
http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

ORIGINAL RESEARCH

A study of quality prediction for large-scale open
source software projects

Shinji Akatsu∗1, Ayako Masuda2, Tsuyoshi Shida2, Kazuhiko Tsuda1

1Graduate School of Business Sciences, University of Tsukuba, Tokyo, Japan
2Research Group on Business Informatics on Social Science, University of Tsukuba, Tokyo, Japan

Received: April 30, 2020 Accepted: February 21, 2021 Online Published: April 21, 2021
DOI: 10.5430/air.v10n1p34 URL: https://doi.org/10.5430/air.v10n1p34

ABSTRACT

Open source software (OSS) has seen remarkable progress in recent years. Moreover, OSS usage in corporate information systems
has been increasing steadily; consequently, the overall impact of OSS on the society is increasing as well. While product quality
of enterprise software is assured by the provider, the deliverables of an OSS are developed by the OSS developer community;
therefore, their quality is not guaranteed. Thus, the objective of this study is to build an artificial-intelligence-based quality
prediction model that corporate businesses could use for decision-making to determine whether a desired OSS should be adopted.
We define the quality of an OSS as “the resolution rate of issues processed by OSS developers as well as the promptness and
continuity of doing so.” We selected 44 large-scale OSS projects from GitHub for our quality analysis. First, we investigated
the monthly changes in the status of issue creation and resolution for each project. It was found that there are three different
patterns in the increase of issue creation, and three patterns in the relationship between the increase in issue creation and that of
resolution. It was confirmed that there are multiple cases of each pattern that affect the final resolution rate. Next, we investigated
the correlation between the final resolution rate and that for a relevant number of months after issue creation. We deduced that
the correlation coefficient even between the resolution rate in the first month and the final rate exceeded 0.5. Based on these
analysis results, we conclude that the issue resolution rate in the first month once an issue is created is applicable as knowledge
for knowledge-based AI systems that can be used to assist in decision-making regarding OSS adoption in business projects.

Key Words: Open Source Software, OSS Development, Software Quality, Quality Prediction

1. INTRODUCTION

In recent years, remarkable progress has been made in the de-
velopment of open source software (OSS). Typical examples
of OSS include the web service stack LAMP[1, 2]—which, in
turn, is composed of four OSS components namely Linux,[3]

Apache,[4] MySQL,[5] and PHP[6] / Perl[7] / Python[8]—and
the Android[9] operating system. Furthermore, various OSS
applications that have been developed for LAMP and An-
droid environments have been made available free of charge

along with their source codes.

In contrast, enterprise software (ES) includes software prod-
ucts owned and developed by corporations and their source
codes are protected through copyright. Owing to the cost
model for ES, its development is focused on development
efficiency and number of users. Therefore, improving de-
velopment efficiency and increasing the number of users are
important themes for ES engineering.

Because the use of an OSS is typically free, and its source
∗Correspondence: Shinji Akatsu; Email: s1345001@u.tsukuba.ac.jp; Address: Graduate School of Business Sciences, University of Tsukuba,

3-29-1, Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.

34 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

code can be openly modified and redistributed within the
scope of its open source license, OSS reuse is common; thus,
OSS development is not focused on development efficiency.
Therefore, there is no appropriate cost model for OSS de-
velopment, and research is underway to define and optimize
OSS development costs.[10, 11]

Nevertheless, the adoption of OSS for software development
processes in corporations improves development effective-
ness and efficiency; however, important factors need to be
considered because OSS licenses do not promote monopo-
listic use of intellectual property. In particular, the adoption
of OSS technologies requires crucial decision-making based
on various aspects, including software quality, development
investment, business and technology strategies, and intellec-
tual property management, which are not mutually indepen-
dent, but instead might be related to each other in a complex
manner. In our previous study, we presented a structured
analysis approach to separate evaluation criteria and their
contributing factors for OSS-adpoted software development
and attempted to clarify the structured evaluation criterion
map.[12]

As specified above, evaluation of software quality is an im-
portant factor in the decision-making process for OSS adop-
tion. In general, depreciation principles of accounting define
the useful life of a software as 3 or 5 years.[13] During this
depreciation period, software support to resolve bugs and
improve specifications is required for OSS as well. However,
in practice, for OSS, it is expected that the OSS developer
community will provide software support services instead of
a corporate enterprise. In recent corporate software develop-
ment projects, most are based on OSS and it is very rare that
software projects do not incorporate OSS somewhere in the
process.

From a software-engineering point of view, the functionality
and quality of the software are the most important factors for
selecting an appropriate system. The functionality of OSS
can be verified by analyzing the freely available source code.
However, as the deliverables of an OSS are developed by the
developer community, their quality is not guaranteed. As the
quality of a corporate software product must be guaranteed,
the corporate user choosing to adopt the OSS is responsible
for evaluating and guaranteeing its quality. Hence, a method
for predicting the quality of OSS before it is implemented
would be greatly valuable to corporate users.

In general, software that is extensively used tends to be of
better quality as more people do testing and reporting bugs.
However, there are cases where the actual performance re-
sults are not disclosed, and the indicators used to evaluate the
quality are unknown. Because OSS development is typically

intrinsically motivated, its quality is independent of its cost.
Therefore, cost is unlikely to be a good metric to evaluating
the quality, and other factors need to be identified. Even if
these metrics are not universal, a system for selecting OSS
that is recognized as having better quality than competing
OSS would be highly advantageous. Furthermore, there have
been cases in North America where software development
companies acquired the vendors who developed a particular
OSS in order to effectively incorporate it as in-house modules
into their software products. However, Japanese companies
tend to use a desired OSS as provided as third-party modules.
Awareness of issues regarding OSS selection seems to be
different between Japan and North America. There have
been Japanese studies regarding the quality of OSS, but there
are few studies from elsewhere. Therefore, it is expected
that there would be great demand for a prediction model for
evaluating the quality of OSS products.

There are many prior studies regarding OSS in general[11–13]

and software quality.[14, 15] However, regarding the quality
of OSS, prior studies are limited to quality processes on the
development side,[16] while there has been no discussion of
predicting quality from the perspective of the user, except for
a recent study by our research group.[17]

In this study, the quality of OSS is defined as the “resolu-
tion rate of the issues processed by OSS developers and the
promptness and continuity of handling bugs and the other
issues.” The objective of this study is to develop an artificial
intelligence (AI)-based quality prediction model that corpo-
rations could use to assist in deciding whether an OSS should
be adopted based on its quality. In particular, the code devel-
opment records for an OSS can be examined to determine
OSS quality in terms of issue resolution rate.

The OSS development data used in this study were obtained
from GitHub.[18] To perform statistical analysis and improve
the accuracy of analysis results, it is necessary to consider
a significant number of OSS development data. Therefore,
we extracted 44 large-scale projects that were registered
on GitHub in 2012 and were still under development un-
til August 11, 2017. For the 44 extracted projects, the Git
repositories included around 17,000 MB of deliverables data,
and the total number of issues identified for resolution was
approximately 620,000.

In this study, we analyzed the quality of OSS based on the
following propositions.

• Proposition 1: For each extracted project, aggregate
the status transitions for software issues including
creation (open) and resolution (close) of issues on
a monthly basis, and determine the characteristics pe-
culiar to OSS development.

Published by Sciedu Press 35

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

• Proposition 2: Analyze the relationship between the
final resolution rate and factors that affect it.

• Proposition 3: Examine the cause of the identified
peculiar characteristics of OSS development.

The corresponding results obtained in this study are summa-
rized as follows.

• Three patterns of increase in issue creation, and three
trends in the relationship between the increases in issue
creation and resolution were identified. Multiple cases
for each pattern were confirmed during the different
resolution periods.

• The correlation between the final resolution rate and
resolution rate for the relevant period was analyzed. It
was found that the correlation coefficient between the
resolution rate for the first month and final rate also
exceeded 0.5.

• Based on our analyses, it was observed that, in OSS
projects, which are voluntary projects, promptness of
bugs and issues resolution was prioritized over activ-
ity continuity. It was concluded that the resolution
rate for issues in the first month after they are identi-
fied is applicable as knowledge for knowledge-based
AI systems that can be used to assist businesses with
decision-making regarding OSS adoption.

2. DEFINITION OF OSS QUALITY AND ITS
MEASUREMENT

In this section, we define the quality of OSS and describe a
measurement method for it.

2.1 OSS quality
Track record of adopted implementation is one of the criteria
considered by corporations before adopting new software.
In the case of ES, the company that develops an ES, also
performs thorough testing before deployment; in addition, it
fixes bugs or improves software specifications after deploy-
ment. Their efforts in regard to quality will lead to adoption
results. Therefore, it is assumed that ES typically is of good
quality. In contrast, the record of adopted implementation
for OSS is not obvious. Thus, in this study, the quality of
an OSS is defined based on the manner in which software
code and specifications are maintained by OSS development
community. Furthermore, the OSS code itself can be checked
and issues can be raised by users considering its adoption;
therefore, promptness and continuity of maintenance are
requirements for software adoption. In particular, status tran-
sition of an identified issue is an indicator of quality for such
software; this is because a high resolution rate and short reso-
lution time could be assumed as indications of good software
quality.

2.2 Quality measurement method
OSS development communities perform issue management
for OSS using the “Issues” tracker feature in each repository
wherein the project deliverables are stored. We made the fol-
lowing measurements by using their issue management data.
First, to determine the resolution rate for an OSS project,
the number of issues that transitioned from being created to
being closed was measured on a monthly basis. Next, to esti-
mate promptness and maintenance continuity, the transition
time from identification to resolution of issues was also mea-
sured on a monthly basis. In particular, we summarized the
transition time it took to resolve created issues every month.

3. SELECTION AND ANALYSIS OF TARGET
PROJECTS

In this section, we describe the selection method based on
which the 44 OSS projects were considered for analysis.
Moreover, an overview of these projects and the results of
our data aggregation are presented.

3.1 Extraction of OSS development data
To analyze OSS quality, it is necessary to obtain a large
amount of OSS development data. The source for the anal-
ysis data may be GitHub or Bitbucket,[19] which are web
sharing services that provide a version control system. In
this study, we used OSS development project data published
on GitHub.

GitHub uses the version management system Git,[20] and pro-
vides the web application program interface (API) GitHub
API v3,[21] using which users can access repositories that are
directories storing project deliverables and development his-
tory, among others. In this study, we used the GitHub REST
API to select the target projects as well as survey them. For
example, the function “Issues”—the issue management fea-
ture in GitHub—returns the timestamp for the issue creation
date, status of an issue, and comments related to an issue.

3.2 Target project selection
In this study, sample projects were selected using GitHub
API v3 as per the following criteria.

• Extract OSS development projects registered in early
2012—when GitHub started—until August 11, 2017
to ensure that the collected data was long-term data.

• Extract projects whose repository size is 15 MB or
more to ensure a large-scale OSS is selected. As a
result of surveying companies in terms of the OSS
repository size (≥10 MB, ≥15 MB, or ≥20 MB), 15
MB was the most common, and was hence used as
a criterion for judging large-scale OSS development
in the software development industry. For example,

36 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

a premium automobile contains close to 100 million
lines of software code,[22] which is about 10 times that
of a 15 MB repository. In a previous study,[23] 15 MB
was also used.

• Extract projects whose developers duplicate projects in
their own development environment, and these devel-
opers have 200 or more forks, to ensure a large-scale
OSS is selected.

• Extract projects whose star counts evaluated by OSS
users are 1000 or more to ensure the quality of OSS
project deliverables.

Next, we selected projects whose contributor number and
commit number are within the second quartile or more of
those numbers to avoid bias because of considerably few
project contributors; this is because the number of contribu-
tors indicates whether sufficient human resources were avail-
able for a project. Then, for accurate statistical analysis,
we excluded projects that have missing values and projects
wherein all issues were deemed resolved. Finally, 44 projects
were selected.

These selected sample projects are listed in Table 1. In partic-
ular, Table 1 shows the project data as of December 31, 2018,
which was extracted from GitHub on April 23, 2020. Data as
of December 31, 2018 was selected in order to eliminate the
influence of unresolved issues between December 31, 2018
and March 31, 2020 on our analysis. In Table 1, the “Created
Issues” column represents the total number of issues created
in the repository, while the “Closed Issues” column indicates
the number of created issues closed after resolution. “Reso-
lution Rate” is the ratio of the number of “Closed Issues” to
those of “Created Issues.” The total number of created issues
included in the selected repositories is about 620,000, which
is sufficient for statistical analysis.

3.3 Change in the number of created and closed issues
In order to analyze the overall issue resolution rate for the
44 selected projects, the cumulative number of created and
closed issues was determined on a monthly basis. Example
transition plots for this cumulative analysis are shown in
Figure 1.

Useful information regarding OSS quality can be deduced
based on the change in the cumulative numbers of created
and closed issues in OSS development. First, three patterns
can be recognized from the increasing number of created
issues. As shown in the example in Figure 1(a), the increase
in the number of created issues is almost linear, i.e., there is
a continuous increase in the number of issues during the de-
velopment period. Then, as shown in the example in Figure
1(b), the increase in the created issues is small in the initial

stage, large in the middle stage, and small again in the final
stage of the extracted OSS development data. In this case,
the increasing trend in the number of issues follows the curve
for the third power.

Table 1. Number of created issues, closed issues, and
resolution rate for the 44 selected projects as on December
31, 2018

No. Repository Name
Created

Issues

Closed

Issues

Resolution

Rate

1 alluxio 8,226 8,218 0.9990
2 ansible 50,412 47,431 0.9409

3 atom 18,429 18,068 0.9804

4 bokeh 8,528 8,259 0.9685

5 bolt 7,725 7,692 0.9957

6 bosh 2,108 2,014 0.9554

7 canjs 4,688 4,470 0.9535

8 Cataclysm-DDA 27,376 27,127 0.9909

9 collectd 3,031 2,648 0.8736

10 conda 8,070 7,306 0.9053

11 contiki 2,550 2,032 0.7969

12 core 33,974 32,824 0.9662

13 crystal 7,129 6,566 0.9210

14 DefinitelyTyped 31,807 29,494 0.9273

15 django 10,800 10,743 0.9947

16 druid 6,780 6,425 0.9476

17 Firmware 11,116 11,009 0.9904

18 frontend 20,861 20,835 0.9988
19 habitica 10,912 10,745 0.9847

20 hazelcast 14,333 13,845 0.9660

21 homebrew-cask 56,809 56,800 0.9998

22 Kotlin 2,046 2,018 0.9863

23 libgdx 5,489 5,235 0.9537

24 linux 2,787 2,705 0.9706

25 lodash 4,127 4,125 0.9995

26 meteor 10,373 10,341 0.9969

27 mpv 6,357 6,074 0.9555

28 neo4j 12,109 11,985 0.9898

29 nikola 3,192 3,178 0.9956

30 nixpkgs 53,069 50,965 0.9604

31 opencv 13,547 12,274 0.9060

32 openlayers 9,092 9,081 0.9988

33 phpmyadmin 14,811 14,533 0.9812

34 ppsspp 11,585 10,957 0.9458

35 PrestaShop 11,995 11,467 0.9560
36 presto 12,148 11,670 0.9607

37 radare2 12,616 11,726 0.9295

38 ReactiveCocoa 3,629 3,591 0.9895

39 rethinkdb 6,686 5,316 0.7951

40 RIOT 10,686 10,404 0.9736

41 servo 22,577 20,451 0.9058

42 spring-boot 15,583 15,397 0.9881

43 web-platform-tests 14,664 13,701 0.9343

44 yii2 16,680 16,282 0.9761

 Total 621,512 598,027

Moreover, as shown in the example in Figure 1(c), the in-
crease in the number of issues was large at the beginning,
but decreased at the end, i.e., the number of issues increased

Published by Sciedu Press 37

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

logarithmically. It is noteworthy that the 44 projects selected
in our study were fairly successful long-term development
projects, and therefore, the number of issues decreases in
the later stages of all examples shown in Figure 1. How-

ever, in other projects wherein the number of issues increases
steadily or as a power of two, their project quality is difficult
to determine, and these will be considered in a future work.

Figure 1. Examples of trends for changes in cumulative number of created and closed issues. (a) Numbers of created and
closed issues continuously match each other. (b) Numbers of created and closed issues diverge during the middle stage of
development. (c) Numbers of created and closed issues are divergent from the beginning.

Second, the corresponding relationships between the increase
in the number of created issues and their resolution are also
depicted in Figures 1(a)–(c); these relationships are as fol-
lows:

Figure 1(a): Increases in the number of created and closed
issues are aligned together.

Figure 1(b): Increases in the number of created and closed
issues begin to diverge during the middle stage.

Figure 1(c): Increases in the number of created and closed
issues remained separate from the beginning.

In Figure 1(a), a pattern is observed wherein new issues are
continuously generated and also continuously solved; conse-
quently, the final resolution rate is high. Figure 1(b) depicts
a pattern wherein the initial resolution rate is in line with the

increase in created issues, but the issue resolution frequency
slows down during the middle development phase, and thus,
the final resolution rate gradually decreases. Finally, Figure
1(c) shows a pattern wherein the number of created issues
exceeded the number of resolved issues from the beginning;
therefore, the final resolution rate is relatively low.

Because the three types of patterns described above are de-
rived based on the cumulative numbers of created and closed
issues, it is difficult to determine if there are many unresolved
issues or time-consuming ones in a specific project, which
then lead to a decrease in the overall resolution rate. Thus,
in the next section, we investigate the development stage
wherein such issues were created and study the distribution
of the time required for their resolution.

38 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

4. QUALITY PREDICTION MODEL BASED ON
ISSUE RESOLUTION RATE

Here, we analyze the timestamp information of created issues
and the duration required to resolve these issues. Then, we
examine this data to derive knowledge that can be applied to
the proposed AI-based quality prediction model.

4.1 Trends in monthly resolution status
To understand resolution promptness and maintenance con-
tinuity, we measured the time in which a created issue was
closed every month based on the data of the 44 selected
projects; in particular, we investigated the transition period
for issue resolution status on a monthly basis. Example trend
plots for this resolution status analysis are shown in Figure 2.
The following observations were made for the three examples
discussed in Section 3.3.

The pattern in Figures 2(a-1) and (a-2) indicates a high reso-
lution rate. In the case shown in Figure 2(a-1), the created
issues are typically resolved in the same month they are cre-
ated, while, in the case shown in Figure 2(a-2), the issue
resolution period is longer, but an issue is typically closed
within 12 months. The pattern in Figure 2(b) indicates that
the resolution rate slows down during the middle period of
OSS development; this is because there are cases wherein un-
solved issues gradually accumulate during the middle phase
leading to longer resolution period for created issues. Fi-
nally, Figures 2(c-1) and (c-2) show patterns wherein the
resolution rate was slow from the beginning of OSS devel-
opment. In particular, in the case shown in Figure 2(c-1),
issues seemed to take a relatively long time to resolve in the
beginning, and thus, unresolved issues overflowed into the
middle development period.

4.2 Resolution analysis summary
With regard to the creation and resolution of issues in each
project, we investigated the transition in the statuses of issues
on a monthly basis and confirmed that OSS development had
the following characteristics:

• In terms of issue resolution rate, it was confirmed that
there are three types of resolution patterns that affect
the final resolution rate.

• It was also confirmed that different cases of resolu-
tion promptness and maintenance continuity lead to
different final resolution rates.

• It was assessed that a final resolution rate can be pre-
dicted based on the resolution rate in the later stages of
OSS development. However, it is possible to predict
the final resolution rate based on the status of issue
resolution in the early stages of development.

4.3 Derivation of knowledge for prediction of final reso-
lution rate

As discussed previously, the quality of an OSS is an impor-
tant issue when its adoption is being considered for business
projects. Though there are various quality indicators, prompt
and continuous issue resolution are two indispensable ones.
Therefore, it is necessary to observe two operations, namely
occurrence of and response to events.

Occurrences and responses that can be observed in the cur-
rent OSS include creation and resolution of issues. While
issues are not necessarily limited to bugs or quality, most is-
sues are related to bugs after all. In addition, software issues
affect terms of use and consultation items regarding usage,
which, in turn, affect sales activities of business products
as well as the role of customer care. Though these factors
also determine the usefulness of an OSS in business projects,
analyzing the resolution time for issues and number of issues
still help understand the quality of an OSS.

Therefore, to determine whether an OSS would be appropri-
ate for a business project, we decided to observe the reso-
lution time and number of created and resolved issues. We
observed that it is not so difficult to judge the appropriate-
ness of an OSS after analyzing the transitions of created and
resolved issues in each considered OSS project over many
years. For example, on observing the cumulative transitions
of created and closed issues of three projects as depicted in
Figure 1, we can determine the comparative quality of the
different OSS. Furthermore, human evaluator bias will not
distort these results.

However, not all OSS projects necessarily accumulated de-
velopment years enough for prediction of quality by long-
term observation. There are quite a few OSS which business
corporate desire to adopt regardless of short development
history. Therefore, we investigated whether it is possible
to roughly grasp the resolution time and number of created
and resolved issues in a few years in the future by observing
the number of created and resolved issues for a certain num-
ber of months after the deliverables of the project are made
available.

Thus, in order to predict the final issue resolution times and
number of issues for the 44 selected projects, the distribution
of the number of months it took for each issue in the project
from creation to resolution was calculated. Then, the cor-
relation between the above-mentioned distribution and the
approximate final resolution status was examined. Table 2
lists our calculation results for the correlation between the
resolution rate of issues at the nth month after each issue is
identified and the final resolution rate of all 44 projects.

Published by Sciedu Press 39

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

Figure 2. Patterns of transition in resolution status for each month by period. (a-1) Created issues continue to be resolved
in the current month. (a-2) Resolution period for the issues is extended; however, they are consistently closed within 12
months. (b) Unresolved issues are present as new issues are created, thus extending from the middle stage to end of the
relevant period. (c-1) Issue took considerable time to resolve. Unresolved issues from the middle stage are brought forward.
(c-2) Issues continuously created and take time to resolve leading to accumulation of unresolved issues.

40 ISSN 1927-6974 E-ISSN 1927-6982

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

Table 2. Correlation between final resolution rate and
resolution rate for a relevant number of months after issue
creation

Months for Resolution Correlation Coefficient

1

2

3

4

0.502241981

0.485930706

0.474072147

0.465699399

5 0.458041663

6 0.451808318

7 0.450845338

8 0.450177635
9 0.450427825

10 0.449877651

11 0.44847918

12 0.447750932

Figure 3. Correlation between final resolution rate and that
of the first month after issue creation

It is clear from the results in Table 2 that, at the end of the
first month, the correlation coefficient between the final reso-
lution rate and that of the month exceeded 0.5, which is an
extremely high value. Furthermore, this correlation in the
final resolution rate does not change even when the obser-

vation period is increased. Figure 3 shows the correlation
between the resolution rates in the first and final observation
month for all 44 projects. From the figure, it can be observed
that a project that responds well to each issue at an early
stage also responds well to them at the end, i.e., it can be
said that it is sufficient to analyze the correlation between
open and resolved issues in the first month in order to decide
whether to adopt an OSS in a business project.

5. CONCLUSIONS
In this study, we selected 44 large-scale OSS projects from
GitHub for our analysis to deduce the quality of an OSS and
determine if it will be suitable for adoption in a business
project. First, we investigated the monthly changes in the
status of issue creation and resolution for each project. It
was found that there are three patterns in the increase in issue
creation as well as three patterns in the relationship between
the increase in issue creation and that of resolution. Based
on our analysis, we confirmed that there are multiple cases
of each pattern that affect the final resolution rate.

Next, we investigated the correlation between the final resolu-
tion rate and resolution rate for a relevant number of months
after issue creation. We observed that the correlation coeffi-
cient even between the resolution rate in the first month and
the final rate exceeded 0.5. Therefore, it can be concluded
that the issue resolution rate for the first month is suitable
as knowledge for knowledge-based AI systems, which, in
turn, can be used to assist in decision-making regarding OSS
adoption in business projects.

Because information technology is being constantly im-
proved, an increasing number of useful OSS are being de-
veloped as well. Therefore, in the near future, the adoption
decision for latest OSS will have to be made with a short
track record. Thus, a possible future work will involve the
derivation of knowledge based on which the final quality of
an OSS can be predicted from the initial response status after
the project is launched.

REFERENCES
[1] Ware B. Open source web development with LAMP: Using Linux,

Apache, MySQL, Perl, and PHP. Addison-Wesley Longman Publish-
ing Co., Inc.; 2002.

[2] Gerner J, Naramore E, Owens M, et al. Professional Lamp: Linux,
Apache, MySQL and PHP5 Web Development. John Wiley & Sons;
2005.

[3] Linux [Internet]. [cited 2020 Mar 26]. Available from: https:
//www.linux.com/

[4] Apache [Internet]. [cited 2020 Mar 26]. Available from: https:

//www.apache.org/

[5] MySQL [Internet]. [cited 2020 Mar 26]. Available from: https:
//www.mysql.com/

[6] PHP [Internet]. [cited 2020 Mar 26]. Available from: http://php.
net/

[7] Perl [Internet]. [cited 2020 Mar 26]. Available from: https://www.
perl.org/

[8] Python [Internet]. [cited 2020 Mar 26]. Available from: https:
//www.python.org/

Published by Sciedu Press 41

https://www.linux.com/
https://www.linux.com/
https://www.apache.org/
https://www.apache.org/
https://www.mysql.com/
https://www.mysql.com/
http://php.net/
http://php.net/
https://www.perl.org/
https://www.perl.org/
https://www.python.org/
https://www.python.org/

http://air.sciedupress.com Artificial Intelligence Research 2021, Vol. 10, No. 1

[9] Android [Internet] [cited 2020 Mar 26]. Available from: https:
//www.android.com/

[10] GitHub: The largest open source community in the world [Internet].
[cited 2020 Mar 26]. Available from: https://github.com/ope
n-source/

[11] Kuwata Y, Ishizuka T, Yokoyama S, et al. A study on a cost model of
OSS community and the optimization of operation of operation cost.
20th Study Group of Knowledge Sharing Network. SIG-KSN. Vol.
20, No. 7. The Japanese Society for Artificial Intelligence (2017).

[12] Akatsu S, Fujita Y, Kato T, et al. Structured analysis of the evalua-
tion process for adopting open-source software. Procedia Comput.
Sci. 2018 Jan; 26: 1578-86. https://doi.org/10.1016/j.proc
s.2018.08.131

[13] No. 5461 Acquisition cost and useful life of software [In-
ternet]. National Tax Agency [cited 2020 Apr 29]. Available
from: https://www.nta.go.jp/taxes/shiraberu/taxanswe
r/hojin/5461.htm/

[14] Tosun A, Bener A, Kale R. AI-Based Software Defect Predictors:
Applications and Benefits in a Case Study. Proceedings of the Twenty-
Second Innovative Applications of Artificial Intelligence Conference
(IAAI-10). 2010.

[15] Radlinski L. A conceptual Bayesian net model for integrated soft-
ware quality prediction. Annales UMCS Informatica AI XI. 2011; 4:
49–60. https://doi.org/10.2478/v10065-011-0032-5

[16] Bahamdain SS. Open Source Software (OSS) Quality Assurance:
A Survey Paper, Procedia Computer Science, 2015 – Elsevier.
https://doi.org/10.1016/j.procs.2015.07.236

[17] Akatsu S, Masuda A, Shida T, et al. A Study of Quality Indicator
Model of Large-Scale Open Source Software Projects for Adop-
tion Decision-Making. Procedia Comput. Sci. 2020; 176: 3665-72.
https://doi.org/10.1016/j.procs.2020.09.020

[18] GitHub [Internet]. [cited 2020 Mar 26]. Available from: https:
//github.com/

[19] Bitbucket [Internet]. [cited 2020 Mar 26]. Available from: https:
//bitbucket.org/

[20] Git [Internet]. [cited 2020 Mar 26]. Available from: https://gi
t-scm.com/

[21] GitHub API v3 [Internet]. [cited 2020 Mar 26] Available from:
https://developer.github.com/v3/

[22] Charette RN. This car runs on code. IEEE Spectrum, 2009 Feb.
[23] Masuda A, Matsuodani T, Tsuda K. Team Activities Measurement

Method for Open Source Software Development Using the Gini Co-
efficient. 2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 2019: 140-147.

42 ISSN 1927-6974 E-ISSN 1927-6982

https://www.android.com/
https://www.android.com/
https://github.com/open-source/
https://github.com/open-source/
https://doi.org/10.1016/j.procs.2018.08.131
https://doi.org/10.1016/j.procs.2018.08.131
https://www.nta.go.jp/taxes/shiraberu/taxanswer/hojin/5461.htm/
https://www.nta.go.jp/taxes/shiraberu/taxanswer/hojin/5461.htm/
https://doi.org/10.2478/v10065-011-0032-5
https://doi.org/10.1016/j.procs.2015.07.236
https://doi.org/10.1016/j.procs.2020.09.020
https://github.com/
https://github.com/
https://bitbucket.org/
https://bitbucket.org/
https://git-scm.com/
https://git-scm.com/
https://developer.github.com/v3/

	Introduction
	Definition of OSS quality and its measurement
	OSS quality
	Quality measurement method

	Selection and analysis of target projects
	Extraction of OSS development data
	Target project selection
	Change in the number of created and closed issues

	Quality prediction model based on issue resolution rate
	Trends in monthly resolution status
	Resolution analysis summary
	Derivation of knowledge for prediction of final resolution rate

	Conclusions

