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Abstract 
Telecommunications networks comprise elements of very different types that work together to provide services. Quite 
often, hardware failures are interrelated and it is hard for technicians specialized in specific hardware to find out these 
relationships. In this context, Bayesian Networks (BN) provide a good and flexible solution because they allow us to 
model the causal relationships between element failures and infer information from existing evidence. The goal is that 
network technicians can be informed of the real scope of failures and the probable existence of root problems, thus 
optimizing resources and reducing recovery time. Besides, with this approach a real element hierarchy can be built, 
allowing the discovery of hidden dependencies between elements. The outcome of this work has been the development of 
a rooting module attached to an incident management system (trouble ticketing system, TT). 
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1 Introduction 
Telecommunication networks consist of thousands of different hardware elements of the most varied kinds: servers, 
routers, modems, switching units, cables, base stations, cooling elements, energy elements, etc. Many of the possible 
relations between elements are not explicitly defined, even more when they are heterogeneous. For example, there is a 
clear relation between the cooling system that controls a room temperature and all the hardware installed in the room; a 
failure in the former will probably affect a smooth running of the hardware or make it break down. Another typical case is 
a fibber cut-off that makes many dependent mobile base stations be in turn cut off, consequently affecting many 
customers. While in certain types of hardware elements this information is explicitly modelled, it is not the case in many 
others. This makes it difficult to use traditional programming solutions to automatically link failures to a root cause [1]. 
Incident management systems, usually known as trouble ticketing (TT) systems, offer the technician the possibility to link 
an incident produced on an element to another existing incident, creating a child-parent relation. So, it depends on expert 
knowledge to be able to identify these situations quickly. Many times it is not until several similar incidents have appeared 
and technicians have dedicated much time and resources to analyze them all that a root cause is discovered to be the real 
problem.  In the mean time many customers could have their services partially or fully affected. What makes matters worse 
is the fact that it is precisely root causes that are usually harder to detect and affect more customers. The inverse way is also 
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important, i.e. predicting how a failure in an element can affect other elements, thus being able to evaluate the real scope of 
the problem as soon as possible [2, 3].  

Different AI approaches are applied to address a variety of problems in the Telco area, mostly churning detection [5], and 
forecasting [6]. However, incident management systems have hardly used AI techniques to optimize the processes 
involved. A lot of work has been dedicated to supervision in order to prevent or detect problems as soon as possible, but 
little to nothing has been done once the incident has been created. In most cases the optimizations are reduced to more or 
less sophisticated decision rules, or searching for previous similar cases in knowledge bases in what is known as case 
based reasoning [4]. These approaches may be suitable for simple problems but are not adequate to address complex or 
changing environments. In recent years machine learning techniques are starting to be applied in the context of TT systems 
to discover information and automate certain tasks [7-9]. 

An example of complexity is the case of TT systems that manage incidents from large heterogeneous networks under 
difficult conditions: an incident could affect an important service offered to hundreds of people, thousands of incidents 
may appear every day, and the topology of the network is complex. Under these conditions, decisions cannot be delayed 
and actions must be carried out right away. 

In recent years, with the development of efficient computational algorithms, Bayesian networks have had a revival within 
the AI community. BN’s causal semantics allows the representation of causal relationships between the variables. BNs 
model the quantitative strength of the connections between variables, allowing probabilistic beliefs about them to be 
updated automatically as new information becomes available. This allows inference and reasoning under uncertainty, 
probabilistically, in what is called Bayesian reasoning. As BNs provide full representations of probability distributions 
over their variables, they can be conditioned upon any subset of them, supporting any direction of reasoning. For example, 
diagnostic reasoning, that goes from symptoms observed to causes; or predictive reasoning, that goes from new 
information about causes to new beliefs about effects [10, 11].  

All this makes BNs a good AI technique to address the problem of finding the root cause of an incident described in this 
article [12, 13]. 

The aim of this work is keeping a real time directed graph of interconnected elements, where each node indicates the 
current probability of that element having an incident, and where an edge going from an element A to an element B shows 
the current probability of a failure in A being the cause of a failure in B. 

This article describes how Bayesian networks combined with classification algorithms can be used in the scope of 
telecommunications networks to address the aforementioned problems. Being this a practical work that is to be applied to 
a real TT system with several thousand incidents created daily, the solution pays important attention to performance 
issues, considering that response time is critical (it is no use providing very good results once incidents have already been 
solved). 

The article is structured as follows: the context and overall description is presented in Section 2. A detailed description 
showing the application of Bayesian Networks is presented in Section 3. Section 4 describes how to integrate a rooting 
module into a real TT system. Then, Section 5 presents a proof of concept based on this work applied to a real TT system 
and the results obtained. Finally, Section 5 offers the conclusions. 

2 Overall description 
The data for this work are incidents produced on network elements. Every incident describes a problem detected on a 
specific element, and contains information such as the type of element, location, service, type of symptom, and problem 
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description. Sometimes, a failure detected on an element has really been caused by another element it depends on. When 
technicians discover such a situation, they create a second incident (in case it does not already exist) and link the first 
incident to this second one, establishing a parent-child relationship. Due to the elements heterogeneity, this dependency 
relation is not explicitly defined in any inventory system, so that it is technicians’ expert knowledge and analysis that guide 
them to create this relation between incidents. In some cases a failure in an important element can produce a cascade of 
failures in many other elements. What technicians see are a lot of different unrelated incidents, so that it is hard for them to 
evaluate the real situation to be able to link all incidents to a root incident. There exist different situations: the root element 
failure is detected first, and so its incident is created first; or the affected elements failures are detected first. In any case, in 
more or less degree, the situation is difficult to manage. When the elements belong to different types of networks, incidents 
are assigned to different groups of technicians, making it even more difficult for them to realize what the real situation is. 

This article describes the work done so far in order to help technicians to manage these situations. The basic idea consists 
on automatically learning the relation between elements with no need of an inventory system, by just watching what has 
happened in the past, how elements related to each other either by means of explicitly linked incidents or through time 
association of incidents occurring simultaneously. This learning process is applied to the massive information 
accumulated through years to build conditional probability tables (CPTs) that express the probability of a failure in an 
element being the root cause of a failure in another element. These initial CPTs are afterwards updated with current 
information on a regular basis.  

CPTs are used to build different temporal BNs for groups of related elements. Based on the posterior probabilities obtained 
from these temporal BNs we can represent a real time directed graph of interconnected network elements. This graph 
represents the probabilities or believes of elements having a failure, and the probabilities or believes of relations between 
elements in terms of failures. Therefore, the graph holds the complete information of the state of the network at any given 
time. Figure 1. Probability Graphshows an example graph with nine elements Ei, i=1, 2, … 9.  Each node Pi represents the 
current probability of a failure in element Ei, and each edge Pij represents the current probability of Ei being the root cause 
of Ej. 

 

Figure 1. Probability Graph 

In our case, this graph has around 100,000 nodes and 50,000 edges. This graph is not static, it is periodically updated as 
problems are created, solved, or linked. These three possible types of events are introduced as new evidence into the 
different BNs, and posterior probabilities are automatically adjusted, so that we get a real time snapshot of the probability 
of failure of all existing elements in the network. Furthermore, we are offered an explanation of failures through the 
posterior probabilities associated to the links between elements.   

The real benefit of this approach is that the relevant part of that graph can be attached to incidents as they are created, 
offering information about possible affected elements, and possible root causes. Moreover, different rules can be defined 
and applied to warn technicians of different situations: an element whose failure probability has increased over a given 
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threshold => probable new incident, and an edge whose probability has increased over a given threshold => probable new 
link 

Real Time Graph (see Figure 2) shows an example of how a possible real time situation is reflected in the graph. A possible 
sequence of events could have been this: 

 t0: Initially there are no incidents. The graph shows the prior probabilities. 

 t1: An incident is detected on element E2. This evidence is inserted into the related BNs and the resulting graph is 
updated. As a result, P2 is set to 1 and the rest of the links and elements have their probabilities increased. 

 t2: A new incident is detected, this time on E4. This second evidence is processed and the graph is consequently 
updated. Consequently, P4 is set to 1, and P3 and P1 as well as the corresponding edges have their probabilities 
increased once more. 

 

Figure 2. Real Time Graph 

The final situation shows that the probable root cause of incidents on E2 and E4 is a failure in E1. It also shows that E3 could 
also be affected. 

3 Detailed description 
The final goals of this work are two: given a problem, predict its root cause, and predict its real scope. To achieve these 
goals a directed graph like the one shown in Figure 1. Probability Graph, is built. This graph describes all possible relations 
between elements, and offers two types of real time information: the probability of an element having a problem, and the 
probability of an element causing a problem in another element. 

The procedure to build and keep this graph updated consists of several steps: (i) defining the graph structure; (ii) designing 
a specific Bayesian network structure or template in order to express the elements relations and calculate the graph 
probabilities; (iii) automatically learning relations from past experience in order to build the necessary conditional 
probability tables of elements relationships; (iv) rebuilding and updating evidence in Bayesian networks as new incidents 
are created, closed, and linked, in order to keep the graph updated. 

The description of the graph structure, the Bayesian Network, the construction of the Conditional Probability Tables, and 
the management of the graph are described in the subsections below. 

3.1 Graph structure 
The graph structure is built from historical data in the following way: there is a node in the graph for every element Ei in 
the universe U={E1, ..EN}; if there has ever been a problem in element Ei that has been caused by a problem in element Ej, 
then there is an arrow from Ej to Ei, indicating a parent->child relationship; each node represents the current probability of 
a failure on its associated element; each arrow represents the probability of the parent node being the cause of the problem 
on the child node. The calculation of probabilities is described in later sections. 
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3.2 Bayesian network structure 
Every element Ei in the graph has its own Bayesian network BNi. This BN has a node for Ei (the root element, denominated 
R) and nodes for all its children, children (Ei), with the structure shown in figure 3. 

 

Figure 3. Bayesian Network Structure 

It has the following type of nodes: 

R: represents the probability of element R having a problem. 

CRi: represents the probability of R being the root cause of a problem in Ei. 

Ei: represents the probability of element Ei having a problem. 

Ci: represents the probability of element Ei having a problem that is caused by some other existing problem. 

Ti: represents the result of a test on the existence of a root cause for Ei having a problem [2]. 

This structure fulfills the following requirements: it expresses the relations and dependencies between elements; its 
conditional probabilities can be calculated from existing historical data; it incorporates testing nodes to be able to express 
the result of predictions; and it is simple enough so that all BNs can be built and kept in a real time basis. 

Next section shows how the probability tables for all types of nodes can be calculated. 

3.3 Conditional probability tables  
The conditional probability tables of the different types of nodes are calculated from historical data in the following way: 

 Root node R: P(R=T) or prior probability that R is failing can be calculated dividing the total time that element R 

has failed ( 	 	by the total time that R has existed ( 	 	 ). 

 
(1) 

 

 Nodes CRi 
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P(CRi=T|R=T) or probability that element Ei is failing being R its root cause, conditioned to “R is failing” can 
be calculated in the following way: | , | , |  , | | , |  

∗ 	 	  

 

 

(2) 

Where: 																																 : is the number of times that element R has been the root cause of a failure in Ei. 																																 	 	 : is the number of times that elements R and Ei have failed simultaneously. 																																 : is the number of times that element R has failed. 

P (CRi=T|R=F) or probability that element Ei is failing being R its root cause, conditioned to “R is not 
failing” is 0. | 0 (3) 

 Nodes Ei:  

P(Ei=T|CRi =T) or probability that element Ei is failing conditioned to R being the root cause of a failure 
in Ei is 1. | 1 (4) 

P(Ei=T|CRi =F) or probability that element Ei is failing conditioned to R not being the root cause of a 
failure in Ei: 

| |
 

|| |  

||  
(5) 

 Nodes Ci: 

P(Ci=T| ) or probability that Ei has a failure that is caused by some root cause, conditioned to R being the 
root cause of a failure in Ei is 1. | 1 (6) 
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P(Ci=T| ) or probability that Ei has a failure that is caused by some root cause, conditioned to R not being 
the root cause of a failure in Ei: 

| |1  

| | |1 | |  

| |1 |  
(7) 

 Nodes Ti: This node assumes the existence of a model to predict whether an existing failure on an element is 

being caused by some other element.  P(Ti=T| ) and P(Ti=T| ) are given by true positives and false 
positives frequencies of the algorithm, respectively. 

The different conditional probabilities in the equations can be calculated from historical data: 

	 	  

|  

(8) 

|  
(9) 

Where: 																			 : is the number of times that element R has been the root cause of a failure in Ei. 																			  is the number of times that element Ei has failed. 

                 Nci is the number of times that a failure in Ei has been caused by some other element. 

As indicated in the previous section, a prediction model is used to calculate the CPTs of nodes Ti. To build this model 
different information about a ticket can be used: type of element, symptoms, severity, etc. Some of this information can be 
textual, filled in by a supervisor or an automatic supervision system, so that a text mining process must be performed.  

The type of model to use is not relevant in this work, although different models have been tested with good results, such as 
naive Bayes and decision trees. As a result of the model we can get a transition matrix and use the true positives and false 
negatives frequencies as parameters for the CPTs.  There could be one model for all type of elements, in which case all Ti 
nodes would have the same parameters, or a different model for each type of element, in which case there would be 
different sets of parameters, one for each type of element.  

Once the model is generated we can apply it to new tickets to predict whether they have a root cause, which translates into 
True or False evidence in nodes Ti. 

3.4 Graph management 
Once the BNs templates and the way to calculate the CPT are defined the complete graph can be constructed as follows: 
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 The nodes and arrows are defined as described in 3.1. 

 Initially all Pi and Pij are initialized to very low values. 

 Periodically the following procedure is started: 

For every node Pi in the graph, representing element Ei: 

o BNi is created as described in 3.2 

o All the necessary CPTs are calculated as described in 3.3 

o All existing evidence is added to BNi. The possible evidences are: 

 Failure in the root element R 

 Failure in child Ej 

 Evidence of Ei (node R) being the root cause of a failure on child Ej, CRj 

 Evidence of a child Ej being linked to some root cause other than Ei (node R), CRj 

 Evidence from tests Tj: in case that a child is failing, a test can be applied to predict whether 
there is some external root cause    

o Posterior probabilities obtained from BNi are updated into the graph: 

 Nodes 

• If P(Ei|evidence)>Pi then Pi =P(Ei|evidence)   

• If P(Ei|evidence)<Pi and Pi was assigned by this same BNi in some previous 
calculation process then Pi =P(Ei|evidence)  

 Arrows 

• If P(CRj|evidence)>Pij then Pij= P(CRj|evidence) 

• If P(CRj |evidence)<Pij and Pij was assigned by this same BNi in some previous 
calculation process then Pij = P(CRj |evidence)  

4 Integration with trouble ticketing systems 
The procedure described earlier can easily be integrated into a TT system, i.e., a system that manages incidents or failures 
on elements. Concretely, a trouble ticketing system that manages incidents produced in the infrastructure of a 
telecommunications company. In this scenario there are thousands of incidents every day, covering many different types 
of elements. All network elements collaborate in daily operations, providing all the necessary services requested by 
customers. For example, in order for a mobile call to work a complete series of hardware and software elements must 
work, energy systems must be operative, and cooling systems must regulate adequately room temperatures. All the 
elements must work simultaneously, and any failure in this chain can make the call to fail.  

The typical flow of events in TT systems is as follows: a supervision system detects an anomaly and issues an alarm. When 
this happens a new ticket is created in the TT system, indicating the anomaly detected on the element. The ticket is 
automatically assigned to a group of specialized technicians who analyse the ticket and try to solve the problem. Many 
times they find out that what is making the element fail is a problem in some other network element, in which case they 
create a new ticket (root or parent ticket) on this other element (if it does not already exist), and link both tickets, creating 
a parent-child relation. 
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A system based on the procedures described in the previous sections, that we can call a Rooting System (RS), can operate 
as a separate and independent module from the TT system to help automate the creation of parent-child relations. The RS 
has access to all historical data in order to build the probability tables, and receives real time events from the TT system: 
ticket creation, closing, and new links. New events make the system learn from the environment, allowing it to update the 
probability tables of all affected BNs. Besides, new evidence triggers the Bayesian reasoning process which in turn 
updates the state of the graph as described above.  

Rooting System Integration (see Figure 4) shows how the RS integrates with the TT system. The RS offers different 
degrees of interaction with the TT system. Technicians can view or search the probability graph to get relevant information 
about the predictions on the state of the network. The RS issues alarms when probabilities go beyond specified thresholds 
indicating different conditions. Possible alarms are: (i) a ticket should be linked to another existing root ticket; (ii) a new 
ticket should be created, with other existing tickets being linked to it; (iii) an existing ticket can affect other elements 
which still don’t have tickets. Finally, the system offers information about the real scope of a problem. In some of these 
situations, the RM could automatically act, creating or linking tickets. 

 

Figure 4. Rooting System Integration 

5 Results 
A proof of concept applying the methods described in this article has been applied and tested in a real TT system that 
manages around five thousand tickets every day. The trouble tickets describe problems with switching, transmission, 
mobile, energy, servers, and cooling elements. Tickets include information about the affected element (identifier, type, 
location, services offered …), failure information (severity, affected clients, symptoms …), and management information 
(ticket identifier, technician in charge, dates, tasks performed, parent ticket identifier …). In order to build the different 
CPTs of BNs, historical data were processed. Information about parent-child relations as well as ticket opening and 
closing dates where used to obtain CPTs for all types of nodes except Ti nodes, as detailed in section 3.3. 

For Ti nodes a Random Forest (RF) model was built using the type of element, initial severity, problem description, and 
type of symptom, as described in section 3.4. Most of the tickets are created automatically by supervision systems, and 
there is a specialized supervision system for each type of network. Therefore, because the problem description included in 
each ticket is specific to its type of network, in order to improve the results, a different RF model was trained for each type 
of network element. The true positives vary between 78% (energy) and 85% (switching). False positives vary between 
12% (switching) and 17% (transmission). 

In order to measure the quality of the information offered by the rooting module, two thresholds where established: one for 
the probability of nodes, and other for the probability of edges. With thresholds of 40% the percentage of false positives 
was 43% and true positives 86%; increasing the thresholds to 75% false positives reduced to 12%, and true positives 
decreased to 34%. Reducing the number of false positives is preferable since the main objective is offering useful 
information to the technicians. With this in mind, other type of metrics related to mean time to repair (MTR) can give a 
better understanding of the real benefits. MTR of tickets with a root cause was reduced about 27%; for certain types of 
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elements the reduction reached 41%. The number of tickets with a root cause that took longer than 24 hours to get fixed 
was reduced around 62%.  For parent tickets, the reduction was 18%. This difference is due to the fact that most child 
tickets can be closed almost immediately once the parent-child relation is detected, whereas parent tickets need to be 
solved. Other significant advantages reported by technicians were: the reduction in the effort that they had to dedicate to 
searching for information, as the rooting module already showed all possible relations between tickets; valuable 
information concerning the number of elements affected by a root cause, and consequently, the possibility to know in 
advance the possible services affected by a failure, which in turn could be used to assign a more accurate severity level or 
priority. 

Although in this initial phase the rooting module was not fully integrated with the TT system and did not perform any 
automatic action or offer recommendations, the results show that it provided technicians with valuable information to help 
them solve the tickets: all elements that could be affected by a given failure, and therefore, an indication of the severity of 
the problem; and, secondly, the possible existence of a root cause. To measure the technicians’ level of satisfaction, they 
were asked to assign an evaluation mark about the utility of the information that the rooting module added to each ticket. 
The average mark was 6.8/10. 

Figure 5 shows a real example graph with the information that the rooting module would attach to a ticket assigned to a 
switching element called “GR. RE CD34”. The graph is centered on this element, the nodes above it represent the possible 
root causes, and the elements below it represent possible affected elements. Evidence about existing failures and existing 
parent-child relationships are shown with probability 100%. 

 

Figure 5. Information offered about element “GR. RE CD34” 

A consideration that must be taken into account with this approach and should be addressed in future work is that the 
system has no information about an element until it fails for the first time, and even then the CPTs cannot offer sufficient 
confidence until sufficient statistical information is gathered. 
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6 Conclusion 
When systems are complex and comprise thousands of different interrelated elements of very different types, it requires an 
enormous effort to discover hidden associations. It requires expert technicians to execute many tests and search for 
probable root causes. This is a time consuming task that depends on the knowledge and experience of technicians. 

An automatic rooting system attached to the main system can automatically collect all information compiled through years 
of operation and learn all relations between elements, which in turn can provide real time information that guides 
technicians in their daily work in different ways. It can warn of hidden root causes of failures, minimizing the time that 
services are inoperative, increasing user satisfaction, and decreasing maintenance costs. It can also inform of the scope of 
an existing failure, of its effect on related elements, and alert of a probable cascading of failures, preventing massive 
failure situations and allowing for an adequate assessment of the situation.  

In all cases the rooting system is able to offer a graphical and numerical explanation, showing all elements involved in an 
incident, and confidence levels on the predicted information. 

As a result, mean time to recovery (MTTR) can be reduced significantly, as well as the impact of a failure on the services 
offered to customers. 
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