
http://air.sciedupress.com Artificial Intelligence Research 2020, Vol. 9, No. 1

ORIGINAL RESEARCH

Weighting features by the value displacement rebound

Andrew Yatsko∗

ITMS, the University of Ballarat, VIC, Australia

Received: March 25, 2020 Accepted: July 6, 2020 Online Published: July 29, 2020
DOI: 10.5430/air.v9n1p27 URL: https://doi.org/10.5430/air.v9n1p27

ABSTRACT

Learning from examples draws on similarity, a concept which formalisation leads to the notion of instance space. Continuous
spaces are easier to embrace since, unlike discrete, they often can be seen as hyper-constructs of 3D. Unsurprisingly, the
instance-based learning methods are more developed for continuous domains than for discrete ones. The value difference metric
(VDM) is one of the few examples of metrics for discrete spaces. Mixed reports about utility of VDM exist. In this paper VDM is
compared with another approach where data features are weighted by the Information Gain. Some vulnerabilities of VDM are
identified. A weighting method, nothing like VDM, although inspired by the former, is proposed. The results are in favour of the
new weighting scheme with illustration of utility for health diagnostics.
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1. INTRODUCTION

Stanfill and Waltz[1] have introduced a metric for spaces
spanning symbolic / discrete features that accounts for dif-
ferences in value class frequencies by feature, given two
instances of data. They named it the Value Difference Metric
(VDM). Later, Cost and Salzberg[2] have modified the metric
by removing a term which rendered it asymmetric and by
penalising distances to some instances to reduce effects of
noise. The second requires another pass through the data and
can be considered a general method outside the competence
of space metric.[3, 4] Cost and Salzberg noted that their ap-
proach lends itself easily to parallel computations, therefore
naming it the Parallel Exemplar-Based Learning System (PE-
BLS).[2] They however acknowledged that this may appear
overreaching and would equally apply to the original method
of Stanfill and Waltz.[1] As far as VDM itself is concerned,
the modification[2] rendered it simpler. In this form (setting
a new standard[5, 6]) the feature-wise distances are calculated
by Eq.1.

(1)

In Eq.1, C and ct are the class and its particular value; like-
wise F is a feature and f1 and f2 are its two values being
compared; T > 1 is the number of classes (object types) and
t is the class index. While it is called the value difference
metric, in fact, the relative class frequencies / probabilities
P , given one value and then the other, are subtracted. The
prior squaring of the summand in Eq.1[1] was also abolished
in this version.[2, 5]

This approach exploits redundancies which exist on the value
level within a feature. The feature redundancy is a topic often
discussed, but each value of a symbolic feature can be cast
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as a binary feature of its own. Outwardly, this may seem
strange as one can expect uniqueness of values. However, in
practice the likeness of categories is wide-spread. Consider
the classification of race / ethnicity in USA demographics.
There are, for example, the Mexican and the Hispanic but
not Mexican categories. Due to the genetic likeness, the two
ethnicities would exhibit similar patterns of succumbing to
a disease. So, the same proportion of Mexicans and other
Hispanics is expected to be affected, or not, by a particular
health condition. This is despite the frequencies of the two
population categories are different. Both Latinos and blacks
(African descent) are at the risk of diabetes but not whites
(European descent).[7] Compare now the black and white
population cohorts. Unlike before, there are will be differ-
ences in relative frequencies of diabetics and non-diabetics
between the two. Albeit, this leaves no room for intermar-
riages. Anecdotally, the marital status also poses a dilemma:
“married” would be similar to “partnered” and “divorced”
to “separated”, whilst “married / partnered” would be dis-
similar to “divorced / separated”, regardless how the data is
dissected, so long this is related to the goal (singles would
have a higher propensity to fast food than functional families
in the case of diabetes). The value differences will be smaller
in the first instance and larger in the second for this feature.

Generally, it is unknown in advance that some values can be
similar and other dissimilar in their midst. While Stanfill and
Waltz[1] took their inspiration from the task of converting
graphemes to phonemes where the confusables like ‘c’&‘k’,
‘e’&‘i’, ‘g’&‘j’, ‘i’&‘y’ are abundant, the same applies to
amino-acids in a protein chain in predicting its space folding
formation-a challenge that Cost and Saltzberg[2] have taken
upon assuming no prior knowledge. Neither the occurrence
of similar values is paramount. A contrast between certain
values is intrinsic in classification problems. To illustrate, say,
what do ‘red’ and ‘green’ have in common - both describe
‘apple’ - but not so much does ‘blue’.[8] Eq.1 takes care of
this all by examining the relative frequencies. Also, multiple
features are usually involved. Therefore, the complete metric
adds up the individual feature effects as in Eq.2.

(2)

In Eq.2 x1 and x2 are two feature vectors being compared,
each having N attributes indexed n; s is an exponent usually
taking values 1 or 2 hence giving the expression likeness of
the Manhattan or Euclidean distance, respectively.[8] (For
clarity, component-wise x1 is (x1,1...x1,n...x1,N ) and so is
x2 by analogy; δn is obtained by substituting x1,n and x2,n

for feature Fn values in Eq.1.) Smaller individual distances δ
lead to a smaller overall distance d between the two tuples of
feature values in vectors x1 and x2 also referred to as points
in the instance space. The smaller individual distances are,
the greater is the overall similarity between the two involved
instances of data.

Despite plausibility of the above, mixed views about utility of
the scheme were held in the past. One downside is that com-
putationally it is challenging.[2] Otherwise, if some features
are continuous they can be discretised[9] or the specific value
probabilities can be interpolated from adjacent ranges[8] so
this is hardly a limitation. If nothing else, VDM amongst
its peers offers a better deal for discretised ranges due to its
proximity sensing ability. Yet, comparing to other methods,
no independent observer seemed to claim a clear advantage
of VDM.[10, 11] Nonetheless, more recently, VDM found its
application in one instance-based learning approach.[6]

The formulation in Eq.1&2 is consistent across a number
of publications[5, 6, 8, 9] with a minor variations as to normal-
isation of Eq.2 inconsequential to the end result. It is be-
ing identified as either VDM, PEBLS, MVDM, or SVDM.
SVDM[5, 6] (simplified VDM) is the closest match because
PEBLS and MVDM (modified VDM)[2] both imply addi-
tional weighting of instances and PEBLS also using parallel
computations, but none is being reported. It seems more
appropriate to use VDM in the sense of evolving concept,
though, because neither ‘modified’ nor ‘simplified’ reveal
the nature of change applied to the scheme.

VDM, coupled with the Nearest Neighbour paradigm, cre-
ates a classifier whereby an unlabelled instance is assigned
to the class more represented in a vicinity of the instance
as a point in the space. The vicinity radius is determined
by the number of closest instances drawn k which can be as
small as 1. Therefore, the method goes by the name of k-NN.
If there is a tie, the class closest overall to the unlabelled
instance is usually chosen.[12] Some approaches discount
contributions of more distant nearest neighbours by using
various kernels[12] particularly the distance inverse.[10, 11]

A variety of metrics can be plugged into k-NN, particularly
metrics using the feature weighting, with the feature-wise
distances defined in Eq.3.[10, 11]

(3)

In Eq.3 w is the weight (a real non-negative constant) as-
signed to feature F . If uniformly w = 1 for all features
and s = 1 the calculation in Eq.2 is known by the name of
Hamming loss / distance[12] also referred to as the overlap
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metric.[10] The partial distance is w if the two values of a
given feature are different, and zero if they match.

In this work VDM is compared with the feature weighting by
the Information Gain (IG).[4, 10] If the weights are normalised
by IG of the class variable then due to dividing by N the
result of Eq.2 cannot be more than 1[12] which is computa-
tionally as well as theoretically convenient. The same is true
of VDM due to division by 2 in Eq.1 introduced here (it can
be verified the sum there is no more than 2).

The expression for IG weights is given in Eq.4.

(4)

In Eq.4H is the entropy – a quantity representing the average
information contained in a feature; it is expressed in terms
of value probabilities P . Three features are involved: the
class variable C, an explanatory feature F with regards to C,
and C × F – the Cartesian product of C and F . The latter is
an artificial feature whose values are unique combinations
of values of the former two, which is implicit of using joint
value probabilities for C and F in calculation. Only H(F )
is shown, where v is the value f index running up to the
number of values V for feature F ; H(C) and H(C ×F ) are
expressed by analogy.

Features that are more relevant to the problem should have
higher weights[10, 11] making any shifts in their directions
more sensitive (tending to cross class boundaries). Vice-
versa, shifts in directions of less relevant features should be
desensitised by assigning smaller feature weights (so as to
prevent crossing the boundaries by chance). Thus, altogether
irrelevant features should have the weight of zero. Obtaining
weight one way or another can be used to filter out irrelevant
features.

VDM seemingly adjusts to feature strength despite not being
a weighting method. Indeed, if a feature is irrelevant then the
class probabilities should be no different from value to value,
therefore reducing the partial distance δ given by Eq.1 to
zero.[5] Instead, for a perfect predictor – a feature as relevant
as the class variable – it can be verified that δ is reaching
its maximum of one (unity) whenever the values being com-
pared belong to different classes, similar to IG. If a predictor
is not perfect, some frequency leakage will manifest, giving
rise to a range of values between 0 and 1 for δ. If a predictor
is weak, a high value mix can be expected. This spells closer

class probabilities for two arbitrary values of the variable,
so the result of Eq.1 would approach zero. In view of the
above it is unsurprising that VDM weighted variants, as was
originally held[1] but, as mentioned, considered problematic
and made redundant,[2] are hard to come by.[10]

Next, an alternative to IG weighting is introduced, inspired
by VDM.

2. METHOD
VDM attracts for its perspicuity and flexibility (Eq.1).[2] Han-
dling of probabilities in IG is more intricate (Eq.4) and the
weighting approach is intrinsically rigid (Eq.3). Unlike in
local weighting, which applies to VDM to some extent, the
global weights do not change with instance.[10] At the same
time, there were reports that weighting by IG could outper-
form VDM.[10] Claim verification is in order and also this
invites rethinking of VDM. In this wake, a weighting method
is proposed where the notion of value ‘differences’ is seen in
a different light.

Consider a two-class situation (binary classification). A fea-
ture value could perfectly predict a class if it was entirely
within boundaries of that class (feature values can be cast
as numeric binaries). Therefore, the smaller of the relative
value frequencies between the two classes is the “value dis-
placement”. The other part is the ‘rebound’. The total of
rebounds over all values - the Value Displacement Rebound
(VDR) - weighs the feature relevance in accordance with
Eq.5.

(5)

Eq.5 uses the same notation as previously. Particularly, P (·|·)
represents conditional probabilities. When T > 2 (multiclass
setting) the feature weight can be generalised as in Eq.6.

(6)

That is, by encompassing all two-class problems and taking
the mean. While Eq.6 is intended here for VDR, a variety of
feature weighting schemes could adopt the same approach.
However, IG weights given by Eq.4 are self-sufficient.

Other than Eq.6 and focusing on relevant attribute selec-
tion (feature ranking, dimensionality reduction) rather than
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weight application, this method is equivalent to a little known
technique by Baim.[13]

3. EVALUATION
Data for around 6,850 participants on 290 attributes was
extracted from the USA National Health and Nutrition Ex-
amination Surveys (NHANES) for years 2011-14.[14] About
40% of the features behind the attributes are continuous and
the rest are categorical, although mainly binary features. The
core content is demographics, clinical history, anthropomet-
rics, examinations, blood and urine tests, cognitive ability,
etc. A small number of features are aggregates using the core
data. About 25% of values are missing in the data. These
were substituted as previously reported.[15] For the sake
of evaluation, continuous attributes were discretised by the
even (equal) frequency method advanced previously.[4] The
number of intervals was set to five for all real-valued vari-
ables[16, 17] unless the algorithm had to reduce it. Generally,
this number has to be small for reliable estimation of proba-
bilities but not too small so as not to lose the discriminative
power. Otherwise, if a variable allowed dual representation,
its discrete form was used.

Statuses were set for the type 2 Diabetes Mellitus (DM), Car-
diovascular Disease (CVD) and Hypertension (HT). The sta-
tuses are binary (‘yes’ or ‘no’) attributes. The three chronic
conditions have vast consequences for the health. The preva-
lence of DM is roughly 20%, CVD 40% and HT 45% in
the featured population who are 35+ year-olds. The afore-
mentioned statuses have the designation of class variables in
three diagnostic tasks that were attempted. In classifying by
k-NN the parameter k was set to 3 regardless of implemen-
tation or feature listing (exclusive of equidistant neighbours
at the vicinity fringe also drawn). No space warping was
considered, so the parameters in Eq.2 was invariably 1.

Three different feature-set sizes were attempted. The full
feature-set for a problem excludes only a small number fea-
tures that one way or another are involved in setting of the
corresponding class variable. The essential is a subset of the
full feature-set that additionally excludes DM, CVD and HT
statuses, unless they are the class variable, and all variables
expressly linked to them. The three statuses are closely in-
terrelated[15] therefore launching a circular argument if one
is to be determined using others, not all of them known. For
example, the DM Status is instrumental in computation of a
certain CVD Risk, so both are excluded from the feature-set
when predicting the occurrence of CVD. Also, the essential
feature-sets do not include what can be regarded “insider
knowledge” such as frequency of doctor visits, indications
for treatment, etc. Additionally, the essential feature-sets
exclude 10% of the database all features poorly scoring by

IG in respective problems, and some known redundancies.

The short feature-set is obtained by selection and is a subset
of the essential one. Fifty features were selected to classify
whether DM or CVD, and forty to classify HT; that is, under
20% of the original set.

4. RESULTS

Table 1 shows the accuracy of DM, CVD or HT prediction
when classifying by k-NN with VDM, or the overlap metric
weighted either by IG or the proposed method ‘Rebound’
(VDR). Reported are the accuracy aspects sensitivity and
specificity, that is, the success rate in predicting a chronic
condition or its absence, respectively. The balanced accuracy,
which is their mean, is graphically represented in Figure 1.

Table 1. Aspects of k-NN accuracy for different metrics and
selections of features

 

 

Method / 
Feature-set * 

Specificity (%) Sensitivity (%) 

DM CVD HT DM CVD HT

VDM F 98.6 96.0 95.5 74.4 86.8 86.1

VDM E 98.2 94.5 93.8 72.8 81.9 83.9

VDM S 97.4 92.2 90.5 77.7 81.6 83.7

IG F 97.2 94.1 94.9 84.2 88.1 90.6

IG E 96.1 92.7 91.9 80.7 87.2 87.7

IG S 96.0 90.9 89.4 79.9 84.5 86.9

Rebound F 98.0 96.5 96.9 87.9 93.4 93.1

Rebound E 97.0 94.7 94.4 84.6 90.5 91.9

Rebound S 97.4 92.8 92.0 86.5 89.9 89.7

* ‘F’-Full, ‘E’-Essential, ‘S’-Short 

 

The accuracy is expected to drop when replacing the full
with essential feature-sets because a number of powerful pre-
dictors engaging the other statuses become unavailable. This
was indeed observed in all problems.

The objective in feature selection was to prop the minimum
of sensitivity and specificity instead of the balanced accu-
racy. Yet, while a gain of accuracy is desirable, shortening
of the feature-set is higher on the agenda. Also, the fea-
ture selection method has its own bias, and the problems
in consideration are all different. With this recourse, after
short-listing the features, the gain of accuracy realised for
DM but did not for CVD or HT (see Figure 1). Nonetheless,
if the accuracy is gained, as observed, this is more on the
sensitivity rather than specificity side; and the other way
around if lost, commensurate with the set size (see Table 1).
To represent this more clearly, suppose a0 is specificity and
a1 sensitivity; then the sensitivity ‘lag’ can be calculated as
follows (a0−a1)/(a0 +a1). The effect is depicted in Figure
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2. The lag is uncontained only for IG in the DM and CVD
problems.

Figure 1. Balanced Accuracy by VDM, IG or VDR
(Rebound) for differently sized feature-sets

None of the methods slipped under the 80% balanced ac-
curacy mark, which is notionally ‘great’.[15] The accuracy
estimate is obtained by leave-one-out cross-validation, that is,
by testing all instances in turn against rest of the data.[12] This
is a standard approach but may appear optimistic. Overall,
paired with k-NN, VDM is less assuring when compared to
the weighting by IG, and the latter underperforms comparing
to VDR.

The class imbalance (also ’skew’)[3, 4, 18–20] is more profound
in the DM problem than the two others. The prevalence of

DM is roughly half of that for CVD or HT. This undoubtedly
gnaws away at the sensitivity of DM prediction. For VDM
the result is never above 80%, which is also true for IG on
the short feature-set (see Table 1). Overall, the gap between
sensitivity and specificity is wider in DM than in CVD or
HT, scaling almost linearly with class imbalance (see Figure
2). Again, by this measure, VDM appears coping less with
class imbalance than IG, and IG less than VDR (see Figure
2).

Figure 2. Sensitivity Lag by VDM, IG or VDR (Rebound)
for differently sized feature-sets

5. DISCUSSION

5.1 Shortlisting the features
The short feature-sets were obtained from the essential ones
by the sequential backward elimination[5] wrapping around
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the Naive Bayes (NB) classifier.[16, 17] The sizes were se-
lected so that the accuracy of NB peaks and does not favour
sensitivity nor specificity. NB is a classifier that is naturally
‘uncomfortable’ with redundant features.[4, 12, 16, 17] However,
it can carry on with irrelevant ones. This does not impede the
wrapper reckoning, but to disambiguate and speed up, the
weakest features were removed from the essential feature-
sets. Also, for more informed decisions, the performance
of individual features in previous deletion cycles was being
taken into account. A wrapper is generally thought being
able to rid of irrelevant as well as redundant features.[21–24]

Irrelevant features can be confused with the weak, poten-
tially misdirecting the search.[21, 22] The ability of NB to
sense redundancies is additional to that of a wrapper. Since
not all feature combinations get encompassed under the se-
quential backward elimination, far from so, the heuristic
search (breadth first hill climbing[12]) thus becomes more
to the point. Another reason to choose NB is that it is fast
and can be made even faster if not to recompute the involved
probabilities. The probabilities in NB are obtained from
all data, therefore rendering single instance contributions
infinitesimal under the leave-one-out cross-validation. In ef-
fect, the classifier accuracy to guide the selection of features
is obtained by resubstitution. However, instead of recomput-
ing, a provision can be made to only amend probabilities as
necessary.[16]

When selecting features there is a trade-off between their
number and the accuracy. If features are gradually dese-
lected, as in the described NB wrapper, the accuracy may
initially increase as data noise and computation volume are
reduced. The irrelevant features distract the classifier at train-
ing. Besides, lengthy calculations are less precise. So, the
accuracy does not necessarily fall from the start. Thereafter
it degrades, nonetheless, but usually slowly with many fea-
tures. This is the general trend, but there are ups and downs
throughout as features interact slightly differently in reduced
sets. Therefore, only the immediate goal can be pursued
(hill climbing). Also, there is a tendency to increasing gap
between sensitivity a specificity. The sensitivity wears off
faster. This is on the part of class imbalance.[3, 4, 18–20] So,
the objective presently was to prop the minimum of the two
instead of the balanced accuracy.

5.2 VDM vulnerabilities
A demise of VDM sensitivity in predicting DM comes to the
fore (see Table 1). DM is more class-imbalanced than CVD
or HT. One can observe that while any classification problem
can be reduced to a series of binaries, variables, especially
discretised continuous ones, usually have more values than
two. Therefore, there can be small value frequencies, more

so by class. The class imbalance clearly exacerbates the situ-
ation since a predictor is good if its values are distinct. Small
frequencies make estimation of probabilities less reliable.
Elsewhere, the sensitivity of VDM to class imbalance was
also noted.[8]

It had been proposed that VDM relies on a conditional in-
dependence of features, same as NB, although perhaps dif-
ferently defined.[17] Since the k-NN accuracy has improved
after short-listing the features in DM, this does not thwart
the argument but is inconclusive. In two other problems the
accuracy by VDM only fell. Overall, the effect does not man-
ifest strongly; although, the feature selection relies on NB,
and to stage this properly requires k-NN with VDM. Also,
the latter has a lead over the former to the tune of 10% in
the CVD and HT classifications and 5% in DM (behind the
scenes). It seems, VDM cannot complain about the accuracy
on the same grounds as NB. Interestingly, NB fared overall
some 5% better on the DM task than on CVD or HT. This is
despite having a term quantifying the class imbalance in its
formulation. For NB, the violation of feature independence,
given a class, condition is indeed the defining moment in its
lack of success.[16, 17]

To dissuade the premise of VDM reliance on a conditional
feature independence more, k-NN uses a small locally ex-
tracted sample, unlike NB that draws on all data. The prob-
abilities in Eq.1 are also globally extracted, but this is not
the same as the distances that underlie the true probabilities
involved. Generally, the nearest neighbour algorithms are
known to tolerate redundancies.[11] Particularly, training re-
dundant feature weights by various methods of performance
feedback was demonstrated to increase the accuracy of pre-
dictions.[10] This suggests an independence existing on the
local level. Indeed, because of the ‘frozen’ state all sources
of influence of one variables over others cease.

5.3 Class imbalance

The class imbalance is not so much of a concern for machine
learning as it is for data mining and knowledge discovery. In
machine learning the focus is on algorithms, their optimal
set of parameters and how they perform under stress.[12] Par-
ticularly of interest is the learning curve for small samples
or how the algorithms computationally scale with data. One
aspect of this is the class imbalance, but realistically only
the application side suffers. In data mining and knowledge
discovery the focus is on describing the data concept.[12]

Class imbalance is notionally related to class noise.[3, 4] It is
not possible to learn concepts reliably in noisy environments.
Perhaps it is possible to reformulate the problem in study[3]

but this implies the domain knowledge.
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The theoretical impasse the class imbalance presents is that
at certain its levels it is impossible to beat the majority rule
by fine-tuning the algorithm or replacing it altogether. This is
because, unless the concept is fully known, neither the classi-
fier bias nor the data variance can be reduced to zero. Class
imbalance at moderate levels can be remedied by undersam-
pling of the majority class, oversampling of the minority
class, or both.[18, 19] It is also possible to classify with rejec-
tion or by dismissing the problematic (noisy) instances from
the outset.[3, 18] However, from the point of view of concept
learning, interfering with data is undesirable. This explains
various efforts to improve on the random subsampling.[18, 19]

Existence of a class imbalance is usually ignored if the results
are ‘acceptable’ or better.[15] In like situations the emphasis
is on presentation metrics rather than addressing underlying
causes of the underperformance. The balanced accuracy, or
the arithmetic mean of sensitivity and specificity (half-sum
of the two), gives an idea of the performance were the data
class-balanced. As the imbalance increases, the sensitivity,
as a rule, is lost to the specificity. In fact, the two are linearly
related, parametric on the overall (irrespective of class af-
filiation) success rate.[20] The balanced accuracy is a single
point estimate of area under the curve (AUC) on the ROC –
“receiver operating characteristic” - plot (where ‘y’ is sensi-
tivity and ‘x’ is one less specificity).[12] AUC is a measure of
classifier responsiveness to a control, in continuous spaces
usually quantifying position of the decision surface. Another
measure of accuracy, invariant under the class imbalance
change, is the geometric mean of sensitivity and specificity,
their g-mean (square root of product of the two).

The ferocity of class imbalance largely depends on class data
densities and how far the classes are removed from each other.
That their shapes are also important is usually neglected in
modelling.[20] In the meantime, any study is usually focused
on a particular corner of data distribution. Without that, the
notions of data drift or concept shift would probably be vacu-
ous.[6] In diagnostic of chronic diseases there are parameters
that stipulate the population to be screened, particularly the
age.[7] Can this be that ‘thoroughfare’ for escaping from the
class imbalance?

Feature selection is rarely discussed in the context of class
imbalance.[10, 11, 23, 24] When a feature-set is selected by the
backward elimination, in the current work mediated by the
NB classifier, the effect of imbalance grows bolder as the
feature-set becomes smaller. If the data was all-continuous
and classification binary, this would be easy to interpret,
since one should expect that the selected features to a greater
extent than others are collinear with the axis connecting class
centres, along which the class overlap is especially large.

Narrowing the selection down deprives of a leeway of get-
ting around the ‘thicket’. Having more features thus helps to
offset the class imbalance. Also, in this work the objective
in feature subset selection was to elevate not the balanced
accuracy but the smaller of sensitivity and specificity. There
are features inherently in favour of the first or the second,
such as for DM are the waist circumference to height ratio
and the body mass index, respectively.[15]

Figure 3. VDR (Rebound) and IG feature weights relative
to the set-highest in diminishing order

5.4 IG vs VDR
IG-reliant k-NN clearly underperforms comparing with the
weighting by VDR as seen from the results. In Figure 3 the
weights on the basis of two measures are compared for the
short feature-sets specific to DM, CVD and HT. The fea-
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tures are listed in diminishing order of weight, relative to
the strongest feature on either list. Unlike their VDR coun-
terparts, the IG weights decrease more rapidly and exhibit a
concave pattern. This is attributable to the non-linear element
in the design of IG (Eq.4). Evidently, by amplifying strong
influences and playing down weak ones, IG antagonises the
features to assist the agenda of their selection. Such a dis-
sociation is not ideal at least for k-NN where the effect is
achieved through a joint effort of the feature-set constituents.

However, the orderings from strongest to weakest are similar
for IG and VDR. The sum of absolute differences in item
position is a measure on a par to the Spearman’s correla-
tion coefficient for ranked lists.[25] Intuitively, the biggest
divergence is attained if the ordering of the second list is
opposite to the first. This is because repositioning from the
fringe of a list is always able to gain more than from the
middle thereof, and the opportunities wane with each move.
Therefore, the characterisation of utter disarray is r2/2 if r
is even, (r2 − 1)/2 if r is odd, where r is the lowest rank
(length of the list). However, were it the maximum,[25] the
solution is not unique. Compare, for example, the sequences:
‘7-6-5-4-3-2-1’, ‘6-7-5-4-3-1-2’ and ‘5-6-7-4-1-2-3’ - they
are all 24 positions off from the ‘1-2-3-4-5-6-7’, not only the
first. Having multiple solutions for the chaotic state does not
preclude from using the disorder magnitude as a benchmark,
though. Relative to it, the total shift in position for short-
listed features is only 0.12 for DM, 0.09 for CVD and 0.08
for HT.

6. CONCLUSION
The motivation behind this research is that for patients on
treatment it is difficult, if not impossible, to verify their status
based on new data. Many medications specifically target the
parameters involved in rules representing gold standards for
diagnostic. On the face of it, this is done to avert complica-
tions, but deeply with a hope vested in the cyclic nature of
metabolism. In diabetes the blood glucose is being watched,
in hypertension - the blood pressure. For cardiovascular
disease the diagnostic is circumstantial; nonetheless once a
treatment is started the patient data becomes compromised.
Normal levels of glucose, blood pressure or symptoms not
presenting are quite possible, but this does not mean that
disease causes had been addressed and patients are cured.
However, the necessary information might be hidden in other
parameters. The research conducted presently reaffirms the
feasibility of identifying markers of disease other than those
involved in metrics used for diagnostic of new patients. Also,
it is inevitable that a large number of features is required. It
is unlikely that any strong predictors could be missed out in a

focused treatment. While it is possible to significantly reduce
the number of variables, a variety of tests, measurements,
examinations and history are available that can substitute for
one another.

Patient data represents a high mix of different attribute types.
Simultaneous handling of both continuous and nominal at-
tributes is awkward. The conversion to discrete type is prefer-
able as it offers a much more compact representation and
consequently faster processing. However, not many methods
are available for all-discrete domains. Any method can at
least provide a basis for comparison. However, much more
can be extracted from weak learners via ensemble techniques.
In the current work quite a different angle was demonstrated -
the limitation of the naive Bayesian turned into its advantage
for feature-set selection. The approach universality was also
evident. This is despite wrapping implies using the same
method for both selection of features and classification.

The value distance metric coupled with the nearest neigh-
bour approach to classification is a technique not being often
quoted. In the meantime, VDM has some unique proper-
ties. Particularly, it holds the promise of assigning flexible
weights to features that would be rigidly ‘juxtaposing’ other-
wise. In the introductory discourse the conformity of VDM
assigned weights and their range was given a due attention.
During the evaluation VDM has demonstrated high-ranking
results, although some aspects of them were less impressive.
However, the overall results were not as good as by two other
methods with rigid weights. While to a disappointment, this
is in agreement with previous reports. Possible causes of the
underperformance had been analysed. It was proposed that
VDM may be vulnerable to the class imbalance. If so, this
does not make VDM especially different from other methods
and can be remedied.

The susceptibility of VDM to class imbalance is counterin-
tuitive as it does not have corresponding terms in its formu-
lation. For instance, NB has an explicit link to the majority
rule. The information gain, used in this work for comparison
as a weighting method for k-NN, also includes priors that
would be affected by class imbalance. Although for VDM
it did not work, a formulation not relying on prior probabili-
ties is attractive with a view of class imbalance dependence
reduction. This led to a VDM inspired weighting scheme
for k-NN, albeit with rigid weights. The method, named the
value displacement rebound, fared better than others on all
counts among the four methods compared. So much so, its
built-in ability to correct for class imbalance may have been
helped by a tailored objective in the NB-based feature-set
selection method.
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