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Abstract
Presented in this paper is a novel technique for multiclass classification in SVMs through combination of binary classifiers,
namely that of Partitioning Trees (P-Trees). The technique aims at improving the Directed Acyclic Graphs (DAGs) both in
terms of training as well as testing performance. It works by progressively constructing a decision graph, where each node is a
binary classifier. Each trained node defines a dichotomy over the instance space which, in turn, is used to train subsequent nodes.
In this way, every node trains against only a subset of the samples of its classes; namely the samples that reach the node through
the decision graph in addition to a subsampled version of the ones that fail to reach it. Training sets reduce in size and decision
surfaces become more compact, thus improving training and testing performance. Extensive experimental results demonstrate
the effectiveness of the proposed technique in reducing the training and testing time in SVMs, while maintaining comparable
generalization performance to the 1vs1 and DAGs techniques.
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1 Introduction
There is an abundance of real life applications pertaining to
the classification problem. In classification, the central task
is the estimation of an optimal mapping that assigns a de-
cision label (class) to each vector of measurements (feature
vector).

Any supervised learning algorithm is at least capable of ex-
plicitly addressing a binary classification problem. Extend-
ing the applicability of these algorithms to multiclass classi-
fication problems is not always straight-forward, in as much
as it might require structural changes that either invalidate
some of the fundamental properties of the algorithms (e.g.
convexity of the optimization problem) or create practical
problems (e.g. super-linear increase of training time with
respect to the number of classes). For example, in the case
of Support Vector Machines (SVMs),[3] their ability to suc-
cessfully address binary classification problems has been
well documented.[15, 32] Their extension to multiclass classi-
fication problems is well studied,[18, 20, 34] yet still considered
an open issue.[27]

Effectively, there are currently two approaches in extending
binary classifiers to the multiclass case. The first approach
works by explicitly reformulating the underlying structure
of the classifier, resulting in a unified multiclass optimiza-
tion problem (embedded or single machine techniques),[28]

while the second approach works by dividing a multiclass
problem into multiple, independently trained, binary classi-
fication problems and properly combines them so as to form
a multiclass classifier (combinational techniques).[8]

Combinational techniques are to date some of the most pop-
ular and successfully used methods,[11, 28, 31] as they share
some relative advantages over embedded techniques, espe-
cially in the context of SVMs. They are global, for they
can be readily applied to any binary classification algo-
rithm. Training time scales well with respect to the number
of classes in a multiclass problem. Additionally, their im-
plementation is very simple—in contrast to embedded tech-
niques—and efficient, as they allow the use of highly opti-
mized versions of the underlying binary classifiers. Some
popular combinational techniques are the 1-vs- All,[32] 1-
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vs-1[19] and DAGs technique,[27] all of which are briefly de-
scribed in the following sections.
Conversely, embedded techniques can oftentimes provide
superior generalization performance,[20, 28] at the expense of
significantly increased implementation complexity or even
training time, thus outweighing their relative advantages for
many practical scenarios. This paper focuses on combi-
national methods for multiclass SVMs. We now review
some recent advances in the field. Vural and Dy[33] intro-
duce a new framework for multiclass SVMs which they call
Divide-by-2. Initially all classes are grouped in two sets
forming a binary classifier and subsequently, as the name
implies, each group is split until each node becomes a de-
cision node. This results in faster training than the 1-vs-All
method and faster testing than both the 1-vs-All and 1-vs-1
methods. A similar approach is followed by Madzarov et
al.,[22] with different heuristics in the grouping of classes.
Lei and Govindaraju[21] propose a method called Half-
Against-Half for multiclass SVMs. They create a decision
tree by training at each node half the classes against the
remaining ones. They present criteria for the grouping of
classes. Their results demonstrate faster testing than both
the 1-vs-All and 1-vs-1 methods, for comparable generaliza-
tion performance. Garcia Pedrajas and Ortiz Boyer[17] pro-
pose a method that combines the 1-vs-All and 1-vs-1 tech-
niques in order to achieve superior classification accuracy,
with a penalty in training time.
Tang and Mazzoni[31] propose a new framework called
Reduced-Set SVMs in order to reduce the overall number of
support vectors used in the testing stage, thus significantly
reducing testing time. Chen et al.[7] provide a very inter-
esting approach to the problem of reducing the testing time
of multiclass SVMs, by use of an adaptive tree in order to
select binary SVMs with the fewest average number of sup-
port vectors.
In this paper a new method for multiclass SVM classifica-
tion is introduced, namely the Partitioning Trees (P-Trees).
It is a modification of the DAGs technique that maintains
and improves on the advantage of fast testing, while intro-
ducing significant reduction in training time. The proposed
scheme is based on an iteration of training and testing that
aims at reducing redundancies in the final decision graph.
When a node is trained against two classes, the remaining
classes are tested against it before any other node is trained.
In this way, each trained node dichotomizes all remaining
classes. In a subsequent choice of the classes against which
another node is to be trained, instead of using the entire
training set corresponding to a chosen class, the active set
of each class is used.
The active set of a class is defined as the set containing all
the class samples that reach the node through the graph, in
addition to a properly subsampled version of the class sam-
ples that fail to do so. The training/testing iteration aims
at reducing the redundancy of the training scheme, by ex-
cluding from training all samples that would never reach

the node during training. The subsampling addition aims
at reintroducing a rough picture of the information hidden
from each node, without significantly affecting training per-
formance.
Due to the super-linear scaling of many practical clas-
sification algorithms with respect to the training set
size—including but not limited to SVMs[26]—the proposed
technique can provide significant reduction in training time,
while maintaining comparable generalization performance
to that of DAGs. Empirical tests presented at the end of this
paper show slightly above linear reduction of training time,
with respect to the number of classes of the problem.
In what follows, Section 2 provides a general description of
the multiclass classification problem and a broad categoriza-
tion of various multiclass classification algorithms based on
some distinctive attributes. In Section 3 we review some
popular combinational techniques. Presented in Section 4
is the necessary theoretical framework upon which the pro-
posed P-Trees technique is based. P-Trees are presented in
detail in Section 5. Section 6 contains experimental results,
while Section 7 contains concluding remarks.

2 Multiclass classification
Assume N training samples (xi, ti) are available, form-
ing the training set D = {(x1, t1), (x2, t2), . . . , (xN , tN )}
where

(xi, ti) ⊂ χ× C (1)

with χ ⊂ <d the instance space of the d-dimensional input
vectors xi and C ⊂ N the decision space of the class labels
ti. Sets C contains the decision labels, and without loss of
generality we will assume that C = {1, 2, . . .K}. Unless
otherwise specified, an element of set C will be denoted by
ωi, with i ∈ 1, 2, . . .K.
A set A will generally be denoted with capital calligraphic.
A partition of a set A will be denoted by πA, while all pos-
sible partitions of a set A will be denoted by PARTA.
Returning to the classification problem, fωaωb

will denote a
binary classifier trained against class labels ωa and ωa

fωaωb
: {χωa ∪ χωb} 7→ {ωa, ωb}, ωa, ωb ∈ C (2)

where χωi the instance space of class ωi

χωi
= x : x ∈ χ, p(ωi|x) > 0 (3)

In the more general case of multiclass classification, fπA

with A ⊂ C will denote the classifier assigning a class label
ωi ∈ πA for every input x

fπA
:

⋃
ωk∈πA

χωk
→ πA, A ⊂ C (4)
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Resampling and global techniques
Both resampling and global techniques can be viewed as
special cases of combinational methods. Their difference
lies on the way they combine the various decisions of the
binary classifiers, in order to form the final decision.
Resampling methods learn how to optimally combine the
various binary classifiers by an iterative process, which aims
at gradually improving the accuracy of the available clas-
sifiers. Evidently, through this iterative process the tech-
niques learn how to use and combine the information within
each classifier. This in turn means that the available classi-
fiers are considered weak, or are believed to have a signifi-
cant amount of dependence (for example high correlation or
mutual information). The ensemble learning techniques,[10]

such as Bagging,[5] Random Forests,[4] Boosting[29] with
AdaBoost[16, 30] and its variants, are some of the most popu-
lar methods falling in this category.

On the other hand, global techniques follow a consistent
way of combining the decisions of the various classifiers, in-
dependently of the form of the available classifiers at hand.
The lack of adaptation in this case implies that the available
classifiers are considered strong and relatively independent
of one another.
In what follows, global techniques for multiclass classifica-
tion will be examined. Henceforth, it will be implicitly as-
sumed that the available classifiers are strong and relatively
independent.

3 Popular global techniques
We now review some of the most popular global techniques
for multiclass classification. We also briefly comment on
their relative advantages and disadvantages, mostly focus-
ing on training and testing time.

Figure 1: Ambiguous decision regions (denoted by ?) for majority voting. Trained classifiers and corresponding decision
regions through majority voting. The 1-vs-All case is depicted in (a) and (b), while the 1-vs-1 case is depicted in (c) and
(d).

3.1 1-vs-1
For a multiclass problem of K classes, the 1-vs-1 tech-
nique[19] trains K(K − 1)/2 binary classifiers fπk

, one for
every unique pair of classes πk, namely

πk = {i, j},∀i ∈ C, j ∈ C\i (5)

Majority voting is typically employed for testing, though

any other compatible technique is valid. In majority vot-
ing, for each feature vector x a K-dimensional vector v is
constructed with each dimension vi assuming a value equal
to the sum of binary classifiers voting in favor of class i,
namely

vi = |Vi| (6)
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with

Vi = {k : fπk
(x) = i, i ∈ C} (7)

The final decision α ∈ C is then taken through majority
voting

α = arg max
i
vi (8)

Majority voting may lead to ambiguous decision regions,
whenever there are more than one classes sharing the same
number of maximum votes, as depicted in Figure 1. Solu-
tions as simple as random or fixed choices (e.g. the first
from a predefined list of classes) between the classes bear-
ing the maximum number of votes can effectively alleviate
the problem.
In general, theK(K−1)/2 binary classifiers differ in train-
ing size. Assuming, for simplicity, that each classifier has an
equal amount of training samples 2N/K, the overall com-
plexity of training all classifiers is K(K−1)

2 T ( 2N
K ), where

T (N) the amount of operations required to train a binary
classifier with the employed algorithm, as a function of the
training size N . The testing stage requires the examination
of K(K − 1)/2 binary classifiers. Each classifier is rela-
tively simple, as it only separates two classes.

3.2 1-vs-All
The 1-vs-All technique is one of the first global techniques
to appear in the literature.[32] For K classes, this method
constructs an equal number of binary classifiers fπk

with

πk = {{k}, C\k},∀k ∈ C (9)

by training each class against all the rest. Testing can once
again be performed through majority voting,[17] although
there are many alternative choices that avoid the problem of
ambiguous regions of majority voting (see Figure 1), such
as the highest output value.[9, 13]

The 1-vs-All technique trainsK classifiers of sizeN , giving
an overall complexity of KT (N) operations, for the train-
ing stage. At the testing stage, it requires the examination
of K classifiers for each test vector x. Each classifier is typ-
ically complex, as it needs to befittingly separate each class
from all the rest.
In practice, since for virtually all practical problems K �
N , this method may lead to notably decreased training per-
formance when compared to the 1-vs-1 method, provided it
can be assured that the underlying training algorithms scales
super-linearly with respect to the training size. However,
there is a standing controversy as to whether this is true for
large scale problems.[28]

Figure 2: DAG example for 4 decision classes. Note that the positioning of the nodes corresponds to just one out of the
many possible choices

3.3 DAGs
The DAGs (Directed Acyclic Graphs) technique proposed
by Platt et al.[27] is an alternative way of testing for the 1-
vs-1 technique. Just like the 1-vs-1 technique, it trains all
K(K − 1)/2 binary classifiers for each pair of classes. The
difference lies in the way it combines them so as to form the
final multiclass decision.
DAGs use complementary interpretation of the decision of
each binary classifier. If a classifier fwi,wj decides wi then

wi is rejected. Through a series of successive disqualifi-
cations of candidate decision classes, the final decision is
reached. The testing stage can then be interpreted in the
following way:
(1) Form a list L containing any random permutation of the
decision classes C.
(2) Choose the trained classifier corresponding to the classes
of the first ωs and last ωe element of the list (ωs, ωe ∈ L).
(3) Examine fws,we() for a test vector x and remove dis-
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qualified class from the list.
(4) Repeat the previous steps until only one element remains
in the list (decision class for x).
It is clear that DAGs only require K-1 examinations of bi-
nary classifiers to reach the final decision, in comparison to
the K(K − 1)/2 examinations required for 1-vs-1 testing
with majority voting.
The above process is equivalent to a directed acyclic graph
(see Figure 2). Note that access to any two elements in the
list can be performed, in general, with more than one ways.
That is, each node can have more than one parents.

4 Bayes optimal classifiers and partitioning
When the class-conditional probability density function
p(x|wi) is analytically known, the Bayes optimal classifier
can be derived. We prove in this section that the Bayes op-
timal classifier is left unaffected under both decision and
instance space partitioning.
By introducing a loss function λ() that quantitatively de-
fines optimality in predictions, the problem of estimating the

Bayes optimal classifier is well defined and admits a closed
form solution. Assuming the loss function assigns different
weights for the misclassification of each class ωi, indepen-
dently of the estimated class ω̂j , namely

λ(ω̂j |ωi) = λ(ωi),∀ω̂jωi ∈ C, ω̂j 6= ωi (10)

the Bayes optimal classifier is the one minimizing the mean
weighted loss

f id(x) = arg min
ωi∈C

∑
k 6=i

λ(ωk)p(ωk|x) (11)

which is equivalent to

f id(x) = arg max
ωi∈C

∑
k 6=i

λ(ωi)p(ωi|x) (12)

since

arg minωi∈C
∑
k 6=i λ(ωk)p(ωk|x) = arg minωi∈C{−λ(ωi)p(ωi|x) +

∑
k λ(ωk)p(ωk|x)} = arg maxωi∈C λ(ωi)p(ωi|x)

4.1 Invariance under instance space partitioning
By examining the binary classifier in (12)
f id(x) = arg maxωi∈C

∑
k 6=i λ(ωi)p(ωi|x)

It is evident that the optimal decision is local with respect to
x, since it is independent of any probability density function
or loss function at other points in input space χ. Thus any
partition of the instance space πχ ∈ PART{χ} breaks the
problem of estimating the Bayes optimal classifier into |πx|
independent sub-problems.

4.2 Invariance under decision space partitioning
Let πC be any partition of the decision space C. Then if

B =
⋃
A∈πc

arg max
ωi∈A

λ(ωi)p(ωi|x) (13)

it can be shown that

arg max
ωi∈B

λ(ωi)p(ωi|x) = arg max
ωi∈C

λ(ωi)p(ωi|x) (14)

The right side of (14) is identical to the Bayes optimal classi-
fier in (12). In this way, a Bayes optimal multiclass classifier
(12) can be broken down into |πC | independent binary sub-
problems, where πC is any partition of the decision space
C.

4.3 Combined instance-decision space invariance
Both (13) and (14) are local with respect to x. By combin-
ing the properties of instance and decision space partition-

ing invariance, combined partitioning can be achieved. In
this way, any partitioning of the form πχ×C breaks the mul-
ticlass Bayes optimal classifier into |πχ×C | sub-problems,
each of which can be solved independently.

5 Proposed technique - partitioning Trees
From the various global multiclass techniques introduced
in Section 3, the DAGs appears to be an ideal choice, in
terms of testing performance. In this section we intro-
duce a new global technique for multiclass classification that
provides significantly improved training and testing perfor-
mance, compared to the DAGs technique.
For the remaining of this Section, the fundamental steps of
the P-Tree classifier are described in subsection 5.1. Sub-
section 5.2 provides an algorithmic description of the train-
ing and testing process on a P-Tree, while subsection 5.3
provides a proof of the reduction of overall training time in-
curred by P-Trees, under very mild assumptions. Finally,
a note on the parallelization of binary node training for P-
Trees is provided in subsection 5.4.

5.1 P-Trees description
In this section we introduce the core version of the pro-
posed technique, namely the Partitioning Trees (P-Trees).
The idea is inspired by the DAGs technique, hence testing
is performed in a decision graph.
One disadvantage of the DAGs technique is that, given it
always tests samples in a graph-like structure, the training
stage leads to significant redundancies. A node always uses
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the entire training sets of the classes against which it is
trained. The redundancy originates from the fact that for ev-
ery node other than the root node, the previous nodes within
its path will inevitably form a partition of instance space,
as shown in Figure 3. This in turn means that a significant
amount of the training samples of a class used within a node

will never get to reach the node during testing. This re-
dundancy causes a significant performance hit, especially
for deep graphs (many decision classes), provided that the
training time of many binary classifiers scales super-linearly
with respect to the size of the training set.

Figure 3: DAG training example. Samples not within the active sets of the trained classes of a node, AωA
(n) and

AωB
(n), are used for its training

Figure 4: Example of a P-Tree. Training is only performed over the active sets of the training set of a class

It has been shown that partitioning of instance and decision
space, in theory, leads to the same Bayes optimal classifiers.
In this way, the proposed technique makes use of that prop-
erty so as to iteratively use training and testing to avoid such
redundancies.

Initially, the P-Trees method chooses two classes against
which it trains the root node. After the completion of
the training stage, it tests all remaining classes against this
trained node. Each class is partitioned in two parts from the
trained root node. Each partition is passed to either the left
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or the right child of the root node. The training process pro-
ceeds in the same fashion. When a node is trained against
two classes ωi and ωj , it only considers training samples
within their active sets Aωi

(n)∪Aωj
(n), namely the subset

of the training samples of each class that successfully reach
the node, passing through the already trained nodes within
its path (see Figure 4).
It should be clear by now that, in conjunction to the DAGs
technique, P-Trees result in binary trees. This is true since a
node is trained against the active set of its classes. Training
the exact same pair of class labels in a different node is ef-
fectively a different classifier, in as much as the active sets
corresponding to the same class labels differ. In this way,
node merging is not applicable. This forms a restricting fac-
tor for the scaling of the proposed technique, with respect
to the number of decision classes of a problem, that need
be addressed for the algorithm to be applicable in problems
with a relatively high number of classes. More details on
that follow in section 5.1.3.
There are still parts of the P-Tree algorithm that need fur-
ther clarification. The heuristic for the choice of the classes
against which a node is trained needs to be specified. The
way the extended partitions are created requires further de-
tails, while the problem of exponential scaling of tree nodes
has to be properly addressed. A detailed description of each
of these parts follows.

5.1.1 Heuristic for choosing the training classes of a
node

With respect to the choice of the classes against which a
node is trained, in the absence of any other universally ap-
plicable optimality criterion, the proposed technique always
chooses to train against the pair of classes that have the min-
imum number of samples within their active sets. The ex-
pectation is that relatively large classes will be likely further
subdivided from graph nodes, when their training is post-
poned further down the tree structure. This heuristic is best
suited for minimizing training time. In case maximization
of generalization performance is opted for, a better heuris-
tic for the choice of the tree nodes could be one in the likes
of that found in Bala et al.,[1] where information-theoretic
measures of separation and dependence are employed, at a
preprocessing step, in order to choose a tree structure that is
more likely to provide better generalization performance.

5.1.2 Extended partitions by reintroduction of rejected
samples

It has already been proven that partitioning of classes with
respect to instance and decision space leads to the same

Bayes optimal classifiers. However, this only holds in the-
ory, where the class-conditional probability density function
(pdf) is known beforehand. In practice, lack of knowledge
of the pdf can lead to poor generalization performance.
This is further pronounced in the case of P-Trees, where the
progressive partitioning of classes aggravates the problem.
As every node partitions the classes passing through it, each
child node only receives a fraction of a class, due to samples
being rejected from the parent node. In practice though, the
rejected part of each side of the sub-tree carries information
relevant to the side of the tree from which it was rejected.
To avoid problems of this kind and to improve the gen-
eralization performance of P-Trees in pathological cases,
an effective solution is to properly reintroduce small por-
tions of the rejected samples to the training set of each
node. This leads to a slight performance hit in terms
of training time—easily controlled through reintroduction
rate—but provides significantly improved generalization
performance. Two simple techniques addressing this prob-
lem follow.
Random Subsampling: The easiest method of reintroducing
discarded samples in order to improve generalization per-
formance in P-Trees is through random subsampling of the
rejected samples (see Figure 5). The subsampling rate in
this case can control the training performance degradation.
This technique is very easy to implement but requires rel-
atively high subsampling rates (e.g. ≥ 0.3) in order to be
effective against highly pathological cases. This in turn in-
curs unacceptable training performance degradation, the re-
duction of which is the primary goal of P-Trees. The use
of stratified subsampling,[25] by subdivision of the rejected
partition into discrete regions (strata) prior to subsampling,
can further improve the effectiveness of this technique for
fixed subsampling rates, especially in problems with highly
inhomogeneous spatial distribution of samples.
Proximal Subsampling: This technique can be significantly
more effective than random subsampling, even in highly
pathological cases, in as much as it works with only a very
limited number of selectively reintroduced samples. The
idea is to randomly reintroduce only samples that are lo-
cated in high proximity to the decision surface (separating
hyperplane in SVMs) of the node that rejected them.
Samples evenly spread across the vicinity of the decision
surface, at the side of the rejected area (see Figure 5), can be
highly efficient on alleviating the degradation of the gener-
alization performance of P-Trees, even for relatively small
reintroduction rates (e.g. ≈ 0.1). Stratification can once
again be employed to further improve the effectiveness of
the technique in case of inhomogeneous sample distribu-
tions. Empirical tests at the end of this paper demonstrate
the superiority of this technique in comparison to plain ran-
dom subsampling.
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Figure 5: Comparison of random subsampling (c) and boundary proximal sampling (d). Fig. (a) shows the active sets of
each class and the classifier f12 separating classes 1 and 2. Fig. (b) shows a typical training set, containing random
samples from each class. It can be readily shown that proximal sampling is more effective than random subsampling, for
the same reintroduction rate.

5.1.3 Exponential scaling of tree nodes
An important restricting factor of the proposed technique is
that the upper bound on the number of nodes n = 2K−1− 1
of the tree scales exponentially with respect to the number
of decision classes K. In contrast, the number of nodes
n = K(K − 1)/2 in a DAG only has quadratic scaling with
respect to K. For a small number of classes this does not
constitute a limiting factor. Soon enough though, the expo-
nential growth creates a problem with respect to the storage
of the data structure representing the trained tree; for K=31

classes, an excess of 109 nodes are required.
A solution to this problem is straight-forward. Excessive
partitioning will evidently lead to over-fitting. Adequate
training time reduction can be easily achieved from a small
number of class partitions. In this way, the P-Trees algo-
rithm is applied for a fixed number of levels (e.g. 5 levels).
From that point onwards, training continues in the regular
fashion of the DAGs algorithm (quadratic scaling of nodes
thereafter).
More analytically, P-Trees training is limited to a fixed num-
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ber of levels W . From that point onwards, for each non-
decision node of the 2W−1 nodes of the last level, a sep-
arate DAG is trained, only using the active sets of the re-
spective node. This choice results at a worst case scenario
of 2W−1 nodes for the P-Tree until level W , in addition to
2(W − 1)(K − 1)(K − 2)/2 for each of the 2W−1 DAGs.
Thus, once again, the overall training results in quadratic
scaling with respect to K, albeit this time multiplied by
approximately 2W−1. Finally, with respect to testing, the
worst case scenario is evaluatingK-1 nodes per test sample,
just like in the DAGs case; W for the P-Tree plusK−W−1
for the DAG with K −W classes at most.

5.2 Algorithmic description and pertinent struc-
tures

We now provide an algorithmic description of the proposed
method. Before we introduce the algorithms, we provide

some basic definitions needed to understand their various
steps.

The proposed technique trains binary trees. All nodes of a
tree are binary classifiers trained against only two classes,
except for the leaf nodes which are simple decision nodes.
In what follows, decision nodes will not be considered. A
P-Tree trained againstK classes Comprises 2K−1−1 nodes
(excluding leaf nodes).

A unique number n will be designated to each node, namely

n ∈ {1, . . . , 2k−1 − 1} (15)

starting with 1 for the root node and continuing in increasing
order, by levels and from left to right (see Figure 6).

Figure 6: Numbering convention of tree nodes and tree levels.

The parent of a node n will be denoted as par(n), while
chL(n) and chR(n) will denote the left and right child of
a node respectively. For the chosen numbering convention
of nodes it can be shown that

par(n) = [n2 ] (16)

chL(n) = 2n (17)

chR(n) = 2n+ 1 (18)

With isleft(n) the indicator function of left child validity will
be denoted

isleft(n) =
{

1 n = chL(par(n))
−1 n = chR(par(n))

(19)

For any trained node n corresponds a binary classifier
f(n)(x), trained against classes ωL(n) and ωR(n). Each
node creates a dichotomy over instance space χ, leading
samples x for which f(n)(x) > 0 to the right sub-tree of
the node, and the rest to the left sub-tree. <L(n) and <R(n)
for a node n will denote the class index, from the ones the
node is trained against, that the node rejects from its left and
right tree, respectively.
Dωi

denotes the training samples (xj , tj) ∈ D of class ωi

Dωi
= {(xj , tj) : (xj , tj) ∈ D, tj ∈ ωi (20)

χ(n) will denote the partition of the instance space χ reach-
ing node n, by successfully traversing all nodes in its path.
The active set Aωi(n) of a class ωi can then be defined as
the set of samples from Dωi

that reach node n, namely

Aωi(n) = {(xj , tj) : (xj , tj) ∈ Aωi , xj ∈ χ(n)} (21)
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ε(n) will denote the extended sets, namely the active sets
in addition to the reintroduced rejected samples. Assuming
that reint() returns the reintroduced sample set, the extended
sets are defined as

εωi(n) = {Aωi(n)∪reint(Aωi(par(n))\Aωi(n))} (22)

Finally <(n) will denote the rejection set of a node, i.e. the
class indices that have been rejected throughout the node’s
path

R(n) = x =
{
R(par(n)) ∪RL(par(n)) n = chL(par(n))
R(par(n)) ∪RR(par(n)) n = chR(par(n))

(23)

with the convention thatR(1) = φ, whileRc(n) will denote
its complement with respect to the decision classes

Rc(n) = πC\R(n) (24)

We are now in position of introducing an algorithmic de-
scription of both the training (see Figure 7) and testing pro-
cess (see Figure 8). Algorithm 2 (See figure 8)is largely
self-explanatory. In Algoritm 1(see Figure 7), line 8 iter-
ates over all levels of a P-Tree, while line 9 iterates over
all nodes within each level. The active, extended and re-
jection sets are updated for every node within lines 14-28.
The smallest classes from within the extended sets of a node
are computed in lines 6 and 40, for the root node and every
other P-Tree node respectively. A binary classifier is trained
on the selected classes of a node in line 41, while a DAG is
trained within lines 35-39 using the extended sets of all re-
maining (non-empty) classes in case the maximum number
of allowed levels W is reached for a non-decision node.

5.3 Training complexity reduction
In this section we prove guaranteed tightening of compu-
tational bounds for the proposed technique. The benefits
reported hereafter are in the mean sense.
Suppose the binary classification algorithm used to train a
binary classifier fij(x) for each node nij of the tree re-
quires an overall number of computations upper-bounded by
T (N), as a function of the number of training samples N.
Empirical bounds for various classification algorithms are
typically provided in polynomial form

T (N) = cNγ (25)

where c and γ constants, though the following results hold
for any non-decreasing bounding function.
Practical binary classification algorithms scale super-
linearly (γ>1 in the polynomial case) with respect to the
number of training samples. In the linear case (γ=1), for a

classification problem of size N that can be partitioned into
two independent sub-problems of size A and N-A respec-
tively, it holds that

T (N) = T (N −A) + T (A),∀0 ≤ A < N (26)

In the super-linear case on the other hand, it holds that

T (N) ≥ T (N −A) + T (A),∀0 ≤ A < N (27)

Hence it can be readily shown, through repetitive applica-
tion of (27), that for practical training algorithms any parti-
tioning πD of the initial problem with training setD into in-
dependent sub-problems with respective training sets Di ∈
πD always leads to tightening of computational bounds

T (N) ≥
∑

Di∈πD

T (|Di|),∀πD ∈ PART (D) (28)

This is only true whenever no rejected samples reintroduc-
tion scheme is employed, as the above proof assumes each
partition has no intersection with another partition of the
same class. A proof of such a claim in case of samples
reintroduction requires exact knowledge of the complexity
function T (N).
Comparing P-Trees with DAGs, it is self-evident that for
every node of a DAG there are a number of nodes in the cor-
responding P-Tree containing a partition of the samples of
the DAG’s node into many nodes. Since each node of the
P-Tree is trained independently of the others, from (28) the
tightening of the computational bounds is proven.
As an example, assume for simplicity that for a multiclass
problem of K classes, each class has the same number of
training samples N/K and that every node of the tree di-
chotomizes each class (other than the ones against which
it is trained) into two equal parts. In this case, the overall
number of computations required by a P-Tree is bounded
by
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Ttot(N) = T (2N
K

) + 2T (2N
2K ) + . . .+ 2k−2T ( 2N

2k−2K
) =

K−2∑
i=0

2iT ( 2N
2iK ) (29)

Figure 7: Training P-Tree
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Figure 8: Testing P-Tree

Let us further assume that the binary training algorithm cho-
sen is an SVM. It has been empirically observed[26] that
an SVM classifier scales super-linearly with respect to the
training samples N according to the approximate polyno-

mial relation

T (N) = cNγ ' cN2 (30)

So for P-Trees with SVMs as binary classifiers, under the
assumptions of equation (29) we have

Ttot(N) =
K−2∑
i=0

2i 4c
2N2

22iK2 = 4c2N2

K2

K−2∑
i=0

2−i = 8c2N2

K2 (1− 1
2k−1 − 1) < 8c2N2

K2 (31)

The corresponding bound in the DAGs case, under the same
assumptions, is

Ttot(N) = (K(K − 1)
2 )4c2N2

K2 ' 2c2N2 (32)

A comparison between (31) and (32) shows that, in the
SVMs case, forK ≥ 2 the P-Trees scale quadratically better
than DAGs with respect to the available number of classes
K. This is true though under the assumption that every class
has the exact same number of samples and each trained node
perfectly splits each class in two parts. In practice, our ex-
perimental results show slightly above linear scaling with
respect to the number of classes K.

5.4 Parallelization of nodes training
Training child nodes in P-Trees requires the computation of
their respective active sets, which in turn requires the com-

pletion of the training of their parents. This type of sequen-
tial training hinders the ability to perform training execution
parallelism at a high level (many nodes at a time), especially
at the initial training steps; the number of trained parents is
small when close to the root node.

Thus, execution parallelism, if opted for, need be performed
at a lower level. This is hardly ever a problem, as the un-
derlying binary classification algorithm typically lends itself
for ample low level parallelism (many samples at a time),
thus obviating the need to resort to node level parallel exe-
cution. This type of parallelism better fits the objectives of
combinational techniques, where the implementation of the
multiclass extension scheme is kept relatively simple and
the performance enhancements are off-loaded to the em-
ployed binary classification algorithm.

52 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 2

6 Empirical comparisons
In this section we demonstrate empirical results that justify
the effectiveness of the proposed technique both in terms of
training and testing time, as well as generalization perfor-
mance.
The experimental tests were conducted upon multiclass

datasets from the UCI[2] and StatLog[24] repositories. More
specifically, from the UCI repository we used the datasets
iris, glass, vowel and wine. From the StatLog repository,
we used datasets dna, letter, satimage, segment, shuttle and
vehicle. Table 1 contains the specifics of each dataset.

Table 1: Dataset Details
 

 

Dataset Classes Features Training Instances Testing Instances 

Shuttle 7 9 43500 14500 

Letter 26 16 15000 5000 

SatImage 6 36 4435 2000 

Dna 3 180 2000 1186 

Segment 7 19 2310 0 

Vehicle 4 18 846 0 

Vowel 11 10 528 0 

Glass 6 13 214 0 

Wine 3 13 178 0 

Iris 3 4 150 0 

 

For datasets containing a separate testing set, it was merged
with the training set and a uniform approach was later fol-
lowed for every dataset. The binary classifiers used were
SVMs with RBF kernels. The libSVM library[6] was used
to implement the SVM classifiers. On training the SVMs,
the termination condition was the fulfillment of the KKT
conditions with accuracy better than 10−3.
TheC and γ parameters were chosen from within the sets[18]

C = [2−2, 2−1, . . . , 212] (33)

and

γ = [2−10, 2−9, . . . , 24] (34)

The best possible (C,γ) combination was chosen through 5-
fold cross validation.[12] Since the pseudo-random choice of
both folds and training-testing sets significantly affects the
classification accuracy, the above process was repeated 20
times for each method, with a different seed for the random
number generator each time. In what follows, the average
values over 20 iterations are presented.
All empirical tests were independently conducted for the 1-
vs-1, DAGs, as well as two variants of the P-Trees tech-
nique; one using random subsampling and reintroduction
rate equal to 0.3 and one using boundary proximal subsam-
pling and a 0.15 rate. With respect to the P-Trees, to avoid
exponential growth of tree nodes in problems with a large
number of classes, class partitioning was limited to 5 levels
within the tree structure.

In Table 2 the generalization performance of the various
techniques is assessed. The reported mean generalization
performance along with its standard deviation correspond
to 70% training and 30% testing. A first observation is that
partitioning seems to be creating notable generalization per-
formance degradation in datasets like vowel, glass and let-
ter, when random subsampling is used. All these datasets
share some characteristics that lend them problematic with
respect to partitioning. They have a relatively high number
of classes, which translates into many successive partitions,
and they have a relatively small number of samples per class
at high dimensional space (very sparse samples).
This means that sample rejection conceals significant ex-
trapolating information. It is worth noting how effective
proximal subsampling is at alleviating the problem, consid-
ering that it only uses half the reintroduction rate used in
random subsampling. Other than that, the performance of
P-Trees with proximal subsampling appears to be compara-
ble to that of the DAGs and 1-vs-1 technique. This hypoth-
esis has been verified by use of the McNemar test[14, 23] for
significance level 0.05.
Table 3 demonstrates the mean training time, in seconds,
for the 20 repetitions of each technique. Note that the pro-
posed method consistently provides significant reduction
in training time. The rate of reduction strongly depends
on the available number of classes and appears to scale
slightly super-linearly with respect to the number of classes
K. Boundary proximal subsampling also leads to improved
training time over random subsampling, due to the use of
smaller sample reintroduction rate.
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Table 2: Generalization performance
 

 

Dataset 

Generalization Accuracy 

1-vs-1 DAGs 
P-Trees 

Random Proximal 

Shuttle 99.8 0 99.8 0 99.8 0 99.8 0.1 
Letter 97.3 0.2 97.2 0.2 95.9 0.2 96.5 0.3 
SatImage 91.5 0.6 91.6 0.6 91.4 0.7 91.2 0.7 
Dna 59.4 0.8 59.4 0.8 60.3 0.7 60.3 0.7 
Segment 96.2 0.7 96.4 0.6 96 0.7 95.9 0.7 
Vehicle 71 3.4 71 3.3 71.5 3.1 71 3.1 
Vowel 98.5 0.8 98.5 0.8 96.4 1.1 97.3 1.1 
Glass 69 3.2 69.4 2.9 67.7 3.9 68.4 5.1 
Wine 91.9 3.5 92.1 3.5 93.8 2.7 93.6 3 
Iris 95.6 2.1 95.5 2.1 95.7 2.2 95.7 2.2 

 
Table 3: Training complexity

 

 

Dataset 

Mean Training Time (sec.) 

1-vs-1 DAGs P-Trees 

Training Training Random training Proximal training 

Shuttle 8.0 8.0 3.7 2.4 
Letter 12.7 12.7 8.5 5.9 
SatImage 2.3 2.3 1.1 0.8 
Dna 3.2 3.2 2.2 2.0 
Segment 0.16 0.16 0.09 0.067 
Vehicle 0.063 0.063 0.041 0.039 
Vowel 0.085 0.085 0.077 0.063 
Glass 0.004 0.004 0.002 0.002 
Wine 0.005 0.005 0.003 0.003 
Iris 0.001 0.001 9.2∙10  6.7∙10  

 
Table 4: Testing complexity

 

 

Dataset 

Mean Training Time (sec.) 

1-vs-1 DAGs P-Trees 

Total 
  Random Proximal 

Total Mean Total Mean Total Mean 

Shuttle 1079 1079 432 1935 277 1592 242 
Letter 8483 8483 5028 12309 2634 10907 2121 
SatImage 2718 2718 1721 3035 1239 2859 1111 
Dna 2127 2127 2127 2127 1979 2127 1958 
Segment 657 657 560 1057 456 837 418 
Vehicle 541 541 523 552 468 548 446 
Vowel 570 570 484 663 320 632 315 
Glass 128 128 103 137 67.9 131 69.7 
Wine 122 122 119 120 107 119 106 
Iris 44.4 44.4 37.9 42.1 34.4 40.8 33.8 

 
Notable reduction has also been recorded in terms of testing
time. In the SVM case, testing time is directly proportional
to the chosen number of Support Vectors (SVs). In Table
4 the total number of SVs as well as the mean number of
SVs used per testing are presented. Note that in the 1-vs-1
case, total and mean used number of SVs are equivalent. It

can be seen that the mean number of used SVs per test is
significantly reduced in the case of DAGs and P-Trees. In
most cases, P-Trees are performing much better than DAGs.
This can be attributed to the fact that the exclusion of re-
jected points from the tree nodes makes a decision surface
more compact (smaller area of interest). In this way, less

54 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2014, Vol. 3, No. 2

SVs are needed to express this decision hyper-surface. It
is also worth noting that proximal subsampling appears to
be marginally better than random subsampling in terms of
testing performance, for the exact same reason.
Finally, in Table 5 a comparison between the tested methods
is made, in terms of the total number of trained graph nodes
as well as the mean number of nodes evaluated per sample,

during testing. As seen in this table, although the total num-
ber of trained nodes is significantly increased in the P-Trees
case, especially for problems with a large number of classes
(e.g. letter), the mean number of evaluated nodes is almost
always identical to that of the DAGs case. In addition to
that, each P-Tree node typically contains notably less SVs
and is faster to evaluate.

Table 5: Evaluation Complexity
 

 

Dataset 

Total Trained and Mean Evaluated Nodes 

1-vs-1 DAGs P-Trees 

    Random Proximal 

Total Mean Total Mean Total Mean Total Mean 

Trained Eval. Trained Eval. Trained Eval. Trained Eval. 

Shuttle 21 21 21 6 126.8 6 127 6
Letter 325 325 325 25 12287 25 12287 25 
SatImage 15 15 15 5 63 5 63 5 
Dna 3 3 3 2 7 2 7 2 
Segment 21 21 21 6 126.9 6 127 6 
Vehicle 6 6 6 3 15 3 15 3 
Vowel 55 55 55 10 724.7 10 767 10 
Glass 15 15 15 5 61 4.9 63 5 
Wine 3 3 3 2 7 2 7 2 
Iris 3 3 3 2 7 2 7 2 

 
7 Conclusions
A new multiclass classification technique has been pre-
sented, that demonstrates significant reduction in terms of
training and testing time, when compared to DAGs. At
the same time it maintains comparable generalization per-
formance with currently popular techniques. The benefits
from the use of the proposed technique become increas-
ingly prevalent with the increase of the available number
of classes.
One drawback of the proposed technique is the relatively in-
creased implementation complexity and the inability to ef-
ficiently provide node-level training parallelism. Perhaps a

more important limitation is the exponential scaling of the
maximum number of nodes with respect to the number of
classes, in juxtaposition to the quadratic scaling of DAGs.

Nevertheless, the exponential scaling of the nodes with re-
spect to the number of classes can become limiting only in
problems with a large number of decision classes. In such
circumstances, the problem can be efficiently addressed by
simply halting class partitioning as soon as the total number
of nodes exceeds a predefined threshold. Effectively, from
that point onwards, the training procedure returns to that of
the DAGs, with quadratic scaling.
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