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Abstract
This paper describes a novel algorithm for labeling problems of image segmentation. Beyond the pairwise model, our proposed
method enables exploration on cliques, which are able to capture rich information of the scene. However, the dilemma is
that, while our objective is to assign each pixel a label, the cliques are only limited to work on sets of pixels. To address this
problem, the interaction between pixel and clique is studied. The labeling problem is solved using iterative scheme incorporating
Expectation-Maximization (EM) algorithm that: in the E step, we would like to estimate labeling preference of pixels from
clique potentials with known labeling distribution; and then update clique probabilities in the M step. We optimize the proposed
function in the framework of evolutionary game theory, where the Public Goods game (PGG) is employed. Taking the advantage
of large size cliques, our algorithm is able to solve multi-label segmentation problem with effective and efficiency. Quantitative
evaluation and qualitative results show that our method outperforms the state-of-art. Especially, we apply the proposed algorithm
on urban scene segmentation, which aims at segmenting geometric inconsistent objects via vertical assumption. We believe that
our algorithm can extend to many other labeling problems.

Key Words: Image segmentation, Higher-order clique, Expectation-maximization, Evolutionary game theory, Public goods
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1 Introduction
In recent years, with the emergence of discrete optimization,
many low-level computer vision problems are solved via en-
ergy minimization algorithms, such as graph cuts,[1, 2] tree-
reweighted message passing[3, 4] and belief propagation.[5, 6]

These algorithms allow us to perform approximate inference
on graphical models, i.e., by maximizing a posterior prob-
ability on Markov Random Fields. Applications of these
energy minimization methods include image segmentation,
stereo, denoising, and etc. Within such framework, one usu-
ally seeks the labeling L that minimizes the energy

E(L) =
∑
p∈P

Dp(Lp) + λ
∑

(p,q∈N)

Vp,q(Lp, Lq) (1)

Here, Dp measures labeling preference of pixel p, and Vp,q
encourages spatial coherence by penalizing discontinuities

between neighboring pixels (p, q). The symbol P denotes
pixel set, and N stands for set of neighboring pairs. The
parameter λ controls strength of smoothness. However, this
model assumes that the energy is represented in terms of
unary and pairwise potentials, which severely restricts its
representational power, as it is too local to capture rich
statistics of natural scenes.

More recently, solving energies with higher-order cliques
has received lots of attention. A higher-order clique can
simply denoted by a set of pixels within image coordinate,
i.e., a M1 ×M2 RGB patch, or superpixels. Higher-order
clique potentials have the capability to model complex in-
teractions of random variables. Compared with the pairwise
model, experiments[7–14] showed superior results by intro-
ducing higher-order cliques, making it essential to find an
efficient algorithm to solve higher-order energies. Although
many methods have been proposed, the energy forms are
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simple and specified, which is far behind the need of ef-
fectively describing the underlying problem. Many of ex-
isting methods simply added a specified clique term to the
pairwise energy, and solved the higher-order energies us-
ing either moving making algorithms,[7–9, 13] or belief prop-
agation,[11] or message passing.[10, 12] Such inference algo-
rithms are scale exponentially with the size of the maximal
clique in the graph.[15, 16] Another dilemma is that, the un-
derlying labeling problem is pixel-wised, while the higher-
order potentials work on clique-level. Previous work only
explored how the clique impacts pixel labeling. However,
we argue that it is essential to find out the inherent relation-
ship between clique and pixels. In this paper we propose an
efficient method to explore large cliques in the perspective
of evolutionary game theory. We formulate this algorithm
using a novel objective function and incorporate it within
EM framework. Our method is capable to explore interac-
tions between pixel-wised labeling and the clique potentials.
The Public Goods Game[17] is a widely-used model describ-
ing a multi-person game. Many researchers use PGG to ex-
plore cooperative behaviors in society. Previous work found
that the underlying network topology can promote cooper-
ation.[18–20] One rationale behind this phenomenon is that
cooperators form clusters on graphs,[21] thus they can easily
spread their strategies to the surround, promoting and sus-
taining cooperation in the entire population. Motivated by
this, our intuition for image segmentation is: the clusters of
cooperation or defection can somehow represent different
segmenting parts in the image.
In this paper we introduce PGG to solve our proposed
higher-order functions, by interacting between pixel pref-
erences and clique potentials. Apart from effectiveness and
efficiency of our algorithm, we show its applicability on ur-
ban scenes. Contribution of this paper includes:
1) We propose a novel objective function that describes
the underlying relationship between pixels and higher-order
cliques.
2) Our optimization algorithm is able to solve large size
cliques on multi-label image segmentation, with effective-
ness and efficiency.
3) The image segmentation problem is solved in the EM
framework by utilizing PGG in the framework of evolution-
ary game theory.
4) We apply our method on urban scene segmentation. We
are able to detect objects from geometric and reflective in-
consistent sources. And our modified similarity measure-
ment favors reconstructing plane areas in urban scenes.
Remainder of this paper is arranged as follows. Sec. 2 intro-
duces the background and related work. Problem statement
is described in Sec. 3, followed by the proposed PGG-based
optimization method in Sec. 4. Sec. 5 shows experimen-
tal results, with Sec. 5.1 describing quantitative evaluation,
Sec. 5.2 qualitative results, and application on urban scene
segmentation is shown in Sec. 5.3. Concluding remarks are
drawn in the end.

2 Related work and background
2.1 Optimization for image segmentation
Image segmentation has long been studied. In recent years,
a bulk of work emerges that solves segmentation problem by
minimizing a discrete energy, where each pixel is assigned a
certain label. Graph cuts[1] employed the min-cut/max-flow
algorithms to minimize the proposed energy that consisting
a data term and a smoothness term, as shown in Eqn. 1,
which is widely used to achieve image segmentation. Kol-
mogorov et al.[2] provided necessary and sufficient condi-
tions for such energy function. Geometric properties of re-
gions formed by graph cuts were described in.[22] A large
variety of interactive segmentation methods based on graph
cuts have also been developed these years.[23, 24] In general,
none of them is superior to all the others. And some methods
may be more suitable for solving particular segmentation
problems than others. Sometimes, automatic methods are
not sufficient to locate the object. In this sense, interactive
methods are better off because they combine user interac-
tions that can easily locate the object. Usually, an interactive
graph based segmentation method contains the following
steps: 1) calculate user preferences that provide cues by the
user and 2) generate an optimal solution according to user
preferences. In situations where automatic segmentation is
difficult and cannot guarantee correctness and reliability, the
interactive methods are best adopted. Among these meth-
ods, Ref. 25-27 admitted shape priors into interactive graph
cuts, Ref. 28-30 improved running time of such methods,
and Ref. 31-32 applied the interactive methods in medical
and some other applications. Grabcut[33] by Rother et al. ex-
tracted the foreground of an image, by utilizing a bounding
box provided by the user that roughly holds the foreground,
and then ran graph cuts iteratively. In the random walker al-
gorithm,[34] some pixels should be pre-classified by the user.
Then an unclassified pixel is assigned a label when a random
walker has been given the greatest probability on traversing
first to the classified pixel from the unclassified pixel.
Graph cuts can obtain the optimal solution for binary prob-
lems. However when each pixel can be assigned many la-
bels, finding the solution can be computationally expensive.
To address this problem, moving making algorithms[1, 2]

based on graph cuts emerges, which can efficiently solve
multi-label segmentation problem.
The energy form in Eqn. 1 only describes constraints be-
tween pixel pairs. In order to capture rich statistics of the
image, Zeng et al.[14] introduced a framework to integrate
non-local statistics into the higher-order Markov Random
Fields, using additional latent variables to represent the in-
trinsic dimensions of the higher-order cliques. Jain et al.[35]

solved the higher-order clustering problem by combining
attributes of both decomposition of higher-order similarity
measures for use in spectral clustering and explicitly use
low-rank matrix representations. Fix et al.[36] focused on
the higher-order labeling problem by addressing the sum-of-
submodular functions. Semantic segmentation using contex
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models is also extended from pairwise relationship between
objects to higher-order semantic relations.[37] Ref. 7,9,13
added a clique term in the pairwise model to enforce pixels
within clique to take the same label. Usually the clique is
a set of pixels. Ref. 38 introduced an interactive segmenta-
tion method using non-parametric higher-order learning al-
gorithm. In their method, they designed two quadratic cost
functions of pixel and region likelihoods in a multi-layer
graph and estimated them simultaneously. Our method is
more related to Ref. 38. The main idea of our algorithm is
that the property of cliques and pixels can supplement each
other, and we iteratively optimize pixel labeling and clique
potentials. The main difference from Ref. 38 is that in our
method, each pixel is related to multiple cliques, whereas in
Ref. 38 each pixel was linked to one specified region.

2.2 Public goods game
In a typical PGG, up to N players can choose either to co-
operate or defect. Cooperators each invest a certain amount
c into the public good, whereas defectors nothing. The to-
tal contribution is then multiplied by an enhancement fac-
tor r (e.g. 1 < r < N ) and then equally distributed to
all participates. Hence, each defector would get net ben-
efit rkc/N providing k out of N players choose to coop-
erate, while that for cooperators should be reduced by her
investment c. Simple reasoning tells that an individual de-
fecting ends up getting a higher payoff than cooperating in
any given mixed group. However, each player gets the pos-
sibly maximal payoff had all players cooperated. The best
choice for individual and that for the group conflicts with
each other, giving rise to the dilemma. Simulation of a typ-
ical evolutionary procedure base on spatial PGG goes like
this. For simplicity, we consider a population of size on
a regular lattice, with each node locates an individual, and
links represent possible interacting relationships. In spa-
tial settings, each focal individual together with her direct
neighbors defines a group. Initially, half proportion of the
population is randomly assigned to be cooperators and the
remaining defectors. Whenever playing the game, an indi-
vidual would participate in all the groups she joins in. The
accumulated payoff for each player decides which strategy
to choose in the next round. The evolutionary process goes
for a finite number of times until the fraction of cooperation
in the population maintains stable.
In mathematics, the promotion of cooperation is interpreted
as approximate maximization of the total payoff. In this pa-
per, we treat the game as an optimization problem. Besides
the underlying network structure, diversity is intensively
studied on how to promote cooperation in PGG. Santos et
al.[17] explored how diversity influences evolution of coop-
eration by considering the limited resource one possesses.
Wang et al.[39] studied PGG with diverse contribution in fi-
nite populations; and Ref. 40-41, from another perspective,
studied evolutionary dynamics on diverse distribution. Re-

sults show that diversity does promote the emergency of co-
operation. However, Watts[42] argued that population struc-
ture is often more complex than a single graph can describe.
Base on this observation, Ohtsuki et al.[43, 44] and Wu et
al.[45] both experimented the idea of two different graphs
that inhabit in PGG. Our approach is more related to Ref. 46
where a selective investment scheme by encoding diversity
in the investment graph is proposed, which varies at differ-
ent time steps. However, instead of imposing spatial selec-
tive investment, in this paper, we adopt selective investment
among different graphs. Specifically, we propose to solve
the multi-label segmentation problem via games played on
multiple parallel networks. So each player would partici-
pant in several separate graphs and at each time step, she is
forced to act as cooperator at only one of these graphs and
defect on all the other ones. To make segmentation bound-
aries be consistent with image edges, diverse contribution
and distribution among different players are also studied.

2.3 Temporal projection
In urban environments, simple geometric assumption pro-
vides efficient reconstruction from street view, such as ver-
tical assumption,[47, 48] or piecewise planarity,[49, 50] leading
to applications to GoogleEarch, StreetView, as well as fu-
ture navigation applications. However, objects that violate
the assumed geometry are ubiquitous in urban scenes. These
objects may disturb quality of reconstruction, leading to vi-
sually unpleasant artifacts and degrading the visual realism
of the resulting 3D city model. In our application, we de-
fine geometric inconsistent objects like cars, pedestrians,
and plants that defy vertical assumption. These objects are
detected using temporal projections that can detect incon-
sistency regions by measuring photo consistency of the re-
ceived projections per pixel. In general, previous work of
using temporal projections is classified as either pairwise
technique that the reference compares with each projection
independently or overall technique that a background im-
age compares with the reference. Ref. 51-52 falls into the
first category. In Ref. 51, Taneja et al. detected geomet-
ric changes in an urban environment, by comparing the old
geometry with some new images observing its current stat.
And in Ref. 52, the authors applied similar method to model
dynamic objects in outdoor environments. Yang et al.,[53] on
the other hand, estimated a background image using a me-
dian filter to detect dynamic changes in the scene. While
the overall technique performs well on dynamic scene, it is
inferior in the perspective of a static scene. In this paper, we
don’t consider dynamic scenes, so inconsistency is detected
using the pairwise model.

3 Problem statement
Input of our algorithm contains the reference image be seg-
mented, and the corresponding labelling preferences indi-
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cating the pixel probability that each pixel belongs to a cer-
tain label. For a m label problem, we would like to partition
the input image intom non-overlapping parts, with each part
a specific label. This labeling problem can be formulated as:
we seek the mapping li: Ω 7→ ∆, which assigns a label li
to pixel i. The symbol Ω denotes the set of pixels; and ∆ is
discrete set of labels.
We define πli pixel probability, indicating how much poten-
tial pixel i is assigned label l; and qlc the clique probabil-
ity, denoting the probability of clique c that being labeled
l. Although cliques are rich on describing the scene, they
are unable to handle pixel-level segmentation. On the other
hand, pixels are capable to deal with pixel-level optimiza-
tion problems, but it lacks the ability to embrace higher-
order descriptions. To bias both, we propose to iteratively
update pixel and clique probability to get an overall optimal
labeling result.

3.1 EM framework
Suppose Y is the observed data denoting the input image,
having the likelihood l0(θ;Y ) depending on parameters θ.
Here θ denotes probability distribution for each clique. The
labeling set ∆ represents the latent data, so the complete
data is T = (Y,∆) with likelihood l0(θ;T ). Our EM frame-
work to maximize l0(θ;T ) goes like this:
1) Take initial guesses for the parameter θ with known la-
beling and pixel probability πli.
2) Expectation step: compute likelihood of pixel probability

l0(θ;T ) =
∑
i∈Ω

∑
l∈∆

πli (2)

3) Maximization step: determine the new estimation of θ.
4) Iterate steps 2) and 3) until convergence.

3.1.1 Clique probability and pixel probability
Base on Naive Bayes Assumption that properties among
pixels are independent, so the probability that clique c being
labeled l is formulated as

qlc =
∑
i∈c π

l
i∑

i∈c [li = l] (3)

The symbol [.] is a binary function that returns 1 when the
condition is true. Actually, clique probability on label l is
calculated by averaging probabilities of pixels which have
the same label, while omitting all the others. The com-
plete form of clique probability respect to all labels is rep-
resented as qc = {q1

c , · · · , qmc }. The symbol Eli denotes the
event that pixel i belongs to label l. Accordingly, we de-
fine Elc the event that clique c being assigned label l. Thus
Pr(Eli|Elc), i ∈ c is the posterior that when the clique is as-
signed label l, how much probability the pixel i is labeled

the same. In other words, the posterior indicates the clique
influence on the pixel of choosing a certain label. According
to Bayesian rule, the posterior is proportional to the product
of likelihood and prior that Pr(Eli|Elc) ∝ Pr(Elc|Eli)Pr(Eli).
Here the prior Pr(Eli) corresponds to pixel probability πli
in the former iteration. And the likelihood Pr(Elc|Eli) de-
notes how the pixel would influence the clique. Thus the
likelihood determines labeling choice of pixel i, which is
proportional to pixel probability πli that

πli ∝ Pr(Elc|Eli) ∝
Pr(Eli|Elc)

Pr(Eli)
(4)

with the log-likelihood

πli ∝ log Pr(Elc|Eli) = r log Pr(Eli|Elc)−log Pr(Eli) (5)

Here the parameter r is defined as a proportional coefficient
that controls impact of the clique. In general, when a pixel
embody in several cliques, pixel probability respect to all
cliques is defined as

πli =
n∑

i∈c,c∈ci

r log Pr(Eli|Elc)− log Pr(Eli) (6)

The symbol ci is the set of cliques that contains pixel i.

3.2 Clique structure
In this paper we try to define a clique as a M1 ×M2 patch,
which is also called a local window on image coordinate.
On the other hand, we notice that superpixel that obtained
from unsupervised segmentation methods is more capable
to represent object parts. An ideal superpixel usually con-
stitutes a particular set of pixels that belongs to a certain
object and have the same label. However, any segmentation
from superpixel algorithms cannot guarantee this. When an
inaccurate superpixel contains two or more objects, we ex-
pect our segmentation boundary can still locate on object
edges. We define the feature of a clique as Fc = {F lc}, with
respect to different labels l ∈ [1,m]. And F lc is calculated
by averaging feature of pixels within clique that are labeled
l.

3.3 Game perspective
Eqn. 2 is difficult to optimize as it is non-convex. However,
we observe that the formulation is somehow similar to the
Public Goods Game in the evolutionary perspective. So here
we propose a game-theoretic approach to solve this prob-
lem, where pixels are denoted as players, and each clique
stands for a group of direct neighbors. In a classical PGG, a
cooperator receives rkc/N − c. Here rkc/N is the amount
of distribution from the group, which can be interpreted as
the posterior Pr(Eli|Elc). The variable r corresponds to the
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enhancement factor, representing how the clique would in-
fluence behavior of the individuals. In this perspective, the
prior probability Pr(Eli) is analogue to wealth c of each
player, which denotes the amount of investment from the
cooperator. In such case, the net payoff of a cooperator rep-
resents the likelihood that decides what strategy to take in
the next round. This observation provides a natural link be-
tween the proposed objective function and the game. In the
game perspective, our objective is to maximize the total ac-
cumulate net payoff of each player.
Consider a population of constant size h× w locates on the
image coordinate G, with each pixel represents one player.
We segmentG into several cliques and we call each clique a
group in the language of game theory. Each player would
play with her direct neighbors within the group. Differ-
ent from existing methods, here clique potentials and pixel
probabilities are iteratively updated. Classical PGG ex-
plores how the strategy evolves; similarly, in this paper we
study how labeling evolves during iteration. So at the evo-
lutionary stable state, the strategy set is equal to the labeling
set, which is obtained via maximizing the total payoff.
To better interpret our method, we show a metaphor in
Tab. 1 revealing the connection between higher-order en-
ergy function and our PGG-based objective function. In
general, the unary term in higher-order energy provides in-
formation of labeling preferences, and the binary term pe-
nalizes neighboring pixels of taking different labels. The ad-
ditional clique term encourages pixels within clique to take
the same label, where cliques are usually defined as super-
pixels. Existing algorithms to optimize large clique energy
is difficult and time-consuming. In fact, our higher-order
patch is not limited to a neighborhood of size M1 × M2
in our formulation. Because player i in group c would not
only benefit from her direct M1×M2 neighbors, she would
also benefit from her neighboring groups. So theoretically,
player i can at most explore information in a 2M1 × 2M2
neighborhood. However, we prove later in our experiments
that our algorithm is both effective and efficient.

Table 1: Metaphor between higher-order energy and our
PGG-based objective function.

 

 

 PGG function Energy function 

Nodes Players Pixels 
Cliques  Patch or superpixel Superpixel 
Label Strategies Labels 
Higher-order N-person game Additional clique term 
Objective Max payoff Min energy 

 

4 PGG-based optimization
Each player in the population will participant in different
groups she joins in. For an object-background segmentation
problem, it is intuitive that the pure strategies of whether
cooperate or defect represents labeling of the corresponding
pixel. However, the case for multi-label problem is more
complex. Here we suppose the strategy of each player is the

combination of pure strategies. For a m label problem, each
player has m candidate strategies that corresponds to label-
ing of each pixel ranging from 1 to m. A vector sizes m is
used to represent labeling li = (0, . . . , 0, 1, 0, . . . , 0) that,
when the kth element in li is equal to 1 and others are 0,
pixel i is labeled k. We denote strategy of player i as si = li
that the symbol 1 means cooperation and 0 defection. That
means, each player in the population is forced to participant
m parallel PGGs and get m separate payoffs. A more intu-
itive explanation is: imaging m parallel Gs, with the nodes
at the same location represent the same player but with dif-
ferent strategies. We call each graph a layer. And among the
candidate strategies, each player would selectively cooper-
ate on one layer, and defect on all the others.
In our modified PGG, there are two factors that may in-
fluence the total payoff. One is strategy of each player of
whether cooperate or defect. The other is the amount of in-
vestment one player contributes. In our problem, strategy is
analogy to the latent data , and the amount of contribution
corresponds to pixel probability. We would first estimate
payoff for each player with known strategy distribution and
investment. Here payoff of each player corresponds to pixel
probability that guides the pixel to an optimal label. We
treat this procedure as the expectation step. In the maxi-
mization step, we would update strategies according to their
payoff values. This process continues until the evolutionary
stable state is reached. Note that this evolutionary process
represents the interaction between pixel and clique proba-
bility. Specifically, in the expectation step, we would like to
estimate pixel probability from clique potentials, which cor-
responds to investment and distribution procedure in PGG;
and in the maximization step, clique probability that how
likely the clique is assigned a certain label is estimated us-
ing updated strategies.

4.1 Expectation step in PGG
In the expectation step, we would like to estimate pixel
probability from clique potentials. Initially, each player is
assigned a random strategy. Whenever playing the game, a
player would invest an amount to each of her direct neigh-
bors, including herself, if she cooperates; otherwise for a
free-rider of contributing none. In classical PGG the amount
of investment wli,c from cooperator i to group c on layer l is
fixed. In our case, we employ diverse investment that dif-
ferent players would invest differently. In our design, the
amount of investment of a player wli,c is determined by two
factors: one is pixel probability πli, and the other is feature
similarity U li,c to that clique

wli,c = πli + αU li,c (7)

Here α is a weighting parameter that controls strength of
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similarity constraint and

U li,c = exp(−‖ Fi − F
l
c ‖2

σ2 ) (8)

measures feature consistency between pixel and the clique,
where Fi denotes image feature extracted on pixel i and σ
controls relative sensitivity of feature difference. Feature
similarity encourages pixels with similar appearance to the
clique contribute more in order to form clusters. Note that
for defectors, wli,c=0.
In the distribution step, each player would receive multiple
distributions from different groups she participants. The ac-
cumulate payoff of player i on layer l is denoted as

φli =
∑

i∈c,c∈ci

[r
∑
k∈c w

l
k,c

| c |
− wli,c] (9)

where |c| is the total number of players in group c. The to-
tal investment to the group is multiplied by an enhancement
factor r, and then equally distributed to each of the partici-
pants. In our problem, we expect segmentation boundaries
be consistent with image edges. So despite fair distribu-
tion, we consider a more complex situation of diverse dis-
tribution, where the wealth group c allocates to player i is
inverse proportional to their feature differences. The distri-
bution probability is represented as

e−η|Fi−F l
c |∑

j∈c e
−η|Fj−F l

c |
(10)

Instead of using 1/|c|. Here η controls sensitivity of feature
contrast. Note that when η=0, this formulation degenerates
to fair distribution. From game perspective, our objective is
to maximize the total payoff for each player, which is de-
noted as

Φ =
∑
i∈Ω

∑
l∈∆

φli (11)

Eqn. 13 is equivalent to sum of pixel probabilities in Eqn. 2
in the EM procedure.

4.2 Maximization step in PGG
In the maximization step, we would like to update the pa-
rameter θ, which changes with pixel labeling and probabil-
ity distribution. At each time step, players play the game
and get separate payoffs from each layer. Then each player
updates their strategies according to their payoffs and goes
into the next round of game. This procedure is repeated until
convergence. In the updating procedure, our method would
simultaneously update strategy set ∆ as well as pixel prob-
ability.

For strategy updating, player i learns to cooperate on layer
if that payoff is higher than any of the other layers’. Eqn. 14
shows strategy updating rule of player i cooperates on layer
v that

si(t+1) = [0, . . . , 0, 1, 0, . . . 0], πvi (t) > πui (t),∀u 6= v

(12)

where the cooperative strategy v is chosen when the vth el-
ement in the strategy vector is 1. At time step t, πvi (t) rep-
resents the accumulate payoff of player i on layer v, and
Si(t + 1) the strategy of player i in the next round. It is
reasonable to greedily support strategies with higher payoff
to survive, because player payoff denotes fitness in the lan-
guage of game theory, while in our framework, payoff cor-
responds to pixel probability of assigning different labels.
This strategy updating rule works fine when initial segmen-
tation cues are unambiguous. However, the segmentation
cues may not that significant, either using user interactive
methods, or from machine learning algorithms. For exam-
ple, parts of the object may have higher prior probability of
belonging to the background. Previous methods are prone
to produce unsatisfying results where different objects are
assigned the same label, or a single object is segmented into
different parts. We expect our method is more capable to
handle these problems. Besides strategy updating, we ex-
tend the updating rule to simultaneously update pixel prob-
ability to make the final result be reasonable. We consider
three different sources of pixel probability updating that

πi(t+1) = (1−β1−β2)πli(t)+β1φ
l
i(t+1)+β2x

l
i(t+1)

(13)

where t represents time step. φli corresponds to payoff in the
current game, and xli denotes feature-based probability for
pixel i. β1 and β2 are two weighting factors. To calculate
xli, we follow the procedure of K-Means.
At time step t, we would first learn color distribution for
each segment. Feature-based probability is then calculated
via feature distance to the segment center. We define fea-
tures as color, texture or more complex ones like SIFT or
HOG. However, in this paper, our key is not on feature se-
lection, so we employ only color features.
We also consider clique updating that all pixels within
clique would learn the average pixel probability from its di-
rect neighbor on condition that: 1) average payoff of neigh-
boring clique is higher and 2) the two cliques are of sim-
ilar appearance. We define similarity between neighboring
cliques as L2 norm on their average feature difference. Once
this similarity is within a threshold , the clique updating
occurs. The pixel updating can recover from small errors.
However, when the initial pixel preference is completely in-
correct, the clique updating would work as long as distin-
guishable features are selected.
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When the selected feature is not suitable for the image,
feature-based updating may not that convincing. Here we
introduce the concept of time-scale that feature-based updat-
ing occurs at a fixed frequency. Time-scale used here is rea-
sonable when bad features are used. For example, the RGB
color cannot work when the foreground and background are
of similar color distribution. In this case, we’d better avoid
to use feature-based updating.

5 Experimental results and discussions
This section describes our experiments. For comparative
evaluation of our method, pair-wise graph cuts[1] and graph
cuts for higher-order potentials defined on superpixels[9] are
implemented. We test our algorithm on different datasets.
For quantitative evaluation, we use the Segmentation Eval-
uation Database[54] of up to images of different resolu-
tions. In this dataset, human segmentation is used as the
groundtruth. We also test on the FlickrMFC dataset[55] as
well as Object Class Recognition Image Database[56] from
Microsoft Research in Cambridge (MSRC). The FlickrMFC
dataset is aimed at co-segmentation. It consists 14 different
groups of images, each of which contains 12 to 20 images.
And the MSRC dataset has a total of 591 images of animals,
plants, houses, aeroplanes, faces and vehicles. In addition,
we apply our algorithm on challenging real scenes, where
images of the urban environment are used and we can au-
tomatically segment the foreground objects like cars in the
image.

5.1 Quantitative evaluation
For quantitative evaluation of the proposed method, we test
it using foreground-background segmentation involving hu-
man interactions. Users would first specify foreground and
background seeds on the image, and then the probability
maps for different labels are estimated via color distances
using K-Means. We compare our method with both pair-
wise graph cuts[1] and higher-order graph cuts.[9] While
graph cuts penalizes neighboring pixels of taking differ-
ent labels, the higher-order graph cuts would further en-
force pixels within superpixel take the same label. We also
compare our method with interactive higher-order segmen-
tation,[38] where the higher-order formulation imposed the
soft label consistency constraint on pixels within superpix-
els.
We test on all the 200 images from the Segmentation Eval-
uation Database.[54] For generalization and convenience,
parameters for each image are the same. On calculating
the probability maps with human provided seeds, the num-
ber of foreground/background clusters for K-Means is set
to be 4 for each input image. We run this binary segmen-
tation algorithm on 5 × 5 square patches as well as Tur-
boPixels[60] obtained using different parameters. For invest-
ment, the feature similarity constraint α = 0.1, and param-

eter for feature contrast σ2=0.2. For distribution, we set the
feature-based sensitivity η = 3. For pixel probability updat-
ing, the weighting parameters concerning payoff and fea-
ture are set β1 = 0.1 and β2 = 0.5 respectively. For the
superpixel-based PGG, the clique updating threshold is set
to be TH=0.005. Our algorithm would not terminate unless
the average fraction of strategy changes exceed 5e−5 or the
number of iterations reaches 200. In general, a conventional
optimization process would go dozens of iterations.
For pair-wise graph cuts,[1] the parameter λ is issential. In
practice, one may spend a significant amount of time to
search for the best result of the most suitable parameter, and
efforts have also been made to study the selection of λ.[38, 57]

In our experiment, we tested on different parameters of and
find that the best result is obtained when λ=0.3 for all im-
ages.
Higher-order graph cuts[9] based on higher-order condi-
tional random fields and used higher-order potentials de-
fined on superpixels. These potentials enforce label consis-
tency in image regions and take the form of the robust Pn

model. In their framework, graph cuts based move making
algorithms are used to perform labeling inference. In our
implementation, we use approximately 600 TurboPixels[60]

per image for calculating the higher-order potentials.
The interactive higher-order segmentation[38] algorithm is a
generative model in non-parametric way, where the graph is
constructed with two layers: pixel-based layer and region-
based layer. The two layers are linked in the way that: each
pixel on the pixel layer is connected to its superpixel on the
region layer. Then the soft constraint is enforced using en-
ergy function of pixel and region likelihoods. In our im-
plementation, we use an unsupervised image segmentation
algorithm called Mean Shift to generate superpixels.
We use precision to measure performance of these algo-
rithms. Here precision counts for the ratio of correctly la-
beled pixels to the total number of pixels. This measure
is proper for region-based segmentation. However, it is
not inferior when the user is interested in obtaining accu-
rate segmentation boundary because only a small fraction
of pixels lie on object boundaries, a large qualitative im-
provement in the quality of the segmentation will result in
only a small increase when counting pixel-wise accuracy.
So similar to,[9] we evaluate the quality of segmentation
by counting the number of correctly labeled pixels in the
region surrounding the actual object boundary. We com-
pute the accuracy using different widths of the evaluation
region. The evaluation regions for some images from the
Segmentation Evaluation Database[54] are shown in Fig. 1.
The average precision of different segmentation methods
is plotted in the graph shown in Fig. 2(a). Higher accu-
racy is obtained as we increase the trimap width. On the
other hand, patch-based PGG and higher-order graph cuts[9]

get comparative results, but are inferior to the interactive
higher-order segmentation.[38] Note that in our experiment
the initial seeds for calculating interactive higher-order seg-
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mentation[38] are carefully selected. The superpixel-based
PGG works best compared with previous higher-order meth-
ods.[9, 38] The patch-based PGG is inferior because different
superpixels are more representable on describing real ob-
ject boundaries compared with square patches. Moreover,
we notice that the patch-based PGG method works better
on natural scenes with pure background (i.e. blue sky), and
the superpixel-based method is more capable to solve im-
ages with textured background (i.e. ocean with wave or the
grassplot). Fig. 2(b) shows precision comparisons on im-

ages with pure background, demonstrating effectiveness of
the PGG-based method with arbitrary clique structures. For
images with pure background, the superpixel-based PGG
also outperforms higher-order graph cuts.[9] The superpixel-
based PGG tend to favor images with textured background,
as shown in Fig. 2(c), because in such complex scene, mul-
tiple superpixels can provide boundary information, which
helps for better segmentation, while the patches may be a
little bit confused by locating real the boundaries.

Figure 1: Boundary precision evaluation using trimap segmentations. (a)&(d) shows example images from the MSRC
dataset. The remaining images are trimaps used for measuring pixel labelling accuracy. The evaluation region is colored
gray and was generated by taking a 6 pixel band (b)&(e) around boundaries of the objects. The corresponding trimaps for
an evaluation band width of 12 pixels are shown in (c)&(f).

Figure 2: (a)-(c): Quantitative evaluation on Segmentation Evaluation Database[54] of how precision varies as the width
of the evaluation region increases. The x-axis is width of the trimap, and the y-axis shows average precision with (a) the
whole dataset (b) image set that favors patch-based PGG and (c) image set that favors superpixel-based PGG. (d):
Average precision as a function of increasing clique size on all images in the dataset.

To evaluate patch-based PGG, another important parame-
ter is the patch size M . In our experiment, we set M =
M1 = M2. Fig. 2(d) shows how different measuring scores
change when varying M . We find that the quality of our
algorithm is improved with increasing clique size. How-
ever, when clique size exceeds a certain value, the quality

may decline. On the one hand, this figure proves that larger
clique size can indeed help precise segmentation. On the
other hand, we argue that it is not reasonable to set a clique
of e large size, especially on low-resolution images. There
are two reasons behind this: 1) low-resolution image itself
contains insufficient information and 2) extremely large size
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cliques may explore disturbing cues and return fallacious re-
sults. In our experiment, the average resolution is 277×290,
and experimentally the optimal clique size is M=7.
On the one hand, our technique has been designed to accu-
rately segment the object, but is has also been designed with
computational efficiency in mind. All of our experiments
ran on an Intel(R) Core(TM) i3-2130 CPU, with 8GB avail-
able RAM. Tab. 2 shows the average time consumption of
different methods. Pair-wise graph cuts runs fast because no
clique potential is used, so the results are not that satisfac-
tory. For higher-order exploration, our method is approxi-

mately 3 times faster than the other higher-order methods.
Furthermore, we also evaluate the computational time when
clique size increases. We find that the time consumption in
our algorithm is not linearly growing with increasing clique
size. In fact, the computational time for a single iteration
grows as clique size increases, but the number of iterations
for different image varies. A large clique size may lead to
quick convergence because of less iteration. Experimen-
tally, the average computational time is 1.53s, 4.15s, 3.08s,
2.29s and 3.59s with respect to patch size of 3, 5, 7, 9 and
11.

Table 2: Average computational time (in seconds) on Segmentation Evaluation Database[54]
 

 

Average resolution Graph cuts [1] 
Higher-order  
graph cuts [9] 

Interactive 
Higher-order [38] 

Patch-based PGG 
Superpixel-based 
PGG 

277 × 290 0.0713 12.9790 13.7189 4.6457 3.2935 

 
5.2 Qualitative Comparison
Fig. 3 is visualization of the binary segmentation from Seg-
mentation Evaluation Database[54] proving that our method
produces visually pleasant and convincing results. Pair-wise
graph cuts[1] works fine when we choose the optimal pa-
rameter a specific image. In this experiment, we fix the pa-
rameter for all the images, which produces unsatisfactory
results with over-segmentation in ‘boat’ image and under-
segmentation in ‘screw’ image. Pair-wise graph cuts[1] fails
because of the high reflective surface in ‘screw’ image and
the gradual texture changes of the ocean in ‘boat’ image.

Higher-order graph cuts[9] is superior, however, it explores
non-overlapping superpixels, and it still prone to errors at
these challenging regions. The PGG-based methods work
much better especially using superpixels. The ‘dog’ im-
age shows an example with fuzz. While the patch-based
PGG is superior on getting visually pleasant boundaries, the
superpixel-based PGG is more capable on locating object
edges. The interactive higher-order segmentation method[38]

appears comparable to ours when the initial seeds are care-
fully marked. However, this task is labor-intensive.

Figure 3: Comparison results on Segmentation Evaluation Database[50] of scene ‘screw’, ‘boat’ and ‘dog’. For each
scene, the first column shows the input image and the groundtruth labeling by the user. The following columns show
results using graph cuts,[1] higher-order graph cuts,[9] interactive higher-order segmentation,[38] our proposed patch-based
PGG optimization and superpixel-based PGG. The first row shows labeling result that each color represents one label,
and the second row shows results viewed on RGB images.
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Besides binary segmentation, our framework is also capable
to solve multi-label problem. For qualitative comparison on
multi-label segmentation, we test our method on the Flick-
rMFC dataset[55] as well as MSRC dataset.[56]

For MSRC dataset, we adopt TextonBoost[66] to train unary
potentials for each class using half of the images in the
dataset. We then infer class potentials on the other half.
Fig. 4 shows multi-label segmentation results on MSRC
dataset with parameters set to be α = 0.1, σ2 = 0.3, η =
3, β1 = 0.6, β2 = 0.1, TH = 0.003. Our superpixel-based
PGG method outperforms others on two perspectives: 1) the
segmentation boundaries align on image edges; and 2) our
algorithm can correctly segment the parts when the unary
potential is not significant, especially when feature of the

object is distant from the background. Results using pair-
wise graph cuts[1] and higher-order graph cuts[9] cannot get
an overall satisfactory result due to incorrect unary poten-
tials, and produces over- or under-segmentation around the
mouth in ‘goose’ image, at the back in ‘cow’ image, or the
left wall in ‘urban’ image, while the PGG-based method can
revises these all. The ‘board’ image in Fig. 4 shows that it
is impossible to segment the board using previous methods
because the unary potential is with tremendous large errors.
However, by combining different cliques, our method is ca-
pable to deal with this. The patch-based PGG produces vi-
sually pleasant results with smooth boundaries which look
like a human segmentation, and the super-pixel method is
prone to follow image edges.

Figure 4: Comparison results on Object Class Recognition Image Database[56] from MSRC of scene ‘goose’, ‘cow’,
‘board’, and ‘urban’. For each scene, the first column shows the input image and unary potentials learned from
TextonBoost.[66] The following columns show results using graph cuts,[1] higher-order graph cuts,[9] our proposed
patch-based PGG optimization and superpixel-based PGG. The first row shows labeling result that each color represents
one label, and the second row shows results viewed on RGB images.
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To calculate labeling cues on images from FlickrMFC
dataset,[55] we use the cosegmentation method,[55] which
works within heat diffusion framework, where m finite heat
sources corresponded to am label segmentation that assigns
the temperature of every pixel in an image. Here tempera-
ture denotes labeling preference. For faster computational
speed, labeling preference per pixel is calculated based on
superpixels. In our implementation, we use TurboPixels.[60]

A graph is then built with the vertex set corresponds to the

set of superpixels, and the edge set connects all pairs of ad-
jacent superpixels. For each superpixel, 3-D CIE Lab color
and 4-D texture features[61] are extracted. Similarity be-
tween neighboring nodes is then computed based on these
features. Given a fixed , greedy algorithm is employed to au-
tomatically merge the largest and most coherent regions and
generate m segmentation cues. For each image, the number
of labels m is manually selected.

Figure 5: Comparison results on FlickrMFC dataset.[55] For each scene, the first column shows the input image and
unary potentials calculated using anisotropic heat diffusion.[59] The following columns show results using graph cuts,[1]

higher-order graph cuts,[9] our proposed patch-based PGG optimization and superpixel-based PGG. The first row shows
labeling result with respect to different color, and the second row shows results viewed on RGB images.

Fig. 6 shows the results from the FlickrMFC dataset.[55]

Under-segmentation occurs when pair-wise graph cuts[1]

and higher-order graph cuts[9] are used. We obtain under-
segmentation because both segmentation cues and image
edges are ambiguous that even superpixels cannot locate
at the real object boundary. The PGG-based method

works better by exploring more cues from different cliques.
The higher-order graph cuts is more sensitive to super-
pixel edges, while patch-based PGG can usually result in
more satisfactory segmentation. Thus the superpixel-based
method can somehow be regarded as a combination of
higher-order graph cuts and the patch-based PGG.

Figure 6: Exemplar results on scene #0300 from Leuven dataset.[65] (a) Rectified input with façade-ground boundary
marked red. (b) Geometric inconsistency map of the foreground. We compare our result (e) with pairwise graph cuts[1]

(c) and higher-order graph cuts[9] (d). Fig. (f), (g), (h) are blend label with intensity corresponds to (c), (d), (e)
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5.3 Urban scene segmentation using PGG
In this experiment our objective is to segment foreground
objects in the city, including cars, pedestrians, and plants.
The segmentation results can further be used to detailed re-
construction. The inputs of our algorithm are a video se-
quence or collection of images taken from urban scenes, as
well as camera parameters for each image. The output is
labeling of the reference image, indicating object and the
background. We would first reconstruct the scene using
the simplified vertical assumption, followed by the inconsis-
tency detection step via temporal projections to generate the
inconsistency map. Finally, the PGG-based optimization is
adopted to segment the scene from these inconsistency cues.

5.3.1 Reconstruction
As scene reconstruction could provide cues for image seg-
mentation, via temporal projections, we would first recon-
struct simplified 3D model of the scene. Following vertical
assumption, each vertical line in space corresponds to a col-
umn in the image. However, due to presence of tilt road,
or the vertical offset of camera orientation, this correspon-
dence is not always perfectly matched, thus rectification is
necessary. Inspired by 62, we first rectify the input images
by rotating the camera around its optical center and overlap-
ping the up-directing axis with direction of gravity. We then
reconstruct the scene with similar approach as 47.

5.3.2 Inconsistency detection
DetectionOur simplified 3D model is composed of vertical
facades and the ground. For the most part, it is intuitive that
inconsistency can be detected via photo consistency from
temporal projections. There are roughly two sources for
such color inconsistency. One is from static objects with
Lambertian assumption that violate vertical assumption; the
other is from reflective surfaces. We define the former as
geometric inconsistency, and the latter reflective inconsis-
tency. Tab. 3 shows theoretical analysis on inconsistency
observation from different inconsistency maps. Here 1 de-
notes regions with high inconsistency value, and 0 other-
wise. On the color inconsistency map Mc, we can ob-
serve both foreground objects as well as reflective surfaces.
Meanwhile, only reflective surfaces is observed on reflective
inconsistency mapMr. We denoteMg the geometric incon-
sistency map, where theoretically, only Lambertian objects
can be detected. From Tab. 3, Mg can be obtained from Mc

and Mr using XOR operator.

Table 3: Inconsistency observation
 

 

 
  

Reflective surface 1 1 0 
Background 0 0 0 
Lambertian objects 1 0 1 

 

cM rM g c rM M M 

Color inconsistency Mc: Let Γ0 denotes the reconstructed
3D model from a reference view IR. We suppose I is the
captured image sequence observing Γ0, except for the ref-
erence view. Each observed view It ∈ I is used to render a
new image Rt by projecting Γ0 to IR. Ideally, if Γ0 is exact
representation of the scene, with all vertical surfaces under
Lambertian assumption, IR and Rt should be identical. In
other words, the absolute difference between them should
be all zero, where the substraction result Mt defines an in-
consistency map. When regions with large difference occur
in Mt, we can infer that inconsistency is detected. We as-
sume independence for each inconsistency map, therefore,
color inconsistency from temporal projections is calculated
as

M i,j
c (Γ0) = x =

{
0 ni,j = 0∏
Ri,j

t ∈P i,j e−M
i,j
t otherwise

(14)

where the superscript i, j denotes pixel coordinate, and each
pixel may receive several projections P i,j via warping. ni,j

represents the number of valid projections in P i,j . Eqn.
20 states that, if there is no valid projection, we manually
set the corresponding probability M i,j

c =0, suggesting larger
chance of belonging to the background. On the contrary,
inconsistency between the reference view and the rendered
view is measured through a normal distribution centered on
zero for each independent projection pair. We argue that this
pairwise formulation favors inconsistency detection from
precious few views.
Reflective inconsistency Mr: As the color inconsistency
map Mc may detect both geometric inconsistent objects
with Lambertian assumption and reflective surfaces, which
remains a problem on how to separate them apart. Theo-
retically, Lambertian-based objects that betray vertical as-
sumption are, for the most part, occlusions to the back-
ground model. These objects would return consistent color
among temporal projections as long as the correct geome-
try is reached. However, for reflective surfaces, temporal
projections vary with changing view point, which is inde-
pendent of the underlying 3D model. Motivated by this ob-
servation, we intend to tolerate a narrow band around Γ0,
with 3D points within this narrow band be potential estima-
tion of the scene geometry. For simplicity, we would sample
several candidate vertical models within this narrow band,
represented as Γ1, . . . ,Γh. Consider a set of 3D points pro-
jecting to pixel i, j, we would choose the most consistent
one, i.e., M i,j

r = minkM i,j
c (Γk), k = 0, . . . , h. In this

way, geometric inconsistency is eliminated, and Mr shows
inconsistency map of reflective surfaces.

5.3.3 Results on urban scene segmentation
For urban scene application, we experiment the binary case,
by incorporating segmentation cues from geometric incon-
sistency maps. Our goal is to segment foreground objects
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including cars, pedestrians and plants out of the scene. In
our experiment we use the Leuven dataset[65] with constant
image resolution of 288 × 360. This dataset was taken by
two cameras mounted on a forwarding vehicle. Both cam-
eras face to the front, with their optical centers horizon-
tally located, and their image planes are perpendicular to the
ground. The two cameras capture images simultaneously at
each time step, which is called a stereo pair. There are to-
tally 2350 stereo pairs, and for each reference image, we use
8 neighboring pairs for temporal projection. When calcu-
lating simple geometry of the scene, the maximal disparity
dmax is set to be 64. For reflective inconsistency detection,

each 3D point corresponds to 20 candidates in the narrow
band, with each neighboring candidates are three-pixel dis-
parity away. Our probability map is calculated using geo-
metric inconsistency scores. For labeling optimization, we
use the patch-based PGG because it is in accordance with
most of the structures of man-made scene. As real appli-
cations are often much more complex than laboratory im-
ages, we argue that small patch sizes is not able to recover
from errors. So in all the experiments we adopt a constant
patch size of 11 × 11. For other parameters, we manually
set α = 0.1, σ2 = 0.3, η = 3, β1 = 0.1, β2 = 0.1.

Figure 7: Exemplar results on scene #0300 from Leuven dataset.[65] (a) Rectified input with façade-ground boundary
marked red. (b) Geometric inconsistency map of the foreground. We compare our result (e) with pairwise graph cuts[1]

(c) and higher-order graph cuts[9] (d). Fig. (f), (g), (h) are blend label with intensity corresponds to (c), (d), (e)

Fig. 6 shows probability maps and segmentation results of
scene #0300 from Leuven dataset.[65] The façade-ground
boundary is detected by optimizing structure of the scene,
which demonstrates effectiveness of this simplified recon-

struction. In the foreground geometric inconsistency map,
most of the reflective surfaces (i.e., windows) are dark
and only occlusion objects with Lambertian reflection show
higher probability of belong to the foreground. However,
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there are still some misleading cues that may guide the seg-
mentation wrong, makes the graph-based methods unable
to segment out the whole object. Higher-order graph cuts[9]

works a little bit better than pair-wise graph cuts,[1] how-
ever, it is far beyond the need for real applications like de-
tailed reconstruction. Fig. 6(e) shows our result. One the
one hand, we can segment out the whole foreground object
due to multiple usages of overlapping patches in the image.
On the other hand, our segmentation boundaries align with
image edges.
Fig. 7 shows more results of urban scene segmentation.
While pair-wise graph cuts[1] failed at segmenting the ob-
ject due to misleading segmentation cues, our method can
automatically detect these regions. The higher-order graph
cuts[9] base on superpixel cliques, the additional constraints
beyond pair-wise graph cuts is that pixels within cliques
tend to have the same label. In their method, label of each
pixel is determined by only one superpixel instead of multi-
ple cliques, and we argue that single superpixel is usually
not enough to describe the scene. Graph-based methods
are not able to segment out the car locating at down-right
of scene #226 because of occlusions between the car and
the background from different viewpoints which results in
inconsistent temporal projections. And our method com-
bining updated color distributions generates more satisfac-
tory results. Scene #1852 is more complex because color
of the foreground and the background is very similar and
our method still works well when we use time-scale. Here
we avoid of using color features and the updating relies on
payoff of each player. Scene #1304 shows small object that

locates far from the camera, thus, temporal projection may
fail with small viewpoint changes. Under such challenging
situation, our method can also produce a satisfactory result.
Note that for pair-wise graph cuts[1] and higher-order graph
cuts,[9] we choose the optimal parameters for the displayed
results.

6 Conclusion
In this paper we propose a segmentation algorithm within
the framework of evolutionary game theory. Our optimiza-
tion method can efficiently solve functions with higher order
cliques to the problem of multi-label segmentation. By in-
teracting between pixel probability and clique potentials, we
can get better results compared with previous methods. We
also applied our method on urban scene segmentation us-
ing geometric cues, which can further assist detailed urban
scene reconstruction. Experiments show that our algorithm
outperforms the state-of-art. We believe that our method is
generic and can be used to solve many other labeling prob-
lems.
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