
www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

ORIGINAL RESEARCH

Projective simulation applied to the grid-world and
the mountain-car problem
Alexey A. Melnikov, Adi Makmal∗, Hans J. Briegel

Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; Institut für
Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria

Received: May 7, 2014 Accepted: June 25, 2014 Online Published: August 25, 2014
DOI: 10.5430/air.v3n3p24 URL: http://dx.doi.org/10.5430/air.v3n3p24

Abstract
We study the model of projective simulation (PS) which is a novel approach to artificial intelligence (AI). Recently it was
shown that the PS agent performs well in a number of simple task environments, also when compared to standard models of
reinforcement learning (RL). In this paper we study the performance of the PS agent further in more complicated scenarios. To
that end we chose two well-studied benchmarking problems, namely the "grid-world" and the "mountain-car" problem, which
challenge the model with large and continuous input space. We compare the performance of the PS agent model with those of
existing models and show that the PS agent exhibits competitive performance also in such scenarios.

Key Words: Projective simulation, Grid-world, Mountain-car

1 Introduction
Projective simulation (PS) provides a new approach for real-
izing an artificial intelligent (AI) agent, based on a stochas-
tic processing of information.[1] The recently proposed
model exhibits several beneficial properties: First, it is a rel-
atively simple model, in terms of its free parameters;[2] sec-
ond, it provides a physically oriented approach toward an
embodied agent design;[1] and third, the PS model, which
is based on a random walk process (see below), is a natural
candidate for quantization, using known methods of quan-
tum walks, where recently an agent based on quantum pro-
jective simulation has been shown to provide a significant
speed-up for certain learning scenarios.[3]

From a more applied perspective, the PS model, which
can be naturally applied to reinforcement learning (RL)
tasks,[4–6] was initially tested on a number of discrete toy-
problems.[1, 2] On such problems the PS model was shown to
perform well, also in comparison with the standard models
of Q-learning[4] and extended learning classifier systems.[7]

In this paper, we take one step further and study the perfor-
mance of the PS agent in more complicated scenarios.
One particular type of real-world tasks is navigation, in

which an agent has to find an optimal path to a target.
Here we chose two canonical, well studied navigation tasks,
namely the "grid-world"[8] and the "mountain-car"[9] prob-
lem. The grid-world task is commonly used to examine the
performance of AI approaches in handling large input space
and delayed reward.[6, 8, 10] The mountain-car task presents
an additional challenge, by imposing a continuous input
space.[11–17, 22]

The paper has the following structure: Section 2 shortly de-
scribes the basic features of the PS model. Then, in Sections
3 and 4 we examine the performance of PS in the grid-world
and mountain-car tasks, respectively. Last, Section 5 sum-
marizes the obtained results and concludes the paper.

2 The PS model - Brief summary
For the benefit of the reader we first give a short description
of the PS model, for a more detailed description see Refs. 1-
2. The PS is an AI model in which the information received
by the agent is processed in a so-called episodic & composi-
tional memory (ECM). The ECM is described by a weighted
network of "clips" which are the units of the episodic mem-

∗Correspondence: Adi Makmal; Email: Adi.Makmal@uibk.ac.at; Address: Institut für Theoretische Physik, Universität Innsbruck, Austria

24 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

ory: inputs lead to the excitation of corresponding percept
clips, whereas the excitation of action clips triggers real ac-
tion as output, as indicated in Figure 1. Once a percept-
clip is excited, the excitation hops between clips probabilis-
tically until it reaches an action-clip. In other words, in the
PS agent, perceptual input and action output are connected
through a random walk in the agent’s memory.
For illustration, let us consider a hypothetical PS network as
shown in Figure 1. Each edge connects some clip ci with a
clip cj and has a time-dependent weight h(t)(ci, cj) which
we denote as h-value. The h-values represent the unnor-
malized strength of the edges, and determine the hopping
probabilities from clip ci to clip cj according to

p(t)(cj |ci) = h(t)(ci, cj)∑
k h

(t)(ci, ck)
(1)

In this paper, for the sake of comparison with existing mod-
els, we also consider an alternative expression for the hop-
ping probability, known as the "softmax" (or Boltzmann)
distribution function

p(t)(cj |ci) = eα
′h(t)(ci,cj)∑

k e
α′h(t)(ci,ck) (2)

Figure 1: The PS clip network. Arrows represent possible
transitions between clips with conditional probabilities
p(t)(cj |ci). The figure is adapted from Ref. 1.

where we always set α′ = 1, unless stated otherwise. Note
that using the softmax expression merely rescales the hop-
ping probabilities, such that a small difference in the h-
values leads to a larger difference in the hopping probability.
Initially, the h-values of all edges are set to h(0) = 1, im-
plying that no particular path in the clip network is preferred
over any other, and hence that no action is more probable
than the others. Then, as experience is built up, the clip-
network is dynamically changed according to rewards per-
ceived from the environment. Formally, at each time step,
the h-values are updated as follows

h(t+1)(ci, cj) = h(t)(ci, cj)−γ(h(t)(ci, cj)−1)+λ (3)

where 0 ≤ γ ≤ 1 is a damping parameter and λ is a non-
negative reward given by the environment. Note that at each

time step the weights of all edges are damped, but only the
weights of those edges that were traversed in the very last
random walk are increased by the λ reward. This update
rule allows the agent to learn through experience, in such
a way that the probability to take rewarded actions is in-
creased with time.
A useful generalization of the update rule of Eq. (3), denoted
"edge glow", was added to the model in Ref. 2. The "edge
glow" mechanism allows the agent to internally reward not
only those edges (transitions) that were excited (taken) dur-
ing the very last random walk, but also edges that were ex-
cited in previous time steps. This is realized by assigning to
each edge of the PS network, apart from its weight, an ad-
ditional time-dependent value 0 ≤ g ≤ 1, denoted as "glow
value" and by using the modified update rule:

h(t+1)(ci, cj) = h(t)(ci, cj)−γ(h(t)(ci, cj)−1)+g(t)(ci, cj)λ.
(4)

Each time an edge is visited, the corresponding g-value is
set to 1, following which it is decreased after each time step
with a rate η:

g(t+1)(ci, cj) = g(t)(ci, cj)(1− η). (5)

The decay of the g values ensures that the external reward
has a different effect on edges that were excited at different
time steps. In particular, edges that were excited in recent
time steps are strengthen more than edges that were excited
before, whose glow values g(t) have already decayed. Ef-
fectively, this means that percept-action pairs, that were ex-
perienced close to getting a reward, are more probable to re-
occur than percept-action pairs that were encountered much
before. The number of time steps that may pass between a
random walk in the clip network and getting a reward such
that the edges that were excited through that random walk
are still strengthen by this reward, i.e. the number of time
steps that are effectively "remembered", is limited. It is,
however, controlled by the η parameter through an inverse
relation: the higher the value of η, the smaller the number of
remembered steps. In particular, the agent remembers only
the last few decisions (or, to be more precise, only the edges
of last few random walks are strengthen) when η → 1, and
remembers almost every time step (that is, almost all previ-
ously excited edges are rewarded) when η → 0. By setting
η = 1, only the last random walk path is rewarded and we
revert back to the update rule of Eq. (3).
The generalized update rule of Eqs. (4)-(5) enables the
agent to correlate present rewards with previous actions and
thereby to handle better with "temporal correlation" scenar-
ios, in which there exist correlations between rewards and
former actions. This update rule was shown in Ref. 2 to
be beneficial in scenarios in which the agent has to learn
to refrain itself from actions that are instantly rewarded, at
the benefit of obtaining a much larger reward for an action

Published by Sciedu Press 25

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

performed a few steps later, i.e. in scenarios where a greedy
strategy is inferior. In this paper we further study the role of
this update rule in scenarios in which a small reward is very
much delayed.

3 Grid world

The grid-world environment[8, 10] is a maze in which an
agent should learn an optimal path to a fixed goal. The
world is divided into discrete cells (or rooms) in which the
agent can reside. At each time step the agent can move to
one of the neighboring cells by choosing among four ac-
tions: left, right, up or down. Here we consider the maze
from[8] as shown in Figure 2, which consists of 6 by 9 cells,
some of which are walls (marked as black cells), and a goal
(marked by a star) which is always located at the top right
cell. At the beginning of each trial the agent is placed in
the first cell of the third row from the top. If the agent de-
cides to go to a square labeled as "wall" or to go beyond
the grid, then no movement is performed but the time step
is counted. The agent receives a reward of λ = 1 only af-
ter reaching the goal, which also marks the end of the trial.
The performance of an agent in this task is evaluated by the
number of steps it makes before reaching the goal at each
trial. A learning agent will need less and less steps as it
goes through more and more trials. The learning time can
be defined by the number of trials required to get a certain
level of performance. A more efficient agent will require a
smaller number of trials to attain a substantial improvement
of its performance.

The main challenges posed by the grid-world task are its
relative large input space (46 possible positions in our case)
and the fact that the reward is much delayed. In fact, at the
first trial, and for many time steps, the agent has no prefer-
ence toward any direction until the goal is found by sheer
coincidence. Only after the agent is rewarded for the first
time, it can start developing a preference toward reaching
the goal.

In the following we examine the performance of the PS
agent in the grid-world task. To that end we use a two-
layered clip network structure, as shown in Figure 3, com-
posed of 46 percept-clips (first row in Figure 3) representing
potential positions on the maze, 4 action-clips (second row
in Figure 3) and directed edges connecting percepts (s) to
actions (a). Each edge (s,a) between percept and action is
assigned a time dependent h-value h(t)(s, a) and a glowing
value g(t)(s, a), as explained in Sec. 2. Those values are
then updated through experience, according to generalized
update rules of Eqs. (4)-(5). To obtain statistically meaning-
ful results we average the PS performance over 104 agents
(see Ref. 2 for an error bars analysis of the PS agent’s learn-
ing curves, albeit in a different scenario).

Figure 2: The grid-world task: The goal of the game is to
find the "star". At the beginning of each trial the agent is
placed in the (3,1) cell, as shown. The shortest paths to the
goal are composed of 14 steps, one such optimal path is
marked by a dashed line.

Figure 3: The PS clip network in the grid-world task. First
and second rows depict percept and action clips,
respectively, and a directed edge leads from every percept
to every action clip. Input is perceived as coordinates on
the maze: a row number x and a column number y. The
network has 46 percept clips and 4 action clips. Each edge
is associated with an h-value h(t)(s, a) and a glow value
g(t)(s, a).

As shown in previous works,[1, 2] the PS performance de-
pends on the value of its internal γ and η damping parame-
ters. In particular, it was shown that a nonzero damping pa-
rameter γ, i.e. an ongoing process of forgetting, is beneficial
when the environment changes, whereas for constant envi-
ronments it merely limits the maximum achievable success
probability of the agent. Since in the grid-world task the en-
vironment is constant we set γ = 0 to avoid forgetting and
to observe the model’s best performance. The dependence
of the PS performance on the value of the glow-damping
parameter η is, however, more involved. Figure 4(a) shows
the PS performance, characterized by the number of steps
required to find the goal after 100 trials, as a function of the
η parameter. We consider both the basic and the softmax
probability functions p(t)(cj |ci) as given in Eqs. (1) and (2),
shown in solid red and dashed blue lines, respectively.
One can see that in both cases the PS agent performs quite
badly when η → 0: even after 100 trials it requires more
than 100 steps to reach the goal (in fact for η = 0 the agents
require 842 and 570 steps, after 100 trials, using the basic

26 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

and the softmax functions, respectively, not shown). This is
because a small η parameter inhibits the decay of the edge
glow, so that all previous actions are always rewarded with
the same value λ = 1. Since the PS agent starts the first trial
with no preferred actions, the first path to the goal consists
of completely random moves and is thus very long on aver-
age. The probability of taking again the same long path of
random moves increases and makes it almost impossible to
learn something.
Setting η = 1 may even be worse. The reason is that with
η = 1 all g values are damped to 0 and the "edge glow"
mechanism is effectively turned off, such that only the last
action in the trial can be learned. Setting an intermediate
value can help as it allows to reward moves which are near
the goal higher than those which are far from it. In other
words, the last few actions before reaching the goal are
highly rewarded, whereas unwanted random moves at the

beginning of the trial are less rewarded, if at all. From Fig-
ure 4(a) one can see that there exists an optimal η ≈ 0.07
for the PS agent with the basic transition probabilities of
Eq. (1) (solid red curve). This is in agreement with the find-
ings of Ref. 2 in which an optimum η value was also shown
to exist for a different "temporal correlation" scenario. Us-
ing the softmax function to define the transition probabilities
(dashed blue curve in Figure 4(a)) leads to an improvement
in the agents performance. This improvement makes sense
because with the softmax function even a small reward is
enough to establish a high probability to repeat the same ac-
tion. Moreover, it is seen that when the softmax probability
function is used, the resulting performance (i.e. after 100 tri-
als) is more robust against changes of η. In particular, there
is a larger region of η values for which the performance is
nearly the best.

Figure 4: The performance of the PS agents in the grid-world task after 100 trials. Solid red curves depict the PS
performance using the basic transition probability function (Eq. (1)). Dashed blue curves depict the PS performance
using the softmax transition probability function (Eq. (2)). A damping value of γ = 0 is used throughout. All curves are
averaged over 104 agents. (a) The dependence of the PS performance on the η parameter is shown after 100 trials. (b) PS
learning curves are shown for optimal values of η = 0.07 and η = 0.12 (for 100 trials). The performance improves with
the number of trials: from about 870 steps at the first trial to 45 (solid red) and 15.4 (dashed blue) steps, after 100 trials.

Figure 4(b) shows the average performance of the PS agent
as a function of the number of trials, using the optimal val-
ues of γ = 0, η = 0.07 (for the basic transition function,
shown in solid red curve) and η = 0.12 (for the softmax
function, shown in dashed blue curve) as explained above.
It is seen that as the number of trials increases, the PS agents
find the goal in fewer and fewer steps on average, implying
that the PS model is capable of learning in the grid-world
environment. In particular, after 100 trials it is seen that on
average the PS agents reach the goal in about 45 steps using
the basic transition function and in about 15.4 steps when
using the softmax probability function. It is also seen that
the initial learning rate, as captured by the initial slope of the
learning curves, is greater when using the softmax function.
The performance of each individual agent may differ from

the average performance. In order to check how much a
single agent’s behavior may deviate from the one of its fel-
low agents, i.e. differ from the average, we further computed
the standard deviation (σ) of the performance for each trial.
Figure 5 shows the averaged performance of the PS agents
in the grid-world (solid curves), plotted in the center of a 2σ
envelope (dotted curves). Figs. 5(a) and 5(b) show the per-
formance using the basic and the softmax transition proba-
bility of Eq. (1) and (2), in red and blue, respectively. It is
seen that at the beginning the agents’ performance varies to
a large extent, and that as the number of trials increases, the
agents’ performance converges into a small region. In other
words, the standard deviation decreases with experience and
the agents are expected to perform more and more alike and
as suggested by the average of their performance.

Published by Sciedu Press 27

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 5: The performance of the PS agents in the grid-world task during 100 trials, including standard deviations. The
solid curves mark the averaged performance over 104 agents. Dotted curves correspond to adding and subtracting one
standard deviation σ from the average value. (a) Using the basic transition probability of Eq. (1), in red. (b) Using the
softmax transition probability of Eq. (2), in blue.

So far, we have mostly concentrated on the performance of
the agent in terms of the length of the chosen path. We
saw that after 100 trials, different η values result with dif-
ferent performances, and that there exist an optimal η value
for which this performance is the best. Next we also con-
sider the effect of changing the value of the η parameter on
the initial speed of the learning. Figure 6(a) shows three
learning curves corresponding to three different values of
η = 0.03, 0.12 and 0.15, in solid red, dashed blue and dash-
dotted black, respectively. It is seen that as the value of η
increases, the initial slope of the learning curve decreases
and a better performance is reached. This illustrates that the
choice of an optimal η depends on the number of trials the
agent is given. In particular, it is seen that after 100 trials
the dashed blue curve of η = 0.12 exhibits the best perfor-

mance, but that with η = 0.15 (dash-dotted black curve)
one can reach better performance after 150 trials. Moreover
Figure 6(a) illustrates that for a finite number of trials there
is a trade-off between learning speed and performance. In
particular the solid red curve of η = 0.03 shows that by
slightly compromising on performance (with a path of less
than 17 steps) a much faster learning is obtained. In general,
by increasing the η value further one can achieve better per-
formance, but more learning trials are needed. The choice
of η can then be made according to the required property:
performance versus speed. For completeness, we remark
that by increasing the value of α′, i.e. the exponent power of
the softmax function of Eq. (2) one can improve on both the
initial learning slope and the performance (not shown).

Figure 6: The learning curves of the PS agent in the grid-world task, with different η values. All curves are calculated
using the softmax function with α′ = 1. A damping value of γ = 0 is used throughout. All curves are averaged over 104

agents. (a) A trade-off is observed between the best performance and the number of trials required to reach it. In
particular, as η increases the initial slope decreases (and more trials are needed to reach the best performance), yet a better
performance is reached after the 200th trial. (b) Among the three η values, the intermediate value of η = 0.01 exhibits the
largest initial slope.

28 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Next we ask if there is a limit for the initial learning speed
or, in other words, is there an optimum η value for which
the initial slope is the largest? Figure 6(b) shows that among
η = 0.001, 0.01 and 0.03 in dash-dotted black, dashed blue
and solid red curves, respectively, the largest initial slope is
obtained by the intermediate value of η = 0.01. This shows
that an optimal η value does exist, also with respect to the
achievable initial slope.
We now turn to evaluate the quality of the PS performance.
To that end we compare the PS performance to the perfor-
mance of the policy iteration (PI) model as reported in Ref.
8 where the exact same rules were employed (later papers,
such as in Refs. 18-21 have used different game settings or
utilized very different evaluation methods, see e.g. Ref. 10).
In particular, we compare the PS learning curve depicted in
Figure 4(b) to the learning curve of the PI agent as shown in
Figure 3 of Ref. 8.
The PI is a trial-and-error learning system. The policy,
which is adjusted by a temporal-difference learning process,
dictates which action is performed at any input state. It is re-
alized as a table of values for each pair of input and action,
and the PI agent takes an action stochastically using values
from this table according to the softmax function. To allow a
meaningful comparison we compare the performance of the
basic PS model with those of the basic PI model, i.e. with-
out any Dyna-style planning steps (or, equivalently, with no
hypothetical experience, denoted as k = 0 in Ref. 8). More-
over, since the PI employs the softmax policy, we compare
it with the softmax curve of the PS shown in dashed blue
in Figure 4(b). It is seen in Figure 3 of Ref. 8 that after
about 80 trials the PI method (with no Dyna-style planning)
reaches the goal in about 14 steps, i.e. roughly within the
optimal number of steps. In comparison, the PS agents with
the softmax function require on average 15.4 steps after 100
trials. The results are also summarized in Table 1.
Table 1: Grid world: performances of the PS model in
comparison with the PI model, as reported in Ref. 8.

Model
#Steps to goal after

100 trials
Parameters

PS 45 λ = 1, η = 0.07, γ= 0

PS softmax 15.4 λ = 1, η = 0.12, γ= 0

PI[8] 14 β = 0.1, γ= 0.9, α= 1000

4 Mountain car
In the mountain-car task,[11, 12] an agent drives a car on a
surface between two hills, where a goal awaits at the top
of the right hill, as shown in Figure 7. At the beginning of
each trial the agent has a random position x0 and a random
velocity v0. Then, at each of the following time steps the
agent receives its new position xnew and new velocity vnew
as input and has to choose between three possible actions:
forward thrust (to the right), no thrust, and reverse thrust (to
the left). Once the agent finds the goal it is rewarded with

λ = 1 and the trial ends. Until then, like in the grid-world,
the agent receives no rewards. To measure the performance
of the agent we count the number of steps it requires to find
the goal at each trial. Clearly, a well performed agent would
require less steps as the number of trials increases.
Here we follow the mountain-car rules as specified in Ref.
11. In particular, the next (xnew, vnew) coordinates are de-
termined by the agent’s own action and by the effect of grav-
ity, according to

vnew = vold + 0.001 ∗Action− 0.0025 cos(3xold),
xnew = xold + vold. Action ∈ {−1, 0, 1}

(6)

Figure 7: The mountain-car task, a schematic drawing: the
goal is to find the “star” at x = 0.5. Marks on the road
represent the x coordinate.

The position of the car is bounded inside −1.2 ≤ x ≤ 0.5
and the goal is always placed at x = 0.5. Trying to go be-
yond these bounds leaves the car on the boundary with zero
velocity as if the car hit a wall (for the positive boundary
this would simply result with reaching the goal). The veloc-
ity is similarly bounded inside −0.07 ≤ v ≤ 0.07, i.e. its
absolute value is reset to 0.07 if this value is exceeded.[11]

The mountain-car task is quite challenging: first, like in the
grid-world, the reward is delayed and the agent has initially
no information about the goal or its mere existence. It there-
fore has to move around randomly until it accidentally hits
the goal and is finally rewarded; Second, unlike the grid-
world scenario, an optimal path is not apparent. This is
because in general it will not be sufficient to push the car
directly to the goal, since its engine power is not strong
enough and it will eventually roll back down. The agent
would therefore need to drive the car back and forth to ob-
tain sufficient potential energy. Appendix A provides a de-
tailed analytical treatment of the physics that lays behind
the game, and calculates an upper bound (though not nec-
essarily tight) for the minimum number of required steps;
Last but not least, the mountain-car task introduces a two-
dimensional continuous input space, thereby confronting
the agent with infinite number of possible input states.

Published by Sciedu Press 29

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 8: The PS clip network in the mountain-car
problem. First and second rows depict percept and action
clips, respectively, and a directed edge leads from every
percept to every action clip. The continuous input space is
discretized to a grid of uniform (x, v) regions, each
corresponds to a different possible input state. Here we
used a PS network composed of 20 by 20 percept clips and
3 action clips. Each edge is associated with an h-value
h(t)(s, a) and a glow value g(t)(s, a).

To examine the PS model in the mountain-car problem, we
simulate its performance with the two-layered clip network
depicted in Figure 8, where the continuous input space is
discretized uniformly. Specifically, we chose a grid of 20
by 20 for a later comparison with existing results from the
literature (see below). As before, we study the model with
both choices for the transition probability given in Eqs. (1)

and (2), and use the generalized update rules of Eq. (4)-(5).
To get an optimal performance we set the damping param-
eter to γ = 0, as the environment does not change. To find
an optimal η parameter we look at the PS performance after
20 trials as a function of η, as shown in Figure 9(a). Both
transition function of Eqs. (1) and (2) are shown in solid red
and dashed blue curves, respectively. It is seen that in both
cases, an optimal η value exists at 0.02. In general, it is seen
that the dependence on η resembles the one observed in the
grid-world task (see Figure 4(a)). In particular, the PS per-
formance is quite bad for η → 0 and η → 1 for the same
reasons described in Sec.3. In addition, we see here too that
the softmax function of Eq. (2) improves the obtained per-
formances and results with a performance curve that is less
sensitive to changes in the η parameter.

Figure 9(b) shows the learning curve of the PS agent using
the optimal value η = 0.02, as found above. The average
number of steps required to reach the goal is shown for each
trial for both the basic and the softmax function in solid red
and dashed blue curves, respectively. It is seen that the PS
agents manage to find the goal with less steps when the num-
ber of trials increases, as required. As in the grid-world task,
the softmax function for the probability function improves
not only the final performance but also the rate of the learn-
ing. For later comparison we indicate that with the softmax
function the agents make about 223 steps per trial, averaged
over the first 20 trials.

Figure 9: Performance of the PS agent in the mountain-car problem during 20 trials. Initially the agent has a random
position and velocity. Solid red curves depict the PS performance using the basic transition probability function (Eq. (1)).
Dashed blue curves depict the PS performance using the softmax transition probability function (Eq. (2)). A damping
value of γ = 0 is used throughout. All curves are averaged over 104 agents. (a) The dependence of the PS performance
on the η parameter is shown after 20 trials. (b) PS learning curves are shown for the optimal value of η = 0.02 (for 20
trials). The performance improves with the number of trials: from about 735 steps at the first trial to 204 (solid red) and
129 (dashed blue) steps, after 20 trials.

For comparison, we next look at the performance of the
SARSA algorithm[23] in the mountain-car problem, as re-
ported in Ref. 11. For completeness we shortly note that
the SARSA algorithm estimates an "action-value" function
which gives an expected future reward for any percept-

action pair. At each time step the action that maximizes this
future reward is deterministically chosen. In Ref. 11 the
infinite input space of the mountain-car problem was rep-
resented by five 9 by 9 grids, each of which is offset by
a random fraction of a one cell’s width. Each of the five

30 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

grids was associated with its own action-value functions and
an action was chosen according to the largest sum over the
corresponding values from all grids. Here a reward of −1
was given at all time steps, except when reaching the goal,
or as stated by the authors "passing the top ends the trial
and ends this punishment". Compared with our rewarding

scheme there is thus a constant shift of rewards by −1. The
reported performance of the SARSA algorithm is 450 steps
per trial, averaged over the first 20 trials. According to the
above results of the PS, we note that the PS is twice as fast
(with 223 steps per trial).

Figure 10: Performance of the PS agent in the mountain-car problem during 100 trials. Initially the agent is placed at
x = −0.5 with zero velocity. Solid red curves depict the PS performance using the basic transition probability function
(Eq. (1)). Dashed blue curves depict the PS performance using the softmax transition probability function (Eq. (2)). A
damping value of γ = 0 is used throughout. All curves are averaged over 104 agents. (a) The dependence of the PS
performance on the η parameter is shown after 100 trials. (b) PS learning curves are shown for optimal values of
η = 0.01 (for 100 trials). The performance improves with the number of trials: from about 1450 steps at the first trial to
593 (solid red) and 302 (dashed blue) steps, after 100 trials.

To compare the PS agent with a more recent implementation
of the SARSA algorithm for the mountain-car problem[22]

we next consider the case in which the agent has a fixed
initial position and velocity (as opposed to random ones).
Following Ref. 22, we set the agent to x = −0.5 and v = 0
at the beginning of each trial, i.e. almost at the bottom of
the hill with zero velocity, and checked its performance af-
ter 100 trials. We discretized the input space to a uniform 20
by 20 grid, as before, and chose an optimal glow parameter
η = 0.01 according to the agent’s best performance after
100 trials (see Figure 10(a)) using both the basic probability
transition functions (solid red curve) and the softmax func-
tion (dashed blue curve). The corresponding learning curves
are displayed in Figure 10(b), where it is shown that the PS
agent manages to learn and to reach the goal with a decreas-
ing number of steps in this scenario too. This fixed initial
starting point turns out, however, to be rather difficult for
the agent as it should first drive away from the goal (see Ap-
pendix A). Empirically, we see that even after 100 trials the
PS agent (with the softmax distribution) requires as many
as 302 steps to find the goal, more steps than it needs in the
case of random initial coordinates, after 20 trials alone.
In what follows we compare the performances of the PS
agent with those of the SARSA algorithm as presented in

Figure 3 of Ref. 22. In this reference, a reward of −1 was
given at each time step until the goal was found, an action
was chosen according to an ε-greedy policy with ε = 0.1,
and the value function was represented with 10 grids, each
of 104 input states, using a linear function approximation.
It is seen in Figure 3 of Ref. 22 that after 100 trials the
SARSA algorithm is able to find the goal in about 150 steps,
i.e. twice as fast as the PS agent with the softmax transition
function. We relate the relative success of SARSA in this
case to the combined usage of a dense grid discretization
(of 104 states), a large number of grids (10), and a func-
tion approximation for the value function.[22] As described
above, the PS implementation for the mountain-car task is
more economic: each agent is supplied with only a single
network of 400 percept clips, where no kind of function ap-
proximation is used (implying that each percept-action edge
has to be learned independently). This can be improved.
For example, with 900 percepts the PS performance (using
the softmax function) already improves by ≈ 10% and the
agents find the goal after 276 steps on average.
Table 2 summarizes the performances of the PS model in the
mountain-car task, in both cases of random and fixed initial
position. The performances of the SARSA algorithm in the
corresponding scenarios are also shown, for comparison.

Published by Sciedu Press 31

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Table 2: Mountain car: performances of the PS model in comparison with the SARSA algorithm.[11, 22]

Initial state # of trials Model Performance Parameters

Random x and v 20

PS 313/trial 20 by 20 input space

PS (softmax) 223/trial λ = 1, η = 0.02, γ= 0
SARSA [11] 450/trial 5 grids, each of 9 by 9 input space

x = -0.5, v = 0 100

PS 593 20 by 20 input space

PS (softmax) 302 λ = 1, η = 0.01, γ= 0
SARSA [22] 150 10 grids, each with 104

 input space

5 Conclusion
Following previous studies of projective simulation (PS), in
which the novel model was shown to perform well on sev-
eral toy-problems,[1, 2] in this paper we studied the model in
more challenging scenarios. In particular, we studied the
performance of the PS agent in the navigation tasks of grid-
world and mountain-car, in which an agent is supposed to
learn how to find a goal in minimal number of steps. In the
grid-world task the agent has to deal with a delayed reward
that is given only at the end of the trial and with a large
input space. In particular, there exists many (infinite) differ-
ent paths to the goal, but only a few of them are optimal. In
the mountain-car task the input state space is even infinite,
adding the challenge of how to learn with only finite number
of possible input percepts.
In both tasks we saw that the PS agent manages to find the
goal faster after each trial. The PS agent starts the first trial
by randomly trying available actions until it accidentally
reaches the goal. On average, during the first trial the PS
finds the goal after 870 steps in the grid-world task, and after
735 steps (1450 steps when the initial coordinates are fixed)
in the mountain-car task. With appropriately chosen damp-
ing parameters the PS greatly improves its performance: In
the grid-world task the number of steps to reach the goal
goes down to 15.4 after 100 trials; In the mountain-car task,
the number of steps to reach the goal goes down to 129
steps after 20 trials using randomized initial coordinates,
and to 302 steps after 100 trials using fixed initial coordi-
nates. These results were obtained using the softmax tran-
sition probability function of Eq. (2) which, due to rescal-
ing of the hopping probability, always improves the perfor-
mance compared to the use of the basic transition probabil-
ity function of Eq. (1).
We further studied the performance of the PS as a func-
tion of the glow parameter η and showed that the edge-glow
mechanism of the PS plays an important role in scenarios
where the reward is delayed.
The performance of the PS agent was compared with those
of the policy iteration (PI) and the SARSA algorithms.
Qualitatively, the performance of the PS model is compa-
rable to those of the other models, and no major differences
were observed. Quantitatively, we saw that in the mountain-
car, when starting from a fixed coordinate, PS does not per-
form as good as SARSA. We showed, however, that to a
certain extent one can improve the PS performance by in-

creasing the input state space, i.e. the number of possible
percept clips. We further showed that the PS agent performs
almost as good as the PI agent in the grid-world task and
that it outperforms the SARSA algorithm in the mountain-
car task when the initial coordinates are chosen randomly.
We thus conclude that the PS model performs well also in
navigation scenarios with large and even continuous input
space.

Acknowledgements
We thank Vedran Dunjko for discussions. The work was
supported by the Austrian Science Fund (FWF) through the
SFB FoQuS F 4012, and the Templeton World Charity Fund
grant TWCF0078/AB46.

Appendix A: Analyzing the physics back-
ground of the mountain-car problem
A car of mass m drives up the hill with a tangential velocity
~v, it has an engine acceleration ~a and experiences a gravita-
tional acceleration ~g as illustrated in Figure 11. Its equation
of motion is therefore given by:

d~v/dt = ~a+ ~g. (7)

By projecting the vectors onto the direction of motion we
get

dv/dt = a− g cosϕ
dx/dt = vx = v

(8)

where ϕ is the angle between the vectors ~a and−~g. Integra-
tion leads to

vt = vt−1 +
∫ t
t−1 aτdτ − g

∫ t
t−1 cosϕτdτ

xt = xt−1 +
∫ t
t−1 vτdτ

(9)

We next assume that during the small time interval dt = 1
the integrands aτ , cosϕτ and vτ do not change much, thus
we obtain the following approximations for the (xt+1, vt+1)
coordinates of the next time step:

vt ≈ vt−1 + at−1 − g cos(ϕt−1)
xt ≈ xt−1 + vt−1

(10)

32 ISSN 1927-6974 E-ISSN 1927-6982

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

Figure 11: Accelerations and velocity in the mountain-car
problem. The marks on the road represent x coordinate.

Comparing Eq. (10) with Eq. (6) one obtains at−1 = 0.001∗
Action and g cosϕt−1 = 0.0025 cos(3xt−1). A change of
the height is given by dh = dx cosϕx, which integrates to

hx = 0.0025
g

∫
cos(3x)dx = 0.0025

3g sin(3x)+C (11)

The height hx is plotted in Figure 12 for g=0.0025 (using
the same convention as in Ref. 11) and C = 0, where x
is the coordinate perceived by the agent, indicated in Figure
11 as marks on the road. Eq. (11) indicates that the bottom
of the hill is placed at x = −π/6.
If the agent starts near the bottom of the hill at x0 = −0.5
with a zero velocity v0 = 0 and pushes the car in the direc-
tion towards the top of the mountain, its engine power will
not be sufficient. To see that, we equate the net work done
by the engine with the difference in total energy (potential
plus kinetic)

ma(xgoal − x0) = mg(hgoal − h0) +
mv2

f

2 (12)

from which we get

a(xgoal − x0) ≥ g(hgoal − h0)⇒ xgoal ≥

− 0.5 + 5
6

(
sin(3xgoal)− sin(−1.5)

)
(13)

which does not hold for xgoal = 0.5.

To get the maximum x value the agent can reach by al-
ways pushing right we use Eq. (12) and set the final ve-
locity vf = 0, which gives xmax ≈ −0.27 (indeed much
before the goal at x = 0.5). A similar analysis shows that
by pushing the car always to the left the agent could reach
x ≈ −0.834. Figure 12 marks in black circles the furthest
points the agent can reach by pushing the car only in one
direction (their hight differ because the initial position−0.5
is not exactly at the bottom of the hill). An additional green
cross marks the point from which the agent could reach the
goal by just pushing the car to the right. One possible strat-
egy is to go from x = −0.5 to the left till the car stops at
x ≈ −0.834 and from that point on always push the car in
the direction of the goal. With this strategy one can reach
the goal in 89 steps: 36 actions to the left, followed by 53
actions to the right. Note that in this analysis we did not en-
force explicitly the bounds on the velocity. This is, however,
unnecessary as within the above particular strategy the ab-
solute value of the velocity during the whole trial is always
less than the maximum allowed value of 0.07.

Figure 12: The height of the hill in the mountain-car task
for g = 0.0025 and C = 0. Red point shows the initial
position. Two black point are at x ≈ −0.834 and
x ≈ −0.27, the green cross is a little bit lower
(x ≈ −0.832) than the left black one.

References
[1] H. J. Briegel and G. De las Cuevas. Scientic reports. 2012; 2: 400.
[2] J. Mautner, A. Makmal, D. Manzano, M. Tiersch, and H. J. Briegel.

New Generation Computing, in print. arXiv:1305.1578 (2013).
[3] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin Delgado, and

H. J. Briegel. Phys. Rev. X 4, 031002 (2014).
[4] S. J. Russell and P. Norvig. Artificial intelligence: A Modern Ap-

proach, (Prentice Hall, Inc., 1995).
[5] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Intro-

duction (MIT press, 1998).

[6] M. Wiering and M. van Otterlo (Eds.), Reinforcement Learning:
State of the Art (Springer, 2012).

[7] S. W. Wilson. Evolutionary computation. 1995; 3: 149.
[8] R. S. Sutton, in Proceedings of the 7th International Conference on

Machine Learning. 1990: 216-224.
[9] A. W. Moore. Efficient Memory-Based Learning for Robot Control.

Ph.D. thesis, University of Cambridge (1990).
[10] P. Crook and G. Hayes. Proceedings of Towards Intelligent Mobile

Robots. vol. 4. 2003.
[11] S. P. Singh and R. S. Sutton. Machine learning. 1996; 22: 123.

http://dx.doi.org/10.1023/A:1018012322525

Published by Sciedu Press 33

www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 3

[12] R. S. Sutton. Advances in neural information processing systems.
1996; 8: 1038.

[13] W. D. Smart and L. P. Kaelbling. Proceedings of the International
Conference on Machine Learning. 2000: 903-910.

[14] C. E. Rasmussen and M. Kuss. Proceedings of the Conference on
Neural Information Processing Systems. 2003.

[15] N. Jong and P. Stone. Proceedings of the International Conference
on Machine Learning. 2006.

[16] S. Whiteson and P. Stone. The Journal of Machine Learning Re-
search. 2006; 7: 877.

[17] V. Heidrich-Meisner and C. Igel, in Recent Advances in Reinforce-
ment Learning. 2008: 136-150.

[18] M. Tan, Proceedings of International Conference on Machine Learn-
ing. 1993: 337.

[19] A. Y. Ng, D. Harada, S. Russell, Proceedings of International Con-
ference on Machine Learning. 1999; 99: 278-287.

[20] H. R. Tizhoosh. Proceedings of CIMCA/IAWTIC. 2005: 695-701.
[21] S. M. Lucas. Proceedings of IEEE Conference on Computational

Intelligence and Games. 2010: 372-379.
[22] R. S. Sutton, C. Szepesvari, A. Geramifard, and M. P. Bowling. Pro-

ceedings of the Twenty-Fourth Conference on Uncertainty in Ar-
tificial Intelligence (UAI 2008). 2008: 528-536. arXiv:1206.3285
(2012).

[23] G. A. Rummery and M. Niranjan, On-line Q-learning using connec-
tionist systems. University of Cambridge. 1994.

34 ISSN 1927-6974 E-ISSN 1927-6982

	Introduction
	The PS model - Brief summary
	Grid world
	Mountain car
	Conclusion

