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Abstract 
This paper proposes a TSK-type fuzzy controller (TFC) with a two-strategy reinforcement group cooperation based 
symbiotic evolution (TSR-GCSE) for solving various control problems. The TSR-GCSE proposes the two-strategy 
reinforcement (TSR) signal designed to improve the performance of the traditional reinforcement signal designed. 
Moreover, the TSR-GCSE is different from the traditional symbiotic evolution; with each population in the TSR-GCSE 
method is divided to several groups. Each group represents a set of the chromosomes that belongs to a fuzzy rule and can 
cooperate with other groups to generation the better chromosomes by using elites-base compensation crossover strategy 
(ECCS). The illustrative examples show that the proposed method has the better time steps and CPU times than other 
existing methods. 
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1 Introduction 
In recent years, the concept of the fuzzy logic or artificial neural networks for control problems has grown into a popular 
research area [1-3]. The reason is that classical control theory usually requires a mathematical model for designing 
controllers. The inaccuracy of mathematical modeling of plants usually degrades the performance of the controllers, 
especially for nonlinear and complex control problem [4, 5]. Fuzzy logic has the ability to express the ambiguity of human 
thinking and translate expert knowledge into computable numerical data.  

A fuzzy system consists of a set of fuzzy IF-THEN rules that describes the input-output mapping relationship of the 
networks. Obviously, it is difficult for human experts to examine all the input-output data from a complex system to find 
proper rules for a fuzzy system. To cope with this difficulty, several approaches that are used to generate the fuzzy 
IF-THEN rules from numerical data have been proposed [1-3]. These methods were developed for supervised learning; i.e., 
the correct “target” output values are given for each input pattern to guide the learning of the network. However, most of 
the supervised learning algorithms for neural fuzzy networks require precise training data to tune the networks for various 
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applications. For some real world applications, precise training data are usually difficult and expensive, if not impossible, 
to obtain. For this reason, there has been a growing interest in reinforcement learning algorithms for use in neural 
controller [1, 3- 9] or fuzzy controller design [7, 10-14]. Lin proposed a temporal difference and genetic algorithm based 
reinforcement learning method and applies it to the control of a real magnetic bearing system [13]. Berenji used the 
reinforcements to learning and tuning a fuzzy logic controller from a dynamic system [14]. Lin proposed a reinforcement 
fuzzy adaptive learning control network. This is carried out by integrating two fuzzy adaptive learning control networks. It 
reduces the combinatorial demands placed by the standard methods for adaptive linearization of a system [7]. Hinojosa 
present a novel reinforcement learning approach to combine the universal-function-approximation capability of fuzzy 
system with consideration of probability distributions over possible consequences of an action, and enhance this algorithm 
by the introduction of a probability measure into the learning structure [12]. Tzafestas’ algorithm been presented for robotic 
manipulators is based on the principled of sliding-mode control and fuzzy logic. This can ease the noise on the metal 
surface [35]. Vengerov present an algorithm to overcome some power control problem. And the experiment result shows the 
algorithm can converge deterministically to a neighborhood of optimal parameter values, as opposed to a noisy stochastic 
convergence of earlier algorithm [10]. 

For many real problems, training data are usually difficult to obtain. Hence, reinforcement learning is a better solution than 
supervised learning. Unlike supervised learning problems, in which the correct “target” output values are given for each 
input pattern, reinforcement learning problems have very simple “evaluative” or “critical” information, rather than 
“instructive” information, available for learning. In the extreme case, there is only a single bit of information to indicate 
whether the output is right or wrong. In the reinforcement learning, the most well-known algorithm is Barto and his 
colleagues’ actor-critic architecture [8], which consists of a control network and a critic network. The proposed new 
reinforcement architecture [16] has a structure in which the only available feedback is a reinforcement signal that notifies 
the model only when a failure occurs. However, the Barto’s architecture is complicated and is not easy to implement. 
Hence, several researches proposed the time-step reinforcement architecture to improving Barto’s architecture [9, 13]. In 
time-step reinforcement architecture, the only available feedback is a reinforcement signal that notifies the model only 
when a failure occurs. An accumulator accumulates the number of time steps before a failure occurs. Although time-step 
reinforcement architecture becomes more simple and easier to implement than the Barto’s architecture, there is still a 
problem that such reinforcement architecture only knows how long the system works as a “success”. It does not know how 
well the controller controls the system. 

In the design of a fuzzy controller, adjusting the required parameters is important. To do this, back-propagation (BP) 
training was widely used [1, 7]. It is a powerful training technique that can be applied to networks with a forward structure. 
Since the steepest descent technique is used in BP training to minimize the error function, the algorithms may reach the 
local minima very fast and never find the global solution. For solving these problems, recently, several evolutionary 
algorithms, such as genetic algorithm (GA) [15-17], and evolution strategies [18], have been proposed. They are parallel and 
global search techniques. Because they simultaneously evaluate many points in the search space, they are more likely to 
converge toward the global solution. For this reason, an evolutionary method using for training the fuzzy model has 
become an important field. 

The evolutionary fuzzy model generates a fuzzy system automatically by incorporating evolutionary learning  
procedures [13, 19, 20, 22- 26]. One of the most well-known evolutionary learning procedure is the genetic algorithms (GAs). 
Several genetic fuzzy models have been proposed [13, 19, 20, 22]. Karr [19] applied GAs to the design of the membership 
functions of a fuzzy controller, with the fuzzy rule set assigned in advance. Since the membership functions and rule sets 
are co-dependent, simultaneous design of these two approaches will be a more appropriate methodology. Based on this 
concept, many researchers have applied GAs to optimize both the parameters of the membership functions and the rule 
sets [27]. Lin and Jou [13] proposed GA-based fuzzy reinforcement learning to control magnetic bearing systems. Juang et  
al. [15] proposed genetic reinforcement learning in the design of fuzzy controllers. The GA adopted [15] was based upon 
traditional symbiotic evolution which, when applied to fuzzy controller design, complemented the local mapping property 
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of a fuzzy rule. Tang [23] proposed a hierarchical genetic algorithm. The hierarchical genetic algorithm enables the 
optimization of the fuzzy system design for a particular application. J. K. Koza [16] proposed the CQGAF to simultaneously 
design the number of fuzzy rules and free parameters in a fuzzy system. Lin [25] proposed a sequential-search based 
dynamic evolution (SSDE) to let better chromosomes will be initially generated while better mutation points will be 
determined for performing dynamic-mutation. Lin proposed a hybrid evolution learning algorithm (HELA). The HELA 
combines the compact genetic algorithm (CGA) and the modified variable-length genetic algorithm, performs the 
structure/parameter learning for constructing the network dynamically. However, these approaches may encounter one or 
more of the following major problems: 1) all the fuzzy rules are encoded into one chromosome; 2) the population cannot 
evaluate each fuzzy rule locally. 

In this paper, a TSK-type fuzzy controller with a two-strategy reinforcement group cooperation based symbiotic evolution 
(TSR-GCSE) is proposed for solving the problems about reinforcement signal and evolutionary fuzzy model designed that 
mention above. The TSR-GCSE consists of the two-strategy reinforcement (TSR) signal design and the group cooperation 
based symbiotic evolution (GCSE). In the proposed TSR, the two-strategy is defined to design the reinforcement signal. 
The TSR feedback signal takes the form of an accumulator determined by two different strategies named the judgment and 
the evaluation strategy. In the judgment strategy, the signal is defined according to how long the experiment is still a 
“success”. In the evaluation strategy, the signal is defined according to measures how well the TFC controls the system in 
the predefined range. The accumulator is used as the fitness values of the proposed TSR-GCSE method. In the proposed 
GCSE, each chromosome represents only one fuzzy rule. The TSR-GCSE method promotes both cooperation and 
specialization, which ensures diversity and prevents a population from converging to suboptimal solutions. n 
chromosomes selected from several groups construct an complete n-rules fuzzy system. In order to make the groups that 
perform well can be corporate to generate better generation, the elite-based compensatory of crossover strategy (ECCS) is 
proposed. In the ECCS, each group will be corporate to perform the crossover step. Therefore, the better chromosomes of 
each group will be selected to perform crossover in the next generation of each group. The advantages of the proposed 
TSR-GCSE are summarized as follows: 1) The TSR-GCSE uses group-based population to evaluate the fuzzy rule locally. 
2) The TSR-GCSE uses the ECCS method to let the better solutions form different groups can cooperate to generate better 
solutions in the next generation. 3) The TSR-GCSE uses the TSR to improve the traditional reinforcement signal design. 

This paper is organized as follows. Section 2 introduces the TSK-type fuzzy controller (TFC). The proposed compensation 
of group cooperation based symbiotic evolution (GCSE) is described in Section 3. Section 4 introduces the proposed 
two-strategy reinforcement GCSE using for constructing the TFC model. Section 5 presents the simulation results. The 
conclusions are summarized in the last section.  

2 Review a TSK-Type fuzzy controller 
A Takagi-Sugeno-Kang (TSK) type fuzzy controller (TFC) employs different implication and aggregation methods when 
compared with the standard Mamdani controller. Instead of using fuzzy sets, the conclusion part of a rule is a linear 
combination of the crisp inputs. 

IF x1 is A1j (m1j, σ1j ) and x2 is A2j(m2j, σ2j ) and …and xn is Anj (mnj, σnj) 

THEN y’=w0j+w1jx1+…+wnjxn 
(1) 

Since the consequence of a rule is crisp, the defuzzification step becomes obsolete in the TSK inference scheme. The 
control output is computed as the weighted average of the crisp rule outputs, which is computationally less expensive then 
calculating the center of gravity. 
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In this paper, a TSK-type fuzzy system with a TSR-GCSE is used to solve nonlinear control problems. The structure of 
TFC is shown in Fig. 1, where n and M are, respectively, the number of input dimensions and the number of rules. It is a 
five-layer network structure. The functions of the nodes in each layer are described as follows: 

Layer 1 (Input Node):  

No function is performed in this layer. The node only transmits input values to layer 2. That is 

ii xu =)1(

 
(2) 

Layer 2 (Membership Function Node): 

Nodes in this layer correspond to one linguistic label of the input variables in layer 1; that is, the membership value 

specifying the degree to which an input value belongs to a fuzzy set is calculated in this layer. For an external input ix , the 

following Gaussian membership function is used: 
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where ijm and ijσ are, respectively, the center and the width of the Gaussian membership function of the jth term of the ith 

input variable ix . 

Layer 3 (Rule Node): 

The output of each node in this layer is determined by the fuzzy AND operation. Here, the product operation is utilized to 
determine the firing strength of each rule. The function of each rule is 
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Layer 4 (Consequent Node): 

Nodes in this layer are called consequent nodes. The input to a node in layer 4 is the output delivered from layer 3, and the 
other inputs are the input variables from layer 1 as depicted in Figure 1. For this kind of node, we have 
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where the summation is over all the inputs and where ijw  are the corresponding parameters of the consequent part. 

Layer 5 (Output Node): 

Each node in this layer corresponds to one output variable. The node integrates all the actions recommended by layers 3 
and 4 and acts as a defuzzifier with 
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(6) 

where M is the number of fuzzy rule. 

 

Figure 1. Structure of the proposed TFC 

3 A group cooperation based symbiotic evolution 
This section will introduce the proposed group cooperation based symbiotic evolution (GCSE) method. Recently, many 

researches try to enhance the traditional GAs have been made [29, 30-32].	One category of them tries to modify the structure 
of a population. Examples in this category include the distributed GA [31], the cellular GA [31], and the symbiotic GA [32]. 

This study proposes the group cooperation based symbiotic evolution (GCSE) to improve the symbiotic GA [31]. In the 
proposed GCSE, the algorithm is developed from symbiotic evolution. The idea of symbiotic evolution was first proposed 
in an implicit fitness-sharing algorithm that is used in an immune system mode [33]. The authors developed artificial 
antibodies to identify artificial antigens. Because each antibody can match only one antigen, a different population of 
antibodies is required to effectively defend against a variety of antigens. As shown in the research [24, 32], partial solutions 
can be characterized as specializations. The specialization property ensures diversity, which prevents a population from 
converging to suboptimal solutions. A single partial solution cannot “take over” a population since there must exists other 
specializations. Unlike the standard evolutionary approach which always causes a given population to converge, hopefully 
at the global optimum, but often at a local one, the symbiotic evolution find solutions in different, unconverted 
populations[22, 32]. The GCSE method divides the population into several groups to enhances its ability of finding global 
optimum. Each group represents a set of the chromosomes that belong to a fuzzy rule. 
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In the proposed GCSE, the structure of the population consists of several groups. The structure of the chromosome in the 
GCSE is shown in Figure 2. 

 

Figure 2. The structure of the chromosome in the GCSE 

Figure 3 describes a fuzzy rule that had the form of Equation (1) where ijm  and ijσ  represent a Gaussian membership 

function with mean and deviation with ith dimension and jth rule node. 

 

Figure 3. Coding a rule of a TFC into a chromosome in the GCSE 

The learning process of the GCSE in each group involves five major operators: initialization, fitness assignment, 
elite-based reproduction strategy (ERS), elite-based compensatory of crossover strategy (ECCS), and mutation. The whole 
learning process is described step-by-step as follows: 

a. Initialization Step: 

Before the GCSE applies, individuals formed by several initial groups should be generated. The initial groups of the GCSE 
are generated randomly within a fixed range. The following formulations show how to generate the initial chromosomes in 
each group: 

Deviation: Chrg,c [p]=random[ minσ , maxσ ] 

where p=2, 4, …, 2n; g=1, 2,…, M; c=1, 2, …, NC; 

(7) 

Mean: Chrg,c [p]= random[ minm , maxm ] 

where p=1, 3, …, 2n-1; 

(8) 
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Weight: Chrg,c [p]= random [ minw , maxw ] 

where p=2n+1, 2n+2, …, 2n+(1+n) 

(9) 

where Chrg,c represents cth chromosome in gth group; M represents total number of groups and NC is the total number of 

chromosomes in each group; p represents the pth gene in a Chrg,c; and [ minσ , maxσ ], [ minm , maxm ], and [ minw , maxw ] 

represent the range that are predefined to generate the chromosomes. 

b. Fitness Assignment Step: 

As previously stated, for the GCSE method, the fitness value of a rule (an individual) is calculated by summing up the 
fitness values of all the possible combinations in the chromosomes that are selected randomly from M groups. The details 
for assigning the fitness value are described step by step as follows:  

Step 1: Randomly choose M fuzzy rules from the M groups with size NC. 

Step 2: Evaluate every TFC model that is generated from step1 to obtain a fitness value. 

Step 3: Divide the fitness value by M and accumulate the divided fitness value to the selected rules with their fitness value 
records that were set to zero initially 

Step 4: Repeat the above steps until each rule (chromosome) in each group has been selected a sufficient number of times, 
and record the number of TFC models in which each individual has participated. 

Step 5: Divide the accumulated fitness value of each chromosome by the number of times it has been selected. The average 
fitness value represents the performance of a rule.  

c. Elites-based Reproduction Strategy:  

Reproduction is a process in which individual strings are copied according to their fitness value. A fitness value is assigned 
to each chromosome in each group according to a fitness assignment method in which high numbers denote a good fit. The 
goal of the GCSE method is to maximize the fitness value. For keeping the algorithm stable, this study proposes an 
elite-based reproduction strategy (ERS) to let the best combination of chromosomes in each group can be kept in the next 
generation. In the GCSE, the chromosome that has best fitness value may not be the chromosome in the best combination. 
As a result, in the ERS, every chromosome in the best combination in each group must be kept to perform reproduction 
step. In the other chromosomes in each group, this study uses the roulette-wheel selection method [27]  – a simulated 
roulette is spun – for the reproduction process. The best performing chromosomes in the top half of each group [22] advance 
to the next generation and the other half perform crossover operations on chromosomes in the top half of the parent 
generation. In the reproduction step, the top half of the population for each group must be kept the same number of 
chromosomes. 

d. Elite-based Compensatory of Crossover Strategy:  

Although the ERS operation can search for the best existing individuals, it does not create any new individuals. In nature, 
an offspring has two parents and inherits genes from both. The main operator working on the parents is the crossover 
operator, the operation of which occurs for a selected pair with a crossover rate. In this paper, for letting groups that can 
cooperate to generate better solutions, the elite-based compensatory of crossover strategy (ECCS) is proposed to perform 
the crossover operation. The ECCS mimics the cooperation phenomenon in society, in which individuals become more 
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suited to the environment as they acquire and share more knowledge of their surroundings. In the ECCS, the elites of each 
group will be selected to perform crossover operation in the next generation. The best performing individuals in the top 
half of each group that are called elites are used to select the parents for performing the ECCS. Details of the ECCS are 
shown below. 

Step 1  

The first one of the parents that is used to perform the crossover operation is selected from the original group by using the 
following equations: 

,
1

,
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where Fitness_Ratiog,t is a fitness ratio of the fitness value of tth chromosome in the gth group; Rand_Value[g]∈ [0,1] is 
the random values of gth group; Parent_SiteA[g] is the site where the first parent is. According to Equation (12), if the 
Rand_Value[g] is greater than the fitness ratio at (t-1)th chromosome in gth group and smaller or equal to the fitness ratio 
at tth chromosome in gth group, the site of the first parent of gth group is assigned to t. 

Step 2  

After determining the first parent, the best performing elites every group is used to determine the other parent. In this step, 
the total fitness ratio of every group is computed according to the following equations: 
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(14) 

where Total_Fitnessg represents the summation of the fitness value of every chromosomes in gth group; 
Total_Fitness_Ratiow is a total fitness ratio of wth group. 

Step 3  

Determine the group where the chromosome is selected from to be the other parent for performing crossover with the 
Parent_SiteA[g] th chromosome in gth group according to the following equations: 

_ _ [ ] [0,1] where 1, 2, , ,Group Rand Value g Random g M= = 
 

(15) 
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(16) 

where Group_Rand_Value[g]∈ [0,1] is a random values of gth group; Parent_Group_SiteB[g] represents the site of the 
group that the second parent is selected from. 

Step 4  

After the Parent_Group_SiteB[g] th group is selected, the ECCS determines the other present in the selected 
Parent_Group_SiteB[g] th group according to the following equations: 
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where Fitness_RatioSelected_g, t is a fitness ratio of the fitness value of tth chromosome in the Parent_Group_SiteB[g] th 
group; and Parent_SiteB[g] is the site where the second parent is. 

After the ECCS selects the presents form the gth group and Parent_Group_SiteB[g] th group, the individuals 
(Parent_SiteA[g] th chromosome and the Parent_SiteB[g] th chromosome) are crossed and separated using a two-point 
crossover in the gth group. The two-point crossover exchanges the site’s values between the selected sites of parents’ 
individual create new individuals. After this operation, the individuals with poor performances are replaced by the newly 
produced offspring. 

e. Mutation: 

Mutation is an operator that randomly alters the allele of a gene. Mutation can randomly alter the allele of a gene. In this 
paper, a uniform mutation [27] is adopted, and the mutated gene is drawn randomly from the domain of the corresponding 
variable. 

The aforementioned steps are done repeatedly and stopped when the predetermined condition is achieved. 

4 Two-Strategy reinforcement GCSE for a TFC model 
In this study, the reinforcement signal is designed [25]. Although time-step reinforcement architecture becomes more 
simple and easier to implement than the Barto’s architecture, there still have a problem that such reinforcement 
architecture only knows how long the controller successfully control the system. There are no criteria measuring the 
performance between two control processes with identical control time steps. In this paper, the two-strategy reinforcement 
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group cooperation based symbiotic evolution (TSR-GCSE) is proposed for solving the reinforcement problem that 
mentioned above. Figure 4 shows the TSR-GCSE and its training environment. The reinforcement signal is measured by 
two different strategies (judgment and evaluation strategy). As shown in Figure 4, the proposed TSR-GCSE consists of a 
TFC model, which acts as the control network to determine a proper action according to the current input vector 
(environment state). The structure of the proposed TSR-GCSE is different from Barto and his colleagues’ actor-critic 
architecture [8], which consists of a control network and a critic network. The input to the TFC model is the state of the 
plant, and the output is a control action of the state, denoted by f. The feedback takes the form of an accumulator. An 
accumulator plays a role as a relative performance measurement. The key of the TSR-GCSE is formulating a number of 
time steps before failure occurs and before the controller does not perfume well and using this formulation as the fitness 
function of the TSR-GCSE method. It will be observed that the advantage of the proposed TSR-GCSE method is its global 
optimization capability. 

 

Figure 4. Schematic diagram of the TSR-GCSE for the TFC model 

The proposed TSR-GCSE method runs in a feed forward fashion. The fitness function takes the form of an accumulator 
determined by how long the experiment is a “success” and performs well. In this way, according to a defined fitness 
function, a fitness value is assigned to each string in the population where high fitness values means good fit. The goal of 
the TSR-GCSE method is to maximize the fitness value. Details of the TSR are shown below.  

Step 1  

In the judgment strategy, the signal is defined according to how long the experiment is still a “success” The equation of the 
judgment strategy is shown as follow: 

If the controller success controls the system 

Then    _  _ 1,Failure TimeStep Failure TimeStep= +  
(20) 

where the Failure_TimeStep represents how long the experiment is still a “success”. 

 

Step 2  

In the evaluation strategy, the signal is defined according to measures how long the TFC model that still controls the 
system well in the predefined criterion value. The equation of the evaluation strategy is shown as follow: 
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( )_If _  _

Then    _  _ 1, 

where 1, 2, , _ ,

Time Value i Criterion ValueDesired Times

NotWell TimeStep NotWell TimeStep

Desired Times

− ≥

= +
=   

(21) 

where NotWell_TimeStep represents how long the experiment perform well; Time_Value, Criterion_Value, and 
Desire_Times are the predefined parameters.  

Step 3  

The accumulator only accumulates the minimum time steps of the signal in two strategies. That is, the accumulator will 
indicate the “fitness” of the current TFC model. The equation of an accumulator is shown as follow: 

_  min[ _ , _ ],Accumulator Value Failure TimeStep NotWell TimeStep=  (22) 

where the Equation (22) reflects the fact that long-time steps before failure occurs or performs not well (to keep the desired 
control goal longer) mean higher fitness of the TSR-GCSE method. 

5 Illustrative examples 
Two applications are discussed in this section. The first simulation was performed to balance the cart-pole system that was 
described in [34, 35]. The second simulation was performed to balance the ball and beam system that was described in [33]. 
For the two examples, the initial parameters are given in Table 1. The initial parameters are determined by practical 
experimentation. 

Example 1: Control of a Cart-Pole Balancing System  

In this example, the TSR-GCSE is applied to the classic control problem of the cart-pole balancing. This problem is often 
used as an example of inherently unstable and dynamic systems to demonstrate both modern and the classic control 
techniques [30, 31, 32], or the reinforcement learning schemes [28], and is now used as a control benchmark. The cart-pole 
balancing problem is the problem of learning how to balance an upright pole. The bottom of the pole is hinged to a cart that 
travels along a finite-length track to its right or left. Both the cart and the pole can move only in the vertical plane; that is, 
each has only one degree of freedom.  

Table 1. The initial parameters before training 
Parameters Value 

Nc 10 
Crossover Rate 0.5 
Mutation Rate 0.3 
Time_Value 10100 
Desire_Times 10000 

[ minσ , maxσ ] [0, 2] 

[ minm , maxm ] [0, 2] 

[ minw , maxw ] [-20, 20] 

There are four state variables in the system: θ , the angle of the pole from an upright position (in degrees);θ , the angular 

velocity of the pole (in degrees/seconds); x , the horizontal position of the cart's center (in meters); and x , the velocity of 

the cart (in meters/seconds). The only control action is f, which is the amount of force (in Newtons) applied to cart to move 
it toward left or right. The system fails when the pole falls past a certain angle ( ± 12 is used here) or the cart runs into the 
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bounds of its track (the distance is 2.4m from the center to each bound of the track). The goal of this control problem is to 
determine a sequence of forces applying to the cart to balance the pole upright. The equations of the cart-pole balancing 
system can be found [25]. A control strategy is deemed successful if it can balance a pole for 100,000 time steps. 

 

Figure 5. The performance of (a) the TSR-GCSE method, (b) the R-SE method, and (c) the R-GA method on the cart-pole 
balancing system 

The four input variables ( ,  ,  ,  )x xθ θ  and the output ft are normalized between 0 and 1 over the following ranges, θ : [-12, 

12], θ : [-60, 60], x : [-2.4, 2.4], x : [-3, 3], ft: [-10, 10]. The four normalized state variables are used as inputs to the 

proposed TFC model. The coding of a rule in a chromosome is the form in Figure 3. The values are floating-point numbers 
assigned using the TSR-GCSE initially. The fitness function in this example is defined in Equation (22) to train the TFC 
model where Equation (22) represents how long the cart-pole balancing system fails and receives a penalty signal of -1 

when the beam deviates beyond a certain angle ( °>12||θ ) and the cart runs into the bounds of its track ( m4.2|| >x ) and 

how long the TFC model controls the system well. In this experiment, the initial values are set to (0, 0, 0, 0) and θ  is 

chosen to be Criterion_Value from the four input variables. There are four rules to construct the TFC model. A total of 
thirty runs were performed. Each run started in the same initial state. Figure 5(a) shows that the TFC model learned on 
average to balance the pole at the 117th generation. In this figure, each run represents that largest fitness value in the 
current generation is selected before the cart-pole balancing system fails. When the TSR-GCSE is stopped, the best 
combination of strings at the final generation are selected and test them on the system. 

 

Figure 6. Control results of the cart and pole balancing system using the TSR-GCSE in Example 1. (a) Angle of the pole. 
(b) Position of the cart. (c) Control force. 

The successful results, which consist of the pole angle, cart position and controller output, are shown in Figure 6. Each line 
in Figure 6 represents each run with a same initial state. The results shown in this figure is the first 1,000 time steps in the 
100,000 control time steps. As shown in Figure 6, the TSR-GCSE successfully controlled the cart-pole balancing system 
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in thirty runs. Moreover, the small angular deviation is obtained by using the TSR method. The average angular deviation 

was 0.57∘. 

In this example, in order to show the effectiveness and efficiency of the proposed TSR-GCSE method, reinforcement 
symbiotic evolution (R-SE) [25], and the reinforcement genetic algorithm (R-GA) [19] were applied to the same problem. 
Four rules were set for the R-SE and R-GA because the number of rules used from the TSR-GCSE is four. In this study, the 
parameters are found using the method [37]. Therefore, the population size has the range from 10 to 250 in increments of 10, 
the crossover rate has the range from 0.25 to 1 in increments of 0.05, and the mutation rate has the range from 0 to 0.3 in 
exponential increments. Figure 5(b) and (c) shows the R-SE and the R-GA methods learned on average to balance the pole 
at the 214th and 324th generations. Figure 7(a) and (b) shows the angular deviation of the pole in thirty runs when the 
cart-pole balancing system was controlled by (R-SE) [25] and (R-GA) [19]. The average angular deviation of methods [8, 12] 

were 3.270 and 4.630. As shown in Figures 5-7, the control capabilities of the trained TFC model using the TSR-GCSE are 
better than in the cart-pole balancing system [19, 25]. Moreover, the angular deviation of the proposed TSR-GCSE is 
smoother than that of [19, 25]. The GENITOR [35], the SANE (Symbiotic Adaptive Neuro-Evolution) [32], and the R- 
HELA [26] have been applied to the same control problem and the simulation results are listed in Table 2. This experiment 
uses a Pentium 4 chip with a 1.5GHz CPU, a 512MB memory, and the visual C++ 6.0 simulation software. Table 2 shows 
the number of pole-balance trials (which reflects the number of training episodes required), CPU times, and angular 
deviation. As shown in Table 2, the proposed TSR-GCSE is feasible and effective. 

 

Figure 7. Control results (angle of the pole) of the cart and pole balancing system using (a) the R-SE method and (b) the 
R-GA method 

Table 2. Performance comparison of various existing models in example 1 

Method 
Time steps  CPU Time (seconds) 

Angular deviation 
Mean Best Worst  Mean Best Worst 

GENITOR[35] 3268 415 18743 70.95 33.34 246.36 5.98 

SANE[32] 1984 46 5865 43.56 16.54 156.84 5.32 

R-GA[19] 324 26 520 47.59 11.85 102.63 4.63 

R-SE[25] 214 15 380 38.85 8.53 90.78 3.27 

R-HELA[26] 174 21 287 31.45 7.49 65.74 1.63 

TSR-GCSE 117 7 215 13.87 3.06 30.04 0.57 
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Example 2: Control of a Ball and Beam System 

The ball and beam system is shown [32]. The beam is made to rotate in vertical plane by applying a torque at the center of 
rotation and the ball is free to roll along the beam. The goal is that the ball remains in contact with the beam. 

The equations of the ball and beam system can be found [26, 27]. A control strategy is deemed successful if it can balance the 

ball and beam system for 100,000 time steps. The four input variables ),,,( θθ rr and the output u(k) are normalized between 

0 and 1 over the following ranges, r :[-5, 5], r :[-3, 3], θ :[-1, 1], θ :[-2, 2], and u:[-70, 70]. The values are floating-point 

numbers assigned using the TSR-GCSE initially. In the proposed TSR-GCSE method, the fitness function in this example 
is also defined in Equation (22) to train the TFC model where Equation (22) represents how long the ball and beam system 

fails and receives a penalty signal of -1 when the beam deviates beyond a certain angle ( °>12||θ ) and the ball reaches the 

end of the beam ( m2|| >r ) and how long the TFC model controls the ball and beam system well. In this example, the r is 

chosen to be Criterion_Value from the four input variables. There are five rules to construct the TFC model. A total of 
thirty runs were performed. Each run started in the same initial state. Figure 8(a) shows the TFC model learned on average 
to balance the ball at the 139th generation. In this figure, each run represents that largest fitness value in the current 
generation is selected before the ball and beam system fails. When the learning process is stopped, the best combination of 
strings each group at the final generation are selected and test it on the ball and beam system.  

 

Figure 8. The performance of (a) the TSR-GCSE method, (b) the R-SE method, and (c) the R-GA method on the ball and 
beam balancing system 

The simulation was run thirty times. The successful results, which consist of the beam angle, ball position, and controller 
output, are shown in Figure 9. Each line in Figure 9 represents each run in the TSR-GCSE. The results shown in this figure 
is the first 1,000 time steps in the 100,000 control time steps. As shown in Figure 9, the TSR-GCSE in thirty runs 
successfully controls the ball and beam system with a small deviation in both the position and angle. Moreover, as show in 
this figure, the position of the ball is decay to zero gradually by using the proposed TSR method. The results show the good 
control ability of the trained TFC model in the ball and beam balancing system. Moreover, the smooth position of the ball 
is obtained by using the TSR method. 

In this example, as with example 1, the TSR-GCSE is also compared the performance with other methods (the R-SE [25] 
and R-GA [19]). The parameters [19, 25] are the same with example 1. Figure 8(b) and (c) shows the R-SE [25] method and the 
R-GA [19] method learned on average to balance the ball at the 274th generation and 466th generation. Figure 10(a) and (b) 
shows the position deviation of the ball in thirty runs when the ball and beam system was controlled by the R-SE and the 

R-GA methods starting at the initial state: 58.0)0(and,58.0)0(,01.0)0(,2.1)0( ==−=−= θθ rr . As shown in Figures 

8-10, the control capabilities of the trained TFC model using the TSR-GCSE are also better than [19, 25] in the ball and beam 
balancing system. Moreover, the position deviation of the proposed TSR-GCSE is smoother than that of [19, 25]. Table 3 
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shows the performance compared (the number of trials and CPU times) with various existing models [19, 25, 26, 32, 35]  in 
Example 2. From Tables 3, the proposed TSR-GCSE method obtains better performance indices and smaller CPU times 
than the existing models. 

Table 3. Performance comparison of various existing models in Example 2 

Method 
Time steps  CPU Time (seconds) 

Mean Best Worst  Mean Best Worst 

GENITOR[35] 4982 551 19853 113.15 73.34 297.62 

SANE[32] 2287 150 6217 70.26 51.54 197.61 

R-GA[19] 466 97 678 60.79 46.35 122.93 

R-SE[25] 274 32 492 42.25 18.23 101.43 

R-HELA[26] 198 32 312 38.38 10.95 68.62 

TSR-GCSE 139 12 214 16.34 4.01 23.58 

 

 

Figure 9. Control results of the ball and beam balancing system using the TSR-GCSE in Example 2. (a) Angle of the beam. 
(b) Position of the ball. (c) Control force. 

 

Figure 10. Control results (position of the ball) of the ball and beam balancing system using (a) the R-SE method and (b) 
the R-GA method. 



www.sciedu.ca/air                                                                                       Artificial Intelligence Research, September 2012, Vol. 1, No. 1 

                                ISSN 1927-6974   E-ISSN 1927-6982 16

6 Conclusion 
In this paper, a TFC with the two-strategy reinforcement group cooperation based symbiotic evolution method is 
proposed. The proposed TSR-GCSE method consists of the two-strategy reinforcement signal design and the group 
cooperation based symbiotic evolution to perform the parameter learning for tuning the TFC model efficiently. The 
TSR-GCSE method can evaluate the fuzzy rule locally and cooperate with each group to generate the better chromosomes 
by using elites-base compensation crossover strategy. Moreover, the TSR-GCSE method proposes the TSR that uses two 
strategies to design the reinforcement signal for improving the performance of the traditional reinforcement signal design. 
Computer simulations have shown that the proposed method has a better performance than the other compared methods. 
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