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Abstract 
The main objective of this study is to measure appropriately the dependence structure and optimal hedge ratio of U.S. 
spot and futures markets in financial crisis. In much empirical literature it has been demonstrated that linear Pearson 
correlation is not an appropriate dependence measure for non-normal distributions. This inadequacy of correlation 
requires an appropriate dependence measure: the copula. Copula modeling has become an increasingly popular tool 
in finance to model assets returns dependency as it can overcome the limitations of correlation when extreme losses 
occurred. The contribution of this paper is in two aspects. First, an appropriate copula function is discovered to 
capture the dependence structure of S&P 500 spot and futures in financial crisis adequately. Second, Gumbel copula 
function is exploited, with threshold GARCH model as marginals, to construct a Gumbel copula-threshold-GARCH 
model to estimate the optimal hedge ratio, simultaneously capturing asymmetric nonlinear behaviour in univariate 
returns of spot and futures markets and bivariate dependency. 
Keywords: Dependence, Hedge ratio, Copula, Threshold-GARCH, Financial crisis 
1. Introduction 
The introduction of Stock index futures contracts is one of the significant financial innovations in the twentieth 
century. Institutional investors use stock index futures as a major risk managing tool. The transference of risk is the 
main functions of stock index futures markets. Stock index futures can be used to hedge market risk caused by spot 
price fluctuations. The key issue of futures market is to control or reduce the risk of the portfolio. Therefore, the 
hedger has to determine the optimal hedge ratio and improve the hedging effect to averse the price risk of spot 
market.  
Many scholars have made their contribution to the optimal hedging ratio model development. One of the most 
widely-used hedging strategies is based on the minimization of the variance of the hedged portfolio. Edrington (1979) 
firstly applies the concept of portfolio theory to hedging, by using the ordinary least squares (OLS) regression model 
to estimate the optimal hedge ratio. Factors that influence the hedge construction and its effectiveness include basis 
risk, hedging horizon, and correlation between changes in the futures price and the cash price. When it comes to 
estimating the hedge ratios, many different techniques are currently being employed, ranging from simple to 
complex ones. Ghosh (1993) finds that there is a cointegration relationship between spot and futures price series, and 
the traditional OLS estimator is biased. Considering the co-integration relationship, Kroner and Sultan (1993) use 
constant conditional correlation CCC-GARCH model to estimate the risk-minimizing futures hedge ratios. Engle 
(2002) proposes a new class of multivariate models called dynamic conditional correlation (DCC) models. Ku, Chen 
& Chen (2007) apply the DCC model with error correction terms to investigate the optimal hedge ratios. Results 
show that the dynamic conditional correlation model yields the best hedging performance in futures markets. 
Following estimation of OLS, VECM, VECM-GARCH models, Kavussanos and Visvikis (2008) conclude that 
time-varying hedge ratios outperform alternative specifications in reducing market risk. Park and Jei (2010) extend 
Engle’s dynamic conditional correlation (DCC) model to more flexible ones to analyze the optimal hedge ratio. They 
find that asymmetric and flexible density specifications help increase the goodness-of-fit of the estimated models, 
but do not guarantee higher hedging performance. Wei, Wang & Huang (2011) propose a new hedging model 
combining the newly introduced multifractal volatility (MFV) model and the dynamic copula functions. Using 
high-frequency intraday quotes of the spot Shanghai Stock Exchange Composite Index (SSEC), spot China 
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Securities Index 300 (CSI 300), and CSI 300 index futures, they compare the direct and cross hedging effectiveness 
of the copula–MFV model with several popular copula–GARCH models. The finding of this paper indicates that 
multifractal analysis may offer a new way of quantitative hedging model design using financial futures. Hou & Li 
(2013) employ multiple hedging models to calculate optimal hedge ratios and assess hedging performance of 
Chinese stock index futures. They find that the CSI 300 stock index futures can be an effective hedging tool and the 
question whether time-varying ratios outperform constant ratios depends on the length of the hedging horizon. 
Salvador and Aragó (2014) use nonlinear GARCH models to estimate optimal hedge ratios with futures contracts and 
obtain more efficient hedge ratios and superior hedging performance compared to the other methodologies. 
However, most of these dynamic hedging models assume that the spot and futures returns follow a multivariate 
normal distribution with linear dependence. A popular used dependence measure is correlation, which indicates the 
strength and direction of a linear relationship between two random variables. The best known correlation measure is 
the Pearson correlation coefficient. It is a reasonable measure when the random variables are normally distributed. 
But much research shows that the multivariate normal distribution is inadequate because it underestimates both tail 
thickness of the marginal distributions and their dependence structure. Especially in financial crisis, data are 
approximated with more skewed distributions because of occasional, extreme losses. In 2008 financial crisis, U.S. 
stock markets have suffered their worst volatile trading days in memory, and various stock indices have fallen 
dramatically. The Dow Jones and S&P 500 are on course to record their worst yearly returns since the Great 
Depression. Meanwhile, U.S. stock index futures fluctuated a day after the Dow Jones snapped a seven-day losing 
streak. There is a great number of empirical evidence that the dependence between many important asset returns is 
non-normal in such crisis. Pearson correlation coefficient is not an appropriate dependence measure for very 
fat-tailed risks when extreme losses occurred. This inadequacy of correlation requires an appropriate dependence 
measure.  
Copula method is the right tool which is applied to research on non-normal dependence of financial time series. 
Copula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, 
copula functions enable us to extract the dependence structure from the joint distribution function of a set of random 
variables and, at the same time, to isolate such dependence structure from the univariate marginal behavior. Since 
Longin and Solnik (2001) have shown that the correlation between market returns is higher in case of extreme events, 
the number of papers on copula theory in finance and economics has grown enormously. Schmidt (2002) discusses 
the tail dependence property for some well-known examples of elliptical distributions. Breymann, Dias & Embrechts 
(2003) analyze the dependence structure within FX return data and conclude that the empirical fit of the t copula is 
often superior to Gaussian copula. Cherubini, Luciano & Vecchiato (2004) focus primarily on applications of copulas 
in mathematical finance and derivatives pricing. Demarta and McNeil (2005) present some new extensions of the t 
copula that follow from the representation of the multivariate t distribution relating extreme value theory. Nelsen 
(2006) provides detailed and readable introductions to copulas and their statistical and mathematical foundations. 
Rodriguez (2007) models dependence with switching-parameter copulas to study financial contagion. Sun, Rachev, 
Stoyanov & Fabozzi (2008) point out that when analyzing stock market, two dependence structures are encountered 
and copula is an alternative measure that can overcome the limitations of correlation. Bouye and Salmon (2009) 
introduce a general approach to nonlinear regression model based on the copula function that defines the dependency 
structure between the variables. Guegan and Zhang (2010) propose a dynamic copula for measuring dependence in 
multivariate financial data. Yin, Chokethaworn & Chaiboonsri (2013) set up the dependence structure between 
CSI300 index and futures by Copula-ARMA-GARCH models and find out which copula can provide a better fit to 
the empirical data. The empirical results indicate that there is high degree of dependence between CSI300 index and 
futures. The asymmetric tail dependence description is better, and tail dependence is significantly high. Nguyen, 
Bhatti & Hayat (2014) propose to blend copula functions with Asymmetric GARCH models and apply the procedure 
on the All Ordinaries Index and its corresponding Share Price Index on future contracts in Australia. The copula’s 
marginals by the AGARCH processes can differentiate between the impacts of positive and negative shocks on the 
returns volatility while taking the large kurtosis of the returns into account. The findings reveal that the two spot and 
future markets show a strong right tail dependence but no left tail dependence. Maitra & Dey (2014) model the 
dependence structures of India's and Asian natural rubber futures (derivatives) markets. Analysis shows that 
relatively a high degree of dependence has been observed between India's and China's markets in comparison to 
other markets. This paper sheds light on the dominant role of copulas for attaining the methodological congruence of 
dependence-structure modelling. 
The primary motivation for this paper is as follows. First, Copula models for financial time series are used to extract 
the dependence structure of spot and futures markets when crisis breaks out. Second, the optimal hedge ratio is 
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estimated using Gumbel copula-threshold-GARCH model. A detailed analysis is available and the rest contents 
proceed as follows. Section 2 provides the methodology of risk-minimizing hedge theory, Copula functions and 
Copula--threshold-GARCH Hedging Model. Section 3 presents an elaborate discussion on the evidences from S&P 
500 spot and futures markets, including illustrations of the empirical results. Section 4 concludes that the dependence 
between the return series of S&P 500 stock index and futures in 2008 financial crisis can be well captured by the 
Gumbel copula function. In line with recent research, the choice of a proper copula is significant to an accurate 
estimation of tail dependence in crisis. The Gumbel copula-threshold-GARCH model is employed to estimate the 
optimal hedge ratio. The methodology is quite flexible to model the dependence between two markets and estimate 
the optimal hedge ratio.  
2. Methodology 
2.1 Risk-minimizing hedge ratio 
The main aim of hedging is assumed to be the minimization of the variance of the return on the portfolio. The 
optimal hedge ratio is defined as the ratio of futures holdings to a spot position that minimizes the risk of the hedged 
portfolio. Ederington derives hedge ratios that minimize the variance of the hedged portfolio, based on portfolio 
theory. Let tSΔ  and tFΔ  represent the log returns on spot and futures on the portfolio between period t and t-1. 
Define h as the ratio of futures holdings to a spot position that minimizes the risk of the hedged portfolio. Then tR  
is the return on the portfolio, which is given by 

t t tR S h F= Δ − Δ                                 (1)               

1ln ln , 1,...,t t tS S S t T−Δ = −      =                      (2) 

                  1ln ln , 1,...,t t tF F F t T−Δ = −      =                      (3) 

The expected return E (Rt) and variance (Rt) of the portfolio are respectively as follows. 

( ) ( ) ( )t t tE R E S hE F= Δ − Δ                           (4) 

     
2

2 2 2

( ) ( ) 2 ( , ) ( )

2
t t t t t

S S F F

Var R Var S hCov S F h Var F

h hΔ Δ Δ Δ

= Δ − Δ Δ + Δ

            = σ − σ + σ
               (5) 

Where σ△S is the standard deviation of △St, σ△F is the standard deviation of △Ft, σ△S△F is the covariance of △St and 
△Ft. The optimal hedging ratio should be the optimal solution of the unconstrained optimization problems. 

2 2 2min ( ) 2t S S F FVar R h hΔ Δ Δ Δ= σ − σ + σ                     (6) 

If the joint distribution of spot and futures returns remains the same over time, then the conventional risk-minimizing 
hedge ratio h* will be: 

*
2 2

cov( , )
var( )

S F S F S

FF F

S Fh
F

Δ Δ Δ Δ Δ

ΔΔ Δ

σ ρσ σ σΔ Δ
= = = = ρ

Δ σσ σ
                   (7) 

Where ρ is the correlation coefficient between △St and △Ft. Obviously, the dynamic hedge ratio depends on the way 
in which the condition variances and covariances are specified.  
2.2 Copula functions 
The correlation coefficient indicates the strength and direction of a linear relationship between two random variables. 
Although correlation plays a central role in finance, using linear correlation to measure the dependence of two 
markets may be misleading because it does not completely characterize the relationship between two variables, when 
distributions of return series are founded to be non-normality. It is not an appropriate dependence measure for 
leptokurtosis and fat-tailed distributions. 
As is known to us, non-normality at the univariate level is associated with leptokurtosis phenomena, and the fat-tail 
problem. In a multivariate setting, the fat-tail problem can be referred both to the marginal univariate distributions 
and to the joint probability of large market movements. This concept is called tail dependence. The use of copula 
functions enables us to model these two features, fat tails and tail dependence, separately. 
A copula function links n univariate marginal distributions to a full multivariate distribution resulting in a joint 
distribution function of n standard uniform random variables. Consider a vector random variable, X =[X1,X2,…,Xn]′, 
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with joint distribution F and marginal distributions F1,F2,…,Fn. Sklar’s (1959) theorem provides the mapping from 
the individual distribution functions to the joint distribution function: 

1 1 2 2(x) ( ( ), ( ), ..., ( )), x .n
n nF C F x F x F x=     ∀ ∈ R                    (8) 

From any multivariate distribution F, we can extract the marginal distributions Fi, and the copula C, which captures 
the dependency structure among X1,X2,…,Xn. And, more useful for time series model, given any set of marginal 
distributions (F1,F2,…,Fn) and any copula C, equation (8) can be used to obtain a joint distribution with the given 
marginal distributions. The density function of X =[X1,X2,…,Xn]′ in turn can be expressed in terms of the density 
copula and the marginal densities: 

1 1 2 2 1 1 2 2

1 1 2 2 1 2

1 1 2 2
1

( ( ), ( ), ..., ( )) ( )( ) ( )
(x) ...

( ) ( )... ( )

( ( ), ( ), ..., ( )) ( )

n
n n n n

n n n

n

n n i i
i

C F x F x F x F xF x F x
f

F x F x F x x x x

c F x F x F x f x
=

∂ ∂∂ ∂
=

∂ ∂ ∂ ∂

         = Π

⎛ ⎞
⎜ ⎟
⎝ ⎠             (9) 

We now describe the copula functions of two random variables X and Y used in our empirical application. Then the 
standard formulation is: 

( , ) ( ( ), ( ))H x y C F x G y=                              (10) 

where C(u,v) is the copula, F and G are marginal distribution functions, and H is the joint cumulative distribution 
function. The information of the marginal distributions are retained in F(x) and G(y), and the dependence 
information is summarized by C(u,v). The dependence relationship is entirely determined by the copula, while the 
scaling and the shape (e.g., the mean, standard deviation, skewness and kurtosis) are entirely determined by the 
marginal. An important feature of this result is that the marginal distributions do not need to be in any way similar to 
each other, nor is the choice of copula constrained by the choice of marginal distributions. This flexibility makes 
copulas a potentially useful tool for building econometric models. 
2.2.1 Elliptical copulas 
Copulas can be distinguished in the Elliptical and Archimedean family. Elliptical copulas are the ones with elliptical 
distributions and therefore symmetry in the tails. Two frequently used copulas in this family are the Gaussian and the 
student’s t copula. 
(1) Gaussian copula 
Assume there are two random variables X and Y, the Gaussian copula is defined by 

2 2

1 1
2

1 1

2
( ) ( ) 2(1 )

2

( , ; ) ( ( ), ( ))

1

2 1

x xy y
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C u v u v

e dx dy

ρ

π

− −

− −
ρ

− ρ +
−Φ Φ
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−∞ −∞

= Φ Φ Φ

            =  
− ρ

∫ ∫
                  (11) 

where Фρ is the bivariate standardized Gaussian cumulative distribution function (cdf) and the letter Ф represents the 
univariate standardized Gaussian cdf. 
(2) Student’s t copula 
For the bivariate case, the Student’s t copula is defined as 

1 1

1 1

22 2
( ) ( )

2
22

( , ; ) ( ( ), ( ))

1 2
(1 )

(1 )2 1

t u t v

C u v t t u t v
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− −
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           (12) 

where 
12

2
(( 1) / 2)

( ) (1 )
( / 2)

x z
t x dz

υ

υ

υ

υπυ υ

+
−

−∞

Γ +
= +
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∫ . 

2.2.2 Archimedean copulas 
In comparison to Elliptical copulas, Archimedean copulas are constructed using a generator Φα(t), indexed by the 
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parameter α. By choosing the generator, one obtains a family of Archimedean copulas. The formulas of some 
well-known copulas for the bivariate cases are given as follows. 
(1) Gumbel copula 

{ }( , ; ) exp [( ln ) ( ln ) ]C u v u vα α 1/αα = − − + −                   (13) 

(2) Clayton copula 

( , ; ) max ( 1) , 0C u v u v−α −α −1/αα = + −⎡ ⎤⎣ ⎦                     (14) 

(3) Frank copula 

1 ( 1)( 1)
( , ; ) ln(1 )

1

u ve e
C u v

e

−α −α

−α

− −
α = − +

α −
                  (15) 

2.3 Copula--threshold-GARCH Hedging Model 
An appropriate way to capture the time varying nature of volatility is to model the conditional variance as a GARCH 
process. Firstly introduced by Engle (1982), Autoregressive Conditional Heteroskedasticity (ARCH) model is used to 
measure and forecast volatility of financial markets. However, in an ARCH (p) model, old news which arrived at the 
market more than p periods ago has no effect at all on current volatility. Furthermore, in many empirical applications 
with the linear ARCH (p) model a relatively long lag length in the conditional variance equation is often called for. In 
this light, the Generalized ARCH, or GARCH (p, q) model allowing for both a longer memory and more flexible lag 
structure is advanced by Bollerslev (1986). The GARCH (p, q) process is then given by 

2
1,      (0, )t t t t t tr u ε ε ψ −= + ⏐ ∼ Ν σ                            (16) 

     2 2 2
0

1 1

p q

t i t i j t j
i j

α α − −
= =

σ = + ε + β σ∑ ∑                              (17) 

Where εt denotes a real-valued discrete-time stochastic process, Ψt-1 is the information set generated by the past 
values of εt, 2

tσ  is known as the conditional variance since it is a multi-period ahead estimate for the variance 
calculated based on any past relevant information. 
Using the GARCH model, it is possible to interpret the current fitted variance ht. Following the idea of Bollerslev, 
Engle and Jeffrey (1988), p=q=1 is found to suffice in most applications. Then, GARCH (1, 1) formula is 

2 2 2
0 1 1 1 1t t tα α θ− −σ = + ε + σ                              (18) 

It is widely applied to empirical studies as it can capture important characteristics of the high frequency time series 
data, as described by Cont and Fonseca (2001, 2002). The most interesting feature not addressed by this model is 
asymmetric effect confirmed by French Schwert and Stambaugh (1987), Nelson(1991). This effect occurs when a 
negative shock (bad news) to financial time series is likely to cause volatility to rise by more than a positive shock 
(good news) of the same magnitude.  
Since the GARCH models are incapable of separating out the asymmetric information, Glosten developed a model 
that allows the effects of good and bad news to have different effects on volatility. The threshold-GARCH model is a 
simple extension of GARCH with an additional term added to account for possible asymmetries. The conditional 
variance is expressed in this form: 

2 2 2 2
0 1 1 1 1 1 1t t t t tα α θ− − − −σ = + ε + γΙ ε + σ                         (19) 

Where It-1=1 if εt<0, It-1=0 otherwise. For a leverage effect, we would see γ>0.  
 The conditional variances of changes in the spot and futures prices at time t are as follows. 

2 2 2
, ,0 ,1 , 1 1 1 ,1 , 1

2 2 2 2
F, F,0 F,1 F, 1 F 1 1 F,1 F, 1

S t S S S t S t t S S t

t t t t t

α α

α α

2
Δ Δ Δ Δ − Δ − − Δ Δ −

Δ Δ Δ Δ − Δ − − Δ Δ −

σ = + ε + γ Ι ε + β σ

σ = + ε + γ Ι ε + β σ
                   (20) 

Then, then the conventional risk-minimizing hedge ratio will be: 
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, , , ,*
2 2

,, ,

cov( , )
var( )

S F t S F S t F t S t
S F

F tF t F t

S Fh
F

Δ Δ Δ Δ Δ Δ Δ
Δ Δ

ΔΔ Δ

σ ρ σ σ σΔ Δ
= = = = ρ

Δ σσ σ
               (21) 

Where h* is the optimal hedge ratio, and S FΔ Δρ is the correlation coefficient of spot and futures markets.  
The conventional risk-minimizing hedge ratio mentioned in the previous section is estimated under the assumption of 
multivariate normality. By contrast, the use of a copula function allows us to consider the marginal distributions and 
the dependence structure both separately and simultaneously. Therefore, the joint distribution of the asset returns can 
be specified with full flexibility, which will thus be more realistic. 

,* *
Copula

,

S t

F t

h Δ

Δ

σ
= ρ

σ
                                  (22) 

where *
Copulaρ  is the median correlation coefficient of copula function instead of conventional linear Pearson 

correlation coefficient. According to the definition and mathematical properties of copula function, given u=v=50%, 
the median correlation coefficient is 

*
Copula 4 (50%,50%) 1Cρ = −                             (23) 

This paper use the copula to calculate the median correlation parameter to matching the spot and futures return rate 
nonlinearly, so the dependence between the return time series of S&P 500 stock index and futures in extreme 
condition will be guaranteed and the hedge efficiency will be enhanced. 
3. Data and empirical results 
3.1 Data 
We investigate the dependence between the S&P 500 stock index and futures time series data in U.S. financial crisis. 
On September 15th, 2008, bankruptcy of the investment bank “Lehman Brothers” in U.S. marked the beginning of 
global crisis. It resulted in a number of bank failures and sharp reductions in the value of stock worldwide. Then, a 
great many of the world’s stock exchanges experienced the worst declines in their history, with drops of around 10% 
in most indices. For this reason, the empirical data covers the period from September 15th, 2008 to July 31st, 2009 
when the stock and futures markets suffered a dramatic fluctuation in the crisis.  
The test data is the natural logarithm return of the closing price. All the estimation process is carried out in Matlab 
7.7.0. Some descriptive statistics are presented in Table 1. As previously found in other studies, returns exhibit excess 
kurtosis and skewness. The value of Jarque-Bera statistic refuses the assumption of normal distribution. It is also 
illustrated in Figure 1. Distributions of return series are founded to be non-normality. As we can not make sure the 
population distributions of S&P 500 stock index and futures return series easily, the sample empirical distribution 
functions and kernel distribution estimates were shown in Figure 2. 
Table 1. Descriptive statistics of S&P 500 stock index and futures returns series 

Series Mean Std. Dev. Skewness Kurtosis Jarque-Bera Probability 
S&P 500 -0.0011 0.0300 -0.0483 4.6509 140.8539 0.0000 

S&P 500 futures -0.0011 0.0303 0.1808 5.7877 295.1440 0.0000 

 
Figure 1. Frequency histograms of S&P 500 and S&P 500 futures returns series 
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Figure 2. The empirical distribution and kernel distribution of S&P 500 futures and S&P 500 

3.2 Copula choice for S&P 500 stock index and futures 
The parameters and formulas of Elliptical and Archimedean copulas were estimated as follows. 
3.2.1 Elliptical copulas 
The correlation coefficient ρ of Gaussian copula function is 

1.0000 0.9843
ˆ

0.9843 1.0000Gaussianρ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

                             (24) 

The Gaussian copula function is 

2 2

1 1
2

2
( ) ( ) 2(1 )

2

1ˆ ( , )
2 1

x xy y
u v

GaussianC u v e dxdy
π

− −
− ×0.9843 +

−Φ Φ
−0.9843

−∞ −∞
 =  

− 0.9843
∫ ∫           (25) 

The correlation coefficient ρ and the degrees of freedom of Student’s t copula function are 

1.0000 0.9871 ˆˆ , 2.9421 3
0.9871 1.0000t kρ =   = ≈

⎛ ⎞
⎜ ⎟
⎝ ⎠

                   (26) 

The Student’s t copula function is 
1 1

3 3

3 22 2
( ) ( )

2
22

1 2ˆ ( , ) (1 )
3 (1 )2 1

t u t v

t

x xy y
C u v dxdy

π

− − +
−

−∞ −∞

− × 0.9871 +
= +

× − 0.9871− 0.9871
∫ ∫       (27) 

The density functions c(u,v) of Gaussian and Student’s t copula are plotted in Figure 3. It is illustrated that both these 
copulas have symmetric tails and therefore strong tail dependence exists between S&P 500 stock index and futures 
returns series. However, they have different characteristics in terms of tail dependence. The density function of 
Student’s t copula has a little stronger tail than Gaussian copula. 

 
Figure 3. The density function c(u,v) of Gaussian and Student’s t copula 
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3.2.2 Archimedean copulas 
The parameters α of Archimedean copulas are estimated and the formulas of Gumbel copula, Clayton copula 
and Frank copula are followed in Table 2. 
Table 2. Estimated results of Archimedean copulas 

Archimedean copulas Estimated parameter α Formulas of copulas 

Gumbel copula 9.1269 { }9.1269 9.1269 9.1269ˆ ( , ) exp [( ln ) ( ln ) ]
Gumbel

C u v u v 1/= − − + −  

Clayton copula 9.2345 [ ]9.2345 9.2345 9.2345ˆ ( , ) max ( 1) , 0
Clayton

C u v u v− − −1/= + −  

Frank copula 34.8682 
34.8682 34.8682

Frank 34.8682

1 ( 1)( 1)
ˆ ( , ) ln(1 )

34.8682 1

u v

e e
C u v

e

− −

−

− −
= − +

−

 
The density functions c(u,v) of Gumbel, Clayton and Frank copulas are plotted in Figure 4. As shown that, they have 
different characteristics in terms of tail dependence. The Gumbel copula has asymmetric tails and the upper tail is 
stronger. The Clayton copula also has asymmetric tails, but differently, the lower tail is stronger than upper. The 
lower left tails are best described with Clayton copulas while the upper right tails are best described with Gumbel 
copula. Different with the former two copulas, the density functions of Frank copula are symmetry in the tails.  

  
Figure 4. The density function c(u,v) of Gumbel, Clayton and Frank copula 

3.2.3Comparison and evaluation 
In order to choose an appropriate copula model to describe the dependence structure of data, we introduce empirical 
copula to evaluate performances of the Elliptical and Archimedean family. When analyzing data with an unknown 
underlying distribution, one can transform the empirical data distribution into an empirical copula by warping such 
that the marginal distributions become uniform. Mathematically the empirical copula frequency function is 
calculated by 

[ ( ) ] [ ( ) ]
1

1ˆ ( , ) , , [0,1]
n i n i

n

Empirical F x u G y v
i

C u v I I u v
n ≤ ≤

=

=    ∈∑                   (28) 

where 

[ ( ) ]

1 ( )

0n i

n i
F x u

F x u
I

else≤

≤
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⎧
⎨
⎩

                          (29) 

The Square of Euclidean distance between each copula function and empirical copula are computed as 
2
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1

ˆ ˆ( , ) ( , ) 0.0091
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2

2

1

ˆ ˆ( , ) ( , ) 0.0086
n

t Empirical i i t i i
i

d C u v C u v
=

= − =∑                     (31) 

2

2

1

ˆ ˆ( , ) ( , ) 0.0078
n

Gumbel Empirical i i Gumbel i i
i

d C u v C u v
=

= − =∑                 (32) 

2

2

1

ˆ ˆ( , ) ( , ) 0.0864
n

Clayton Empirical i i Clayton i i
i

d C u v C u v
=

= − =∑                 (33) 

2

2

1

ˆ ˆ( , ) ( , ) 0.0170
n

Frank Empirical i i Frank i i
i

d C u v C u v
=

= − =∑                  (34) 

By comparing the distances, we found that the distance between Gumbel copula and empirical copula is the smallest. 
It is suggested that the Gumbel copula can provide a better fit to the empirical data and therefore well extract the 
dependence structure between S&P 500 stock index and futures in financial crisis.  
3.3 Estimating of hedge ratio 
The selected copula is a Gumbel with parameter α = 9.1269. The median correlation coefficient of Gumbel copula 
function is 

{ }9.1269 9.1269 9.1269*
Copula exp [( ln 0.5) ( ln 0.5) ]4 (50%,50%) 1 4* 1 0.8936C 1/− − + −ρ = − = − =      (35) 

The optimal hedge ratios estimated by Copula-based GARCH hedging model are dynamic time series, illustrated in 
Figure 5. The mean of hedge ratios is 0.9083, while the maximum is 1 and the minimum is 0.7561, as is shown in 
Figure 6. It has been demonstrated that the traditional static approach is inappropriate for hedging with futures, with 
the result that a variety of alternative dynamic hedging strategies has emerged. The optimal hedge ratio determined 
by the fluctuations of spot and futures prices is likely to change much through time.  

 

Figure 5. Dynamic hedge ratios estimated by Copula-based GARCH hedging model 

 
 Figure 6. Some descriptive statistics of dynamic hedge ratios 
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4. Conclusions 
In this study, we discussed the dependence structure and optimal hedge ratio of U.S. spot and futures markets in 
financial crisis. The optimal hedge ratio can differ significantly depending on the dependence structure of spot and 
futures markets. The superiority of the time-varying hedge ratio essentially comes from taking account of the 
changing joint distribution of spot and futures returns. Modeling the dependence structure of spot and futures 
markets is important to determine the optimal hedge ratio. However, most dynamic hedging models assume that the 
spot and futures returns follow a multivariate normal distribution with linear dependence. This assumption is at odds 
with numerous empirical studies, in which it has been shown that many financial asset returns are skewed, 
leptokurtic, and asymmetrically dependent. Copula modeling can overcome the limitations of correlation when 
extreme losses occurred. 
The choice of an appropriate copula function is aimed at adequately capturing the dependence between S&P 500 spot 
and futures market in 2008 financial crisis. Data are approximated with more skewed distributions because of 
occasional, extreme losses. In this case, the Elliptical and Archimedean family of copulas are employed to extract the 
dependence structure. Among the Elliptical copulas, the Gaussian and the student’s t copula show symmetric tails. 
However, the Archimedean copulas have different characteristics in terms of tail dependence. The Gumbel and 
Clayton copula have asymmetric tails, but differently, the former is stronger in the upper tail and the latter is stronger 
in the lower tail. Different with these two copulas, the density functions of Frank copula are symmetry in the tails. To 
choose an appropriate copula model to describe the dependence structure of data, we introduce empirical copula to 
evaluate performances of the Elliptical and Archimedean family. By comparing the distances between each copula 
function and empirical copula, we concluded that the dependence between the return series of S&P 500 stock index 
and futures in 2008 financial crisis can be well captured by the Gumbel copula function. In line with recent research, 
the choice of a proper copula is significant to an accurate estimation of tail dependence in crisis.  
To estimate the optimal hedge ratio, a Gumbel copula-threshold-GARCH model is employed, simultaneously 
capturing asymmetric nonlinear behaviour in univariate returns of spot and futures markets and bivariate dependency. 
The methodology is quite flexible to model the dependence between two markets and estimate the optimal hedge 
ratio. As to the selection of a specific copula function in improving the hedging performance, more research is 
needed. 
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