the final global 

weights are proportional to the weights in each final cluster. Of course, this methodology is sub-optimal compared to 

the global optimization on the whole asset universe. 

However, we have gains in terms of a faster computational speed, less resources requirement, less severe propagation 

of estimation errors, and the elimination of the potential corner solutions or local optimum. Moreover, the portfolio 

optimization is done in a bottom-up way, but the clustering is top-down, therefore our methodology enjoys the 

benefit of both approaches. Moreover, the reason to use clustering approach in Step 4 above is to reduce the 

computation burden when M is very large and the evaluations of objective function are time consuming. 

Theoretical Convergence 

In this section, we discuss the global convergence of the proposed approach based on three critical assumptions 

below. 

Assumption 1 (Completeness) The random number generator  satisfies the following. Suppose that the size of 

random numbers generated is , and the random numbers generated by  form a set . Then we have the fact 

that  is always dense in the compact set  

Assumption 1 ensures that, as we sample more random realizations for the portfolio weight vectors, any point in 

is reachable with the samples generated. Therefore, the solution obtained is truly the global optimum. 

Assumption 2 (Existence and Uniqueness) The constrained optimization problem  introduced in Section 

2.3.1 has a unique solution. 

Assumption 3 (Continuity) The solution to the optimization problem is continuous with respect to , This means 

that 

 

 

where  is the original optimization problem with constraints. 

This assumption above ensures that, given more simulated samples, the approximate solution will converge to the 

true one. The assumption is the property of the optimization problem itself and should be verified in a case-by-case 

manner. Because of the smoonth dependency of the solution of, for example, the mean-variance optimization 

problem to its input variables, it is easy to see that the above three assumptions are automatically satisfied. 

Combining the above three assumptions, we have the theorem below as our main theoretical result. 

Theorem 1 (Global Convergence) Under Assumptions 1, 2 and 3, our algorithm output is convergent to the unique 

global optimal solution. 

2.3.2 Dynamic Portfolio Optimization 

In a dynamic portfolio optimization problem, we try to solve the Bellman equation 

 

 

 

where R is the immediate reward function,  is a mapping from the state space S to the action space A 

and is called the policy function.  denotes the probability transition matrix and  is the value function. 

Last,  is the discount factor process, which is often taken as a constant. The goal is to find an optimal 

policy function _ such that the value function is maximized. Of course, in general, is nonlinear in both time  

and state s (Note 5). However, it can be approximated locally in an open and sufficiently small region by its tangent 

space, which is represented by a linear equation. Further suppose that the state space S and action space A are 

compact sub-spaces of Euclidean space and we can generate uniform random numbers in S and A. Decompose 

 into small disjoint sub-spaces , and we have , where is 
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the approximation error term. The functional form of  is solely determined by for each k. For the 

transition probability matrix , one way to represent it is to assume a parametric model 

, where and likewise for . To solve the optimization 

problem in Equation (8), we generate M independent copies of , therefore M different functional forms of 

, and for each copy, compute the value function via Monte-Carlo simulation based on the data generating process 

for  and Equation (8), and use the method proposed in Section 2.3.1 to determine the best choice of  

among the M independent samples. Last, the data generating process for  can, alternatively, be replaced by a 

non-parametric inference directly using historical relationship.  

3. Empirical Studies 

3.1 Simulated Data and Static Portfolio Choice 

Assume that there is an m-dimensional vector process , whose data generating process (DGP) is 

 

 

Where  is another stochastic process (Note 6) and . The asset return vector is denoted by , 

which is n-dimensional. We have approximately the following regression relationship  

 

 

Here  is considered as a small perturbation term, which mimicks the effect of missing factors or measurement 

errors. Further observe that 

 

where h is potentially a nonlinear function of  and  is the pricing error term. The detailed configurations 

are described below. The DGP for the factor process of each stock is chosen as an ARMA-GARCH model 

 

 

 

 

The factor f is n-dimensional (Note 7), is n-dimensional,  is , is  

and the error term , where the correlation generator P is an  lower triangular matrix with 

squared sum of each row being 1.  is an n-dimensional independent Gaussian process with mean 0 and variance 

1. The parameter set  is generated randomly accordingto uniform distributions and the values 

ensure that the ARMA-GARCH models are stationary. The n-dimensional return process satisfies 

 (Note 8) and  is an n-dimensional uniformly distributed random 
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vector serving as the perturbation term, accounting for missing factors or measurement errors. The number of factors 

is 1, the number of assets n = 1000 and the number of time periods T = 250. The number of clusters is , i.e., 

the integer part of . The portfolio weights are constrained within [0, 1] and sum up to 1. The objective 

function is the classical mean-variance quadratic one. The equity curve of the out-of-sample optimization results is 

displayed in Exhibit 1 below.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Equity Curve for Simulation Study 

It is obvious that the method performs well in an artificial simulation environment, according to the equity curve. 

The x-axis is the number of periods, which is up to 250, and the y-axis is the value of the equity curve. From the plot 

we can see that the equity curve increases stably from 0 to approximately 1 with very limited drawdowns. This is 

inline with our expectations: in a simulation environment, we know and are able to recover exactly the functional 

relationship between factors and expected future returns. Of course, there are also small negative returns appearing 

along the equity curve. This is caused by the small perturbation term  in Equation (10) and the fact that the 

realization of future returns can deviate from their expected values, which is illustrated by the pricing error term 

. 

3.2 Static Portfolio Optimization in U.S. Equity Market 

3.2.1 The Data 

The data are from WRDS. Stock returns, prices, and the number of shares outstanding are downloaded from CRSP 

monthly files, while the accounting data are from Compustat fundamentals annual files. We exclude financial firms 

(SIC code between 6000 and 6999) from the sample and consider only NYSE, AMEX, and NASDAQ firms with 

common stocks (SHRCD = 10 or 11). We sample accounting data used for the construction of characteristics in 

calendar year t from the statements 

with the fiscal year end t-1. Based on the data that are available from CRSP, Compustat, IBES, and researchers’ 

websites, we analyze the out-of-sample predictability of 94 firm characteristics that are collected from (Green, Hand 

& Zhang, 2017). The sample period ranges from 198001 to 201812. 

3.2.2 The Methodology 

To carry out the analysis, some details have to be determined. The objective function is , where  
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are the conditional expected return, computed via machine learning regression, and empirical volatility. is the 

empirical value computed for every simulated portfolio weight vector w using past 6 months’ asset return data. 

Portfolio weights are constrained within (0; 1) and they sum up to 1. The number of sample weights is 1; 000; 000 

universally and that of the clusters is the squaredroot of the number of assets to be optimized. The conditional 

expected returns are estimated via a 94-factor (Note 9) regression-based asset pricing model implemented with 

Python function XGBRegressor provided by module xgboost. The cross-section regression is done in a rolling 

window manner. The prediction is based on monthly data. The clustering is done by the scores computed via equal 

weights on the factor values. The optimal portfolios are generated at the beginning of each period and are held until 

the end of the period. 

3.2.3 The Results 

The backtesting results are summarized in the equity curve plot in Figure 2, where the upper plot contains log-net 

equity curve of portfolio optimization strategies and equal weight portfolios and the lower plot represents the excess 

returns of the portfolio choice strategies relative to the -portfolio, and the performance metrics in Table 3. From 

Figure 2, we can see that the mean-variance strategy performs best, and is followed by minimum variance strategy. 

Both curves are above the -portfolio curve. The performance of all three curves (Note 10) are significantly above 

the S&P500 index. Table 3 contains performance metrics. Vol means annualized volatility, IR means information 

ratio, SR is Sortino ratio, MDD represents maximum drawdown and CR stands for Calmar ratio. 

As is known, the quality of the optimized portfolio depends crucially on the inputs. An accurate estimate of 

conditional expected returns and volatilities ensures good performance of portfolio optimization results. We attribute 

the good performance in U.S. market to a long period of bull market, which makes the prediction easier, and the 

asset pricing factors carefully chosen, which can be a good set of proxies for prediction purposes. Last, our numerical 

framework enables a fast and efficient computation of the optimal portfolios. 
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Figure 2. log-Equity Curves for U.S. Stock Market, TOP 100 Stocks 

Table 3. Performance Metrics in U.S. Stock Market. MinVAR means minimum variance and MV stands for 

mean-variance 

Index Return Vol IR SR MDD CR 

MV100 77:44% 36:07% 2:14 5:88 29:12% 2:65 

MinVAR100 71:63% 34:22% 2:09 6:48 21:34% 3:35 

S&P500 11:88% 14:82% 0:80 1:07 50:21% 0:23 

3.3 Static Portfolio Optimization in China A-Share Market 

3.3.1 The Data 

The data for backtesting are downloaded from UQER platform. The stocks that we study are listed on Shanghai and 

Shenzhen Stock Exchanges and are included in CSI800 index. We exclude the firms marked ST or have been 

through the IPO process for less than two months. Similar to the U.S. case, we take fundamental data used for the 

construction of characteristics in calendar year t from the financial statements with the fiscal year ending in year t-1. 

Due to the difference in data availability and market structure between China and U.S., we resort to the appendix of 

(Fang, 2019), instead of (Green, Hand & Zhang, 2017), for the construction of firm characteristics. The factors used 

by (Fang, 2019) are largely the same as those used by (Green, Hand & Zhang, 2017), but (Fang, 2019) has adapted 

the individual factors based on Chinese market realities. Finally, we constructed 93 firm characteristics. The sample 

period ranges from 200701 to 202012. 

3.3.2 The Methodology 

The objective function is , where  are the conditional expected return and empirical volatility 
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associated with the portfolio  is empirical values computed for every simulated portfolio weight vector w 

using past 6 months’ asset return data. Portfolio weights are constrained within (0; 1) and they sum up to 1. The 

number of sample weights is 1; 000; 000 universally and that of the clusters is the squared-root of the number of 

assets to be optimized. The conditional expected 

returns are estimated via a 94-factor (Note 11) lead-lag regression model implemented with Python function 

RidgeCV provided by module sklearn. The cross-section regression is done in a rolling window manner. The 

prediction is based on monthly data. The cross section is either the CSI300 or CSI800 index stocks. The optimal 

portfolios are computed at the beginning of each period and are held until the end of the period. 

3.3.3 The Results 

The backtesting results are summarized in the equity curve plots in Figures 4, 5 and 6 and the performance metrics in 

Table 7. Here MV means mean-variance, MinVAR represents minimum variance, RP denotes risk parity and EW is 

-portfolio. In China A shares market, the simple single period optimization methods reveal significant excess 

returns as can be observed in Figures 4 to 6. Tables 7 and 8, again, documents the performance metrics. Various risk 

and reward indexes point out that mean-variance method is the best strategy among the three competing methods and 

CSI300 index bears minimum IR, SR and CR. 

4. Conclusion 

In this paper, inspired by the methodology introduced in (Zhang, 2020b), we document a novel four-step portfolio 

optimization framework and test it with simulated and real financial data in U.S. equity and China A-share markets. 

Our results reveal superior returns over the out-of-sample testing periods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Natural log-Equity Curves for CSI Indexes of China A Share Market 
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Figure 4. log-Equity Curves for CSI Indexes of China A Share Market 
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Figure 5. log-Equity Curves for CSI Indexes of China A Share Market 

Table 7. Performance Metrics for CSI800 Stocks in China A Share Market 

Index  Return  Vol  IR  SR  MDD  CR 

CSI800-20StocksMV 50.12%  32.79% 1.52  4.07  32.37%  1:54 

CSI800-20StocksMinVAR 50.74% 32.64% 1.55 3.88 36.38% 1.39 

CSI800-20StocksRP 41.69% 29.84% 1.39 3.04 23.97% 1.73 

CSI800-20StocksEW 40.55% 29.84% 1.39 3.04 27.87% 1.45 

CSI800-100StocksMV 37.90% 27.40% 1.38 3.12 26.71% 1.41 

CSI800-100StocksMinVAR 30.67% 27.40% 1.16 2.29 42.41% 0.72 

CSI800-100StocksRP 35.27% 28.88% 1.22 2.52 32.10% 1.09 

CSI800-100StocksEW 29.78% 27.61% 1.07 1.87 36.17% 0.82 

CSI800-400StocksMV 27.82% 25.52% 1.08 1.94 37.06% 0.75 

CSI800-400StocksMinVAR 23.60% 24.86% 0.94 1.73 43.43% 0.54 

CSI800-400StocksRP 23.45% 25.58% 0.91 1.48 35.81% 0.65 

CSI800-400StocksEW 22.16% 26.94% 0.82 1.29 37.86% 0.58 

CSI800 10.51% 18.87% 0.56 0.97 27.53% 0.38 
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Table 8. Performance Metrics for CSI300 Stocks in China A Share Market 

Index  Return  Vol  IR  SR  MDD  CR 

CSI300-15StocksMV 41.83%  31.66% 1.32  2.97  33.01%  1.26 

CSI300-15StocksMinVAR 39.75% 30.65% 1.29 2.67 34.56% 1.15 

CSI300-15StocksRP 33.27% 28.86% 1.15 2.01 39.61% 0.83 

CSI300-15StocksEW 27.59% 28.82% 0.95 1.55 46.47% 0.59 

CSI300-60StocksMV 33.06% 28.36% 1.16 2.85 38.03% 0.86 

CSI300-60StocksMinVAR 34.68% 27.97% 1.23 2.70 36.85% 0.94 

CSI300-60StocksRP 27.16% 26.19% 1.03 1.75 33.72% 0.80 

CSI300-60StocksEW 24.60% 27.41% 0.89 1.50 41.30% 0.59 

CSI300-300StocksMV 18.65% 24.60% 0.75 1.22 42.55% 0.44 

CSI300-300StocksMinVAR 12.57% 22.25% 0.56 0.92 49.18% 0.25 

CSI300-300StocksRP 18.28% 25.78% 0.71 1.08 42.67% 0.42 

CSI300-300StocksEW 12.99% 25.85% 0.50 0.79 45.57% 0.28 

CSI300 10.51% 18.87% 0.56 0.97 27.53% 0.38 

in both markets, which illustrates the usefulness of our methodology, that is not only a numerical framework, but 

also contributes to the literature of large scale optimizations. The empirical study of our proposed dynamic portfolio 

choice method via reinforcement learning is both interesting and important, yet postponed to future research. In 

addition, our methodology can be extended to fixed income and option portfolio selection, combining the work of 

(Zhang, 2020a) and (Zhang, 2020b), which we leave to the interested readers as exercises. 

Notes 

Note 1. For example, covariance matrix or the tensor of third order moments. 

Note 2. The definition of being close depends on which distance we choose. 

Note 3. For example, we can calculate scores based on a set of predetermined factors for each asset, rank and divide 

the asset space by the scores. 

Note 4. For example, the objective function can be a reward minus a coherent risk measure on R. 

Note 5. We will often assume that time variable t is included in state vector s. 

Note 6. For example, the DGP can be an ARMA-GARCH process and  is therefore the stochastic variance. 

Note 7. This means the factor is asset specific and we have only m = 1 factor for each stock. 

Note 8. This functional form is to ensure that the return series generated are mostly around (-0:02, 0:02). 

Note 9. The factors are selected from (Green, Hand & Zhang, 2017). 

Note 10. The three curves include mean-variance, minimum variance and equal-weight curves. 

Note 11. The factors are constructed in the same way as U.S. equity market. 
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