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Data quality issues such as data imbalance and data noise have great impact on the performances of many classifiers. Although
the co-existence of imbalance and noise appears in many real world datasets, the issue of imbalance and noise have mostly
been treated separately due to their different causes and problematic consequences. However, doing so may ignore the mutual
effects thus may not achieve optimal classification performance. In this research, we propose a model fusion based framework,
termed K Nearest Gaussian (KNG) to tackle the imbalance and noise issues jointly. KNG employs generative modeling method
(GMM) to extract the data characteristics from the training data which are less sensitive to data imbalance and noise. The data
characteristics are then used to establish Gaussian confidence regions which are used to achieve final classification in a K nearest

neighbor (KNN) manner. Experiments on seven UCI benchmark datasets and one medical imaging dataset show KNG method
greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset.
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1 Introduction

Classification is a supervised learning problem which iden-
tifies the labels of new observations given a training dataset.
Classification methods extract knowledge from the training
dataset, and use the learned information to build models to
predict the class of new observations. Therefore, the success
of the classification methods highly depends on the quality
of the training dataset. The real world datasets suffer from
many quality issues.!"*! Among them, the presences of im-
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balance and noise are the key factors which draw great at-
tentions.3-31 Data imbalance occurs when one class (minor-
ity class) is greatly outnumbered by another class (majority
class). Most classification methods generally tend to un-
derestimate the minority class due to the fact that majority
class dominates the whole dataset. As a result, the perfor-
mance of most classification methods degrades for imbal-
anced dataset. One special case of imbalanced classifica-
tion is one-class classification (a.k.a. unary classification)
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where learning is conducted on the training data contain-
ing only the instances of one class. Of particular interest,
this research is for more general imbalanced classification
problem which focuses on learning from both minority class
and majority class. Data noise occurs when the data has
been corrupted by various reasons such as systematic un-
certainty, measurement error, human error, efc.!>> It can
be characterized as (1) attribute noise, which refers to the
corruption in the features, and (2) class noise, which occurs
when the instances are incorrectly labeled. Noise may hin-
der the knowledge extraction from the data and thus makes
the classifier less effective, particularly if the classifier is
noise-sensitive.

Data imbalance and data noise often co-exist in the real
world datasets, that is, the dataset is imbalanced as well
as noisy. Taking the CT imaging dataset as an exam-
ple, the cancer patient often has a small portion of can-
cer tissues compared with normal tissues on the CT images
which makes the dataset imbalanced. And the reconstruc-
tion method!®' used to generate the CT images comes with a
systematic uncertainty making the images inherently noisy.
Data imbalance affects the learning by degrading the recog-
nition power of the classifier on the minority class because
the majority class dominates, while data noise affects the
learning by providing inaccurate information to the classi-
fier and thus misleads the classifier. Because of these dif-
ferences, data imbalance and data noise issues have been
treated separately in the data mining field. Yet, such ap-
proaches ignore the mutual effects among imbalance and
noise may lead to new problems. For example, data clean-
ing techniques!”! have been widely used in dealing with data
noise which removes the noisy instances. If the removed in-
stances happen to be the minority class, doing so may ag-
gravate the level of imbalance. On the other hand, over-
sampling method such as synthetic minority oversampling
technique (SMOTE),®! which has been widely used for im-
balanced datasets, may cause the data even noisier if the
oversampled instances happen to be the noisy ones. One
may argue that techniques may be carefully chosen to han-
dle the data imbalance followed by data noise or vice versa,
however, this two-step procedure may not be computational
efficient. A desirable solution is to tackle these two issues
jointly.

Most research on addressing the imbalance and noise em-
ploys discriminative models'® which are effective in finding
the class boundaries. 191 However, discriminative models
are sensitive to data imbalance and noise though, since they
work on the raw training data directly. Alternatively, gen-
erative models!®! study the probability distribution of the
training data and extract data characteristics from the train-
ing data which can be used to achieve classification. This
is also known as semi-supervised learning which is consid-
ered as an extension of classification with added probabilis-
tic information. Generative models may be less effective in
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identifying the class boundaries than discriminative models.

Noticing the complementary nature of the generative and
discriminative classifiers, in this research, we propose a
novel generative-discriminative model fusion based frame-
work, termed K Nearest Gaussian (KNG). A generative
classifier, Gaussian Mixture Model (GMM) is used to model
the training data as Gaussian mixtures and form adjustable
confidence regions of each Gaussian. GMM is chosen
here due to its capability in modeling arbitrary shaped den-
sities.!!'!" Motivated by the idea of K-nearest neighbors
(KNN), KNG finds nearest Gaussians to classify the test-
ing data instances. To validate the performance of KNG,
we use 7 UCI benchmark datasets. We purposely modify
the datasets to make them imbalanced and noisy. The ex-
perimental study shows that KNG method is more effec-
tive and robust than other widely used classification meth-
ods, such as Support Vector Machine (SVM),!'?! Artificial
Neural Network (ANN),I'3! Decision Tree (C4.5)!'4 and
KNN.'51 We further conduct a case study on a medical
imaging dataset to test the applicability of KNG in real
world application. The result also shows that KNG outper-
forms other commonly used classification methods.

2 Literature review

2.1 Review of techniques on handling imbalanced
data

Presently, there are a number of studies attempting to over-
come the classification problem with imbalance issue. They
can be categorized into two approaches: data-level approach
and algorithm-level approach.

The data-level approach uses different sampling techniques
to increase/decrease the size of the training data in order
to generate a balanced dataset. The representative methods
are: undersampling,* oversampling!® and SMOTE.[¥! Un-
dersampling randomly removes the data instances of ma-
jority class and thus may lead to information loss. Over-
sampling increases the size of the data by generating repli-
cates of minority class. One possible way is to add Gaussian
noise from the same distribution to the replicates to properly
present the original dataset.'®! However, it is known over-
sampling may lead to over fitting.'¥) SMOTE oversamples
the minority class by generating artificial data which are the
convex combination of the existing ones and thus improves
learning. However, SMOTE may not perform well when the
data instances used to generate new instances happen to be
outliers and noisy examples.!”! Generally, the data-level ap-
proach alters the original training data distributions to make
the dataset less imbalanced. However, the change of origi-
nal data may compromise the underlying knowledge of the
training data and thus is expected to be avoided.

The algorithm-level approach augments the existing meth-
ods to make them less sensitive to data imbalance. Many of
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the existing studies tackle the imbalance data by develop-
ing extensions of SVM. For example, boundary movement
(BM-SVM)!'®! method changes the threshold value in SVM
decision function to push the class boundary towards the
majority class, Kernel-boundary alignment (KBA)!'”) mod-
ifies the kernel matrix used in SVM training, and cost-SVM
(cSVM)2 applies different penalties to different classes.
There are also a number of studies on extensions of ANN to
tackle the imbalance issue. For example, two-step ANNI2!]
optimizes the weights and decision threshold values by us-
ing particle swarm optimization (PSO) to recognise the
monirity class, HIPPO method??! trains the ANN in a nov-
elty detection approach, and cost sensitive ANN?3! inte-
grates the misclassification cost to ANN. In summary, most
of the algorithm-level approaches are extensions of the base
classifiers such as SVM and ANN. Generally, these exten-
sions are algorithm dependent and application dependent.
Thus their effectiveness is limited by certain application
context.

2.2 Review of techniques on handling noisy dataset

The existing noise handling techniques can also be cat-
egorized into two approaches: data-level approach and
algorithm-level approach.

Data-level approach, also known as noise elimination
techniques, handles the noise issue by removing the
noise instances from the training data. For example,
AJAX method!”! uses four types of data transforma-
tions—mapping, matching, clustering, and merging to de-
tect and remove the noise data, Brodley and Fried1® com-
pare the single algorithm filter, majority vote filter and con-
sensus filter to identify and eliminate mislabeled training in-
stances, Miranda et al.”®' combine the prediction of four
different machine learning methods to guide the noise de-
tection and removal. These data-level approaches focus on
detecting and removing the noise instances. However, these
methods generally cannot distinguish the noise cases from
the rare cases. The removal of rare cases may lead bias to
the training data. In addition, noise instances which contain
error in some features may still contain useful information
in other features. Thus, the removal of noise under this cir-
cumstances may lead to loss of valuable information.

Algorithm-level approach tackles the noisy dataset by im-
proving the learning process of an algorithm to make it
less sensitive to data noise. For example, Pechenizkiy et
al.!*%! use feature extraction technique as a preprocessing
step in the training to diminish the effect of class noise,
Mingers!?’! compares different search heuristics and stop-
ping criteria in decision tree construction in dealing with
noise data, Quinlan!®® applies a post-pruning decision tree
building procedure to deal with noise data. Although most
of the algorithm-level approaches do not require data pre-
processing, they are generally algorithm dependent or ap-
plication dependent, thus are effective only when applied
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under certain context.

As a summary of both imbalance handling and noise han-
dling techniques, data-level approach alters the original dis-
tribution of training dataset which may lead to loss of valu-
able information and thus is expected to be avoided. The
algorithm-level approach is developed based on existing
classifiers (such as SVM, ANN, C4.5), all of which employ
discriminative models which are sensitive to data imbalance
and noise since they work on the raw training data directly.

3 Proposed approach: K Nearest Gaussian

In this study, we propose a novel method, K Nearest Gaus-
sian (KNG). Specifically, we employ a generative model,
GMM, into the training process to extract the data charac-
teristics from training data. GMM has been shown promis-
ing in dealing with data imbalance issue in our previous
study!®” since the extracted data characteristics are expected
to be less sensitive to data imbalance and noise. The idea of
KNN finding the class boundary is adopted here to differen-
tiate the classes based on the extracted data characteristics.
In this section, we first review the basics of KNN in section
3.1 and GMM in section 3.2 followed by the details of our
proposed KNG in section 3.3.

3.1 K nearest neighbor

KNN is a discriminative model that classifies instances
based on the majority voting of its k nearest neighbors.!3!
Figure 1 is the illustration example of KNN algorithm.

S k=3 7 |A -1class
O +1class

Figure 1: Illustration example of KNN algorithm

In Figure 1, X is a testing instance, circles and triangles
are positive and negative class instances, respectively. KNN
first calculates the distances from X to other training in-
stances, and classify X according to the majority voting of
its k nearest neighbors. K is predefined by the user. In Fig-
ure 1, when k = 1, X is classified as negative class since the
nearest neighbor is negative, while when k£ = 3, X is clas-
sified as positive class since the majority of its three nearest
neighbors is positive. Thus, X can be classified based on
the neighboring instances.
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3.2 Gaussian mixture model

GMM is a generative model which is widely used to model
the distribution of the training data.[*"3?1 GMM is used in
this research due to its well-known property in modeling
arbitrary shaped densities without pre-assumptions on the
distribution.!''!" In addition, GMM has less parameters to
tune compared with other generative models such as Hid-
den Markov model®*! or Restricted Boltzmann machine.*¥
GMM models the probability density function of the feature
vector x by using a mixture of weighted Gaussians as shown
in equation 1:

M
Py (@lys) = D cimN (&, pim, 07, (0
m=1
Where:
1 _% Hz**;imHQ
N(];7 Lim, Uizm) =—7e¢ Tim 2)
(271—0—127”/)5

Cim, Wim and afm are the weight, mean and covariance
of the m' mixture for class 4. M is the number of mix-
tures which is predefined by the user. GMM method is
an unsupervised method reflecting the intra-class informa-
tion. Given a training dataset with binary class labels
{(z1,91), -, (xn,yn)},y € {—1, 1}, the data are first di-
vided into two groups by their class labels. Then the coef-
ficients Cip, i and afm are computed using the Expec-
tation Maximization (EM) algorithm!®*¥! to find maximum
likelihood function of the parameters iteratively.

3.3 K Nearest Gaussian (KNG)

Inspired by the KNN algorithm, which classifies an instance
based on neighboring instances, we propose our KNG al-
gorithm to tackle the imbalance and noise data issues. In-
stead of using the neighboring data instances, KNG uses
the neighboring Gaussian mixtures to achieve classification.
Specifically, KNG first applies GMM method to model the
distributions of each class, and the data characteristics (such
as centroid, variance) of each Gaussian can be then used to
calculate the distances of the testing instance to the confi-
dence region of each Gaussian. The smaller the distance,
the higher probability that the testing instance belongs to
the corresponding Gaussian distribution. Based on the dis-
tance to each Gaussian, the testing instance can be classi-
fied by majority voting. The data characteristics extracted
by GMM method, comparing with raw training data, are ex-
pected to be less sensitive to imbalanced and noisy dataset.
This makes KNG a promising method to deal with imbal-
anced and noisy data. The notations and pseudo code of
KNG algorithm can be found in Table 1 and Figure 2.
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Table 1: Notations used in KNG algorithm

Symbol Meaning
Kivain Training dataset
Kiest Testing dataset
y True label
yPred Predicted label
NumF Number of folds in cross validation
n',n Number of Gaussian centers for +1/-1 class
u', o’ Centers and variances for GMM (+1 class)
w, o Centers and variances for GMM (-1 class)
B+ Confidence region adjusting coefficient (+1 class)
B. Confidence region adjusting coefficient (-1 class)
A Search range of f5;
B Search range of f3,
k Number of nearest Gaussians
CM Confusion matrix
EvalMetric Evaluation metric
Input:
Xirain s /* training data */
Xiest s /* testing data */
K; /* number of nearest Gaussians */
n'; /* number of Gaussian centers for positive class */
n’; /* number of Gaussian centers for negative class */
A; /* search range of B1 */
B; /* search range of By */
Output:

bestEvalMetric; /* the best Evaluation metric found */
Classifier; /* output classifier with EvalMetric*/

Function Calls:
GMMtrain (); /* train GMM classifier */
ComputeDist_PR (),; /* compute point to region distance */
Sort (); /* sort the distances in ascending order */
ComputeCM (); /* compute confusion matrix */
ComputeEval (); /* compute evaluation metrics */

Begin

1) foreach B, €4

2)  foreach B_ €B

3) for h=1: NumF

4) [nt, 6t u~, 6*7] — GMMirain (X:‘mm, n",n);

5) foreach xi € XM,

6) foreachj €n”

7) Dist_PR (xi, j) «— ComputeDist PR (xi, i, 67, B.);
8) end foreach

9) foreach g €n”

10) Dist_PR (xi, ¢ +n") < ComputeDist_PR (xi, My 0'5_, B_);
11) end foreach

12) [order] «— Sort (Dist PR(xi,:));

13) vl = sum(y(order(1:K)));

14) end foreach

15) end for

16) CM — ComputeCM (v, "),
17) EvalMetric — ComputeEval (CM);
18) if EvalMetric >= bestEvalMetric

19) then bestEvalMetric < EvalMetric
20) end if

21)  end foreach

22) end foreach

23) return [bestEvalMetric, Classifier];

End

Figure 2: Pseudo code for KNG Algorithm

In KNG algorithm, the ComputeDist_PR function is used to
compute point to region distance, which is defined as fol-
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lowing:

Dist_PR(x;, ju;,02, B) = BuclideanDist(x;, ;) —Bo;
3)

B+ and S_ are used to adjust the radius of the confidence
region for positive(minority) and negative (majority) Gaus-
sians, respectively. They can be seen as weights for pos-
itive/negative classes. The unequal settings of 5 and 5_
afford the KNG algorithm the flexibility to favor one class
more than the other. This property is very useful in deal-
ing with imbalanced data in which the majority class dom-
inates. Thus, by assigning higher 8;, KNG can be more
inclined to positive class and more positive instances can
be recognized. This can be shown in the following illus-
tration example. In Figure 3, we apply GMM to find the
Gaussian mixtures for positive/negative classes. Circles are
positive instances and triangles are negative instances. The
Gaussian mixtures are represented by the concentric circles
where different circles represent different 5 values.

R
=2
=3

(c) Negative Gaussian mixtures

— =t
po=2.
po=3.

(b) Positive Gaussian mixture

(a) Original data

Figure 3: Finding Gaussian mixtures for positive/negative
classes

KNG algorithm has five parameters to tune in order to
achieve its best classification performance: number of near-
est Gaussians %k, number of positive Gaussians n*, num-
ber of negative Gaussians n~, and adjusting factors 3, 5_.
Number of nearest Gaussians & adjusts the number of Gaus-
sians that will be used in finding the class boundary. When
k is small, only the nearby Gaussians are used in finding the
boundary, while when k is large, many far-away Gaussians
are involved in finding the boundary.

Figure 4 shows the impact of the number of Gaussians to
formation of class boundary. We keep k, 3, 3_,n™ as con-
stant (all equal to one) while just change n- to see how the
increase of number of Gaussians for one class would affect
the formation of class boundary. When n~ equals n™, the
two classes are linearly separated by a straight line. When
we increase n~ to 2 (see Figure 4b), the class boundary
bends more towards the positive class (dark gray region) and
thus more instances can be classified as negative. In addi-
tion, the linear boundary (see Figure 4a) becomes the inter-
section of two linear borderlines. If we further increase n~
(see Figure 4c), the class boundary can be further refined,
which shows as two intersections of three linear borderlines.
However, one potential issue with the increased number of
Gaussians is overfitting. It is our intention to assess the ro-
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bustness of the proposed KNG with the increasing number
of Gaussian for both +/- classes.

4 A A A (AT A
A N :
A AAR AR A*
AA N
o 7.0 o .0
O o

(a) n=1, n=1 (b)ni=1, n=2 (c)yn=1, n=3

Figure 4: Impact of number of Gaussians to formation of
class boundary

(@) p=1, p=1

Figure 5: Impact of different 5, 3_ to formation of class
boundary

Figure 5 shows different settings of f; and S_ can push
the class boundary towards certain classes. To make it sim-
ple, we assume that all Gaussian mixtures have same vari-
ance. Figure 5a shows the positive (dark gray) and nega-
tive (light gray) class regions with the equal setting of 5
and S_ (B4+=1, _=1). The border of the two regions is
the class boundary. In Figure 5b and Sc, we observe that
increasing S+ (B4 = 2,5_ = 1) can push the boundary
towards negative class and thus more instances can be clas-
sified as positive while increasing 5_ (84 = 1,6- = 2)
can push the boundary towards positive class and thus more
instances can be classified as negative. As aforementioned,
B+ and [_ are used as class-specific weights to adjust the
radius of the confidence region for positive/ negative Gaus-
sians (circles with dash lines). Thus the tuning of 5 and 5_
can push the class boundary towards certain class. For im-
balanced datasets, the class boundary always skews towards
the positive class since the negative class dominates. Thus,
by assigning higher 5, KNG can push the class boundary
to positive class and more positive instances can be recog-
nized.

4 Experiments and results

In this section, we first evaluate the performance of KNG
using seven UCI benchmark datasets. Next, in a case
study we use a medical imaging dataset to test KNG on
real world application. To evaluate the performance of the
classifier, we use Gmean measure which has been widely
used!®%-381 on imbalanced classifier for its ability to evaluate
the performance of a classifier on both positive and negative
classes. Gmean is defined as vacct * acc—, where acc™
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(also called sensitivity) and acc™ (also called specificity) are
positive and negative class prediction accuracy, respectively.
Area Under the Curve (AUC*!) measure is also provided.

4.1 UCI benchmark datasets

The seven benchmark datasets we used in the experiments
are collected from UCI Machine Learning Repository.*”!
We call these datasets original datasets. The details of the
original datasets are summarized in Table 2. The multiclass
datasets are preprocessed as binary class problems, and the
number in the name indicates the positive class. For exam-
ple, in iris2, class 2 is used as positive class and all the other
classes in the original data have been joined to represent the
negative class. Based on the original datasets, we generate
the imbalanced datasets by randomly removing 80% of the
negative class instances. Then, we further add 20% of ran-
dom noise to make the datasets both imbalanced and noisy.
The noise is introduced using the following rules as litera-
tures®! did:

e Class noise: 20% of the class labels are randomly re-
placed by the opposite class labels

o Attribute noise: 20% of each attribute are replaced by
random values from the domain (value range) of that
attribute

Table 2: The UCI dataset used in the experiments

Imbalance Ratio

Imbalance Ratio

Dataset #Instance  #Features . of Imbalanced
of Original dataset
dataset

breast

- 683 10 19 9.3
cancer
diabetes 768 8 1.9 9.3
iris2 150 4 2 10.0
MammMmo= g34 5 11 53
graphic
yeastl 1484 8 2.2 11.0
wine2 178 13 15 7.6
glass3 214 9 18 9.2

We compare the performance of KNG method with SVM,
ANN, C4.5 and KNN. These methods are chosen because
they are widely used in classification problems. The KNG
method is developed using MATLAB. SVM is performed
using the libsvm MATLAB codes.[*®1 ANN, C4.5 and KNN
are performed using a machine learning software WEKA
3.6.9.11 In this study, we use grid search technique?! in
the parameter tuning process since it’s easy to implement.
The search ranges of the parameters are summarized in Ta-
ble 3. Each method is performed using 10 fold cross val-
idation. Because of the random nature of GMM method,
the result of KNG algorithm is performed 20 times for each
dataset, and the mean and standard deviation are reported.
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Table 3: Search ranges of Parameters

Method Parameter Range
SVM(rbf kernel) 0-312
- 0-2048
C4.5 confidence factor 0.1-0.5
KNN # nearest neighbors k 1-9
ANN learning rate 0.1-0.8
# nearest Gaussians k 1-5
KNG #centers(+1 class, -1 class) 1-5

adjusting factors B, p. 1-3

Table 4 shows the experimental results of Gmean measures
for both original and imbalanced and noisy (I+N) datasets.
For original datasets, KNG achieves best Gmean in three
out of seven datasets, and for iris2, wine2 datasets, KNG
is just marginal worse than the best method. This shows
that KNG is comparable to other classification methods on
original datasets. For I+N datasets, KNG greatly outper-
forms other methods in all seven datasets: for breast_cancer
dataset, KNG (0.967) outperforms the second best method
SVM (0.787) by 0.180; for diabetes dataset, KNG (0.708)
outperforms the second best method ANN (0.331) by 0.377;
for iris2 dataset, KNG (0.941) outperforms the second best
method ANN (0.763) by 0.178; for mammographic dataset,
KNG (0.789) outperforms the second best method KNN
(0.564) by 0.225; for yeastl dataset, KNG (0.624) outper-
forms the second best method KNN (0.418) by 0.206; for
wine2 dataset, KNG (0.967) outperforms the second best
method KNN (0.676) by 0.291; for glass3 dataset, KNG
(0.721) outperforms the second best method SVM (0.509)
by 0.212. In summary, the average outperformance of KNG
to the second best method is 0.24. In all, KNG method
is very effective in dealing with imbalanced classification
problem with noisy datasets.

As shown in Table 5, the AUC measures are similar to
Gmean. KNG does not show outperformance on the origi-
nal dataset, but for I+N datasets, KNG outperforms all other
methods in all seven datasets. For datasets such as mammo-
graphic and yeastl, methods such as ANN show less than
0.5 AUC measures which indicates worse than random per-
formance. However, on these datasets, KNG shows much
better AUC measures (0.676+ 0.000). We conclude KNG
is effective in dealing with imbalanced and noisy data.

We further analyze the robustness of each method using the
change of Gmean and the change of AUC which are de-
fined as the measures on I+N datasets minus that of original
datasets. These metrics show that to what extent the co-
existence of imbalance and noise can affect the performance
of a classifier. Small change of Gmean (or change of AUC)
would indicate the model is robust since it is less affected
by imbalance and noise. As seen, the performance of SVM,
C4.5, ANN and KNN drop dramatically on I+N datasets
compared with on original datasets. However, KNG main-
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tains the minimal change of both Gmean and AUC for all
seven datasets, which is shown in Table 6 and Table 7. The
average change of Gmean for KNG is less than 1.6%, and
change of AUC is 1.3%, both are significantly better than
the other four methods. This is because the traditional clas-
sification methods, SVM, C4.5, ANN, KNN work on the
training raw data directly which is sensitive to data imbal-
ance and noise and thus their performances are highly af-

Table 4: Gmean metric

fected by the co-existence of imbalance and noise. KNG,
on the other hand, is designed to work on data characteris-
tics extracted from the training data which are less sensitive
to data imbalance and noise. As a result, KNG is able to pre-
serve the performance when imbalance and noise co-exist in
datasets. We conclude KNG is robust in dealing with both
imbalance and noise issues.

SVM C4.5 ANN KNN KNG
Dataset . : : - -
Orig I+N Orig I+N Orig I+N Orig I+N Orig 1+N
breast_cancer 0976 0.787 0959 0.000 0.962 0.517 0.970 0.457 0.976 + 0.002 0.967 + 0.000
diabetes 0.712 0.136 0.690 0.000 0.710 0.331 0.683 0.283 0.723 + 0.002 0.708 + 0.000
iris2 0954 0548 0910 0.000 0.960 0.763 0.960 0.000 0.957 £0.014 0.941 £ 0.011
mammographic 0.836 0.111 0.838 0435 0.816 0.237 0.800 0.564 0.797 + 0.000 0.789 + 0.000
yeastl 0.618 0.179 0.658 0.000 0.643 0.000 0.647 0.418 0.675 + 0.000 0.624 + 0.000
wine2 0.986 0.463 0.952 0.000 0.979 0.497 0.964 0.676 0.972 + 0.000 0.967 + 0.000
glass3 0.716 0509 0.710 0.246 0.673 0.392 0.808 0.448 0.728 £ 0.014 0.721 +0.053
Table 5: AUC metric
SVM C4.5 ANN KNN KNG
Dataset
Orig I+N Orig 1+N Orig I+N Orig I+N Orig I+N
breast_cancer 0.978 0.808 0.969 0.496 0.988 0.630 0.990 0.522 0.979+0.000  0.965+0.001
diabetes 0.753  0.570 0.764 0.500 0.812 0549 0.785 0.480 0.746x0.000  0.729+0.000
iris2 0971  0.790 0.945 0.485 0994 0785 0.996 0.485 0.958+0.018  0.950+0.004
mammographic 0.853  0.555 0.871 0.578 0.887 0.487 0.851 0.597 0.820+0.000 0.810+0.000
yeastl 0.700 0.562 0.755 0.497 0.775 0497 0.745 0.467 0.696+0.000  0.676+0.000
wine2 0.988 0.682 0.955 0.500 0.998 0.524 0.982 0.677 0.984+0.000  0.973+0.000
glass3 0.785  0.657 0.707 0.486 0.727 0.484 0.827 0.510 0.763+0.028  0.762+0.051

Table 6: Robustness evaluation (Change of Gmean)

Table 7: Robustness evaluation (Change of AUC)

Dataset SVM C45 ANN KNN KNG Dataset SVM C4.5 ANN KNN KNG
breast_cancer -18.9% -95.9%  -445% -51.3% -0.9% breast_cancer -17.0% -47.3% -358% -46.8% -1.4%
diabetes -57.6% -69.0% -37.9% -40.0% -1.4% diabetes -183% -264% -26.3% -305% -1.7%
iris2 -40.6% -91.0% -19.7% -96.0% -1.6% iris2 -181% -46.0% -209% -51.1% -0.8%
Mammographic  -72.5% -40.3% -57.9% -23.6% -0.8% Mammographic ~ -29.8% -20.3%  -40.0% -25.4%  -2.0%
yeastl -43.9% -65.8% -64.3% -22.9% -5.1% yeastl -13.8% -25.8%  -27.8% -27.8% -2.0%
wine2 -52.3% -952%  -482% -288% -0.5% wine2 -30.6% -455%  -47.4% -305% -1.1%
glass3 20.7% -46.4%  -28.1% -36.0% -0.7% glass3 -12.8% -221%  -243% -31.7%  -0.1%
Average J43.8% -71.9%  -42.9% -42.7% -1.6% Average -20.1% -346% -31.8% -348% -1.3%

To further evaluate the applicability of KNG, a case study is
conducted on a medical imaging dataset which is collected
from Mayo Clinic, Arizona. The comparison experiment is
discussed in the next section.
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4.2 Renal stone dataset

The case study is conducted on a renal stone dataset which is
collected from Department of Radiology, Mayo Clinic Ari-
zona. This dataset is a Dual Energy CT dataset with 65 in-
stances and 18 features for each instance, as shown in Table
8. In the 65 instances, 9 of them are cystine stones, and the
rest 56 are non-cystine stones. The objective of this case
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study is to test if KNG can be used to effectively distin-
guish cystine stones from non-cystine stones with the pres-
ence of unneglectable level of imbalance and noise in the
data. This renal stone dataset has an imbalance ratio of 6.2,
and the noise comes from the systematic uncertainty of the
reconstruction methods which are used to generate the CT
images, as we mentioned in section 1.

The classification of cystine stones is important in clinical
practice for the following reasons. Firstly, cystine stone is
too dense to be broken up by extracorporeal shock wave
lithotripsy (a commonly used treatment method), which is
effective in breaking other types of stones, such as uric acid
stones, calcium oxalate stones and struvite stones, efc. Cys-
tine stones are usually treated using percutaneous nephron
lithotripsy which is designed for removing dense stones.

Table 8: The Renal Stone dataset

Thus, the diagnosis of cystine stone has a significant impact
on following treatment. Secondly, cystine stone is usually
caused by cystinuria, which is a genetic autosomal reces-
sive metabolic disorder.[**! Thus, the diagnosis of cystine
stone indicates that the patient needs to take additional ge-
netic screening tests other than medical treatment.4]

We compare the performance of KNG with other machine
learning algorithms which has been widely used in renal
stone classification studies,*>-40! such as SVM, C4.5, ANN,
KNN, Random Forest (RF) and Naive Bayes.

The experiments are performed using Weka 3.6.9 with 5-
fold cross validation technique applied. In addition to
Gmean, we also report sensitivity, specificity and AUC
which are commonly used evaluation metrics for medical
diagnosis field.
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Figure 6: Sensitivity, specificity, Gmean and AUC metrics
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From Figure 6, we see that SVM completely fails on this
dataset. The zero sensitivity shows that SVM has no recog-
nition ability of the cystine stones. C4.5, ANN, KNN and
RF show similar performance with equal sensitivity (44%)
and close specificity (93%, 96%, 95%, 93%, respectively),
which lead to very similar Gmean measures (64%, 65%,
65%, 64%, respectively) and similar AUC measures(71%,
79%, 14%, 71%, respectively). NB shows equal speci-
ficity (84%) with KNG, but much lower sensitivity (67% vs.
79%), lower Gmean (75% vs. 81%) and lower AUC (67%
vs. 82%). KNG achieves highest sensitivity (79%), high-
est Gmean (81%) and higest AUC (82%) among all seven
methods while maintains high specificity (84%). In conclu-
sion, KNG outperforms other six methods in classification
of cystine stones.

5 Conclusion and discussion

In this research, we propose a discriminative and genera-
tive model fusion approach, KNG, to tackle classification
problems with imbalance and noise issues jointly. Instead
of modeling on the raw data directly, KNG applies GMM
to model the training data as Gaussian mixtures and form
adjustable confidence regions of each Gaussian which are
less sensitive to data imbalance and noise. The classification

is achieved by majority voting of the K nearest Gaussians
for the testing instances. The experimental results on seven
UCT datasets and one medical imaging dataset show that
KNG is more effective in dealing with imbalanced dataset
with noisy features than other commonly used classification
methods.

In the experiments, we find the performance of KNG highly
depends on the proper settings of parameters. As we can see
in Table 3, there are five parameters to tune in the KNG algo-
rithm, each of which has a wide search range. The parame-
ters are tuned through grid search method in the experiments
which is criticized to be computationally expensive and thus
inefficient.!*”! In addition, the search ranges of these param-
eters are determined by empirical experience which may not
lead to optimal model performance. Facing all the above
challenges, we plan to improve the KNG algorithm by em-
ploying advanced optimizer, such as Particle Swarm Opti-
mization!*® to address the computation concerns as well as
improving the parameter tuning performance as one future
task. Secondly, one notable fact reported in this research is
the experiments are conducted on mildly imbalanced (im-
balanced ratio ranges from 5 to 11) dataset. We plan to
further explore the applicability of KNG on heavily imbal-
anced problems (e.g., 10e-5 in credit card fraud detection
problem!'®!) as another future work.
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