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The importance of timely detection, classification and response to anomalies on petroleum products pipeline (PPP) have attracted
pragmatic researches in recent times. There is need for efficient monitoring and detection of activities on PPP to guide leak
detections and remedy decisions. This paper develops an intelligent hybrid system, driven by discrete event system specification
(DEVS) and adaptive neuro-fuzzy inference system (ANFIS) for detection and classification of activities on PPP. A dataset
comprising 330 records was used for training, validation and testing of the system. Result of sensitivity test shows that inlet
pressure, inlet temperature, inlet volume and outlet volume have cumulative significance of 71.72% on flowrate of PPP. Hybrid
learning algorithm was observed to converge faster than the back propagation algorithm in the detection of pipeline activities.
ANFIS hybrid learning algorithm with training and testing errors of 0.11980 and 0.010233 yielded a correlation of 0.916 between
the computed and the desired output and produced optimal consequent parameters to boost the intelligence of DEVS. A testing
error of 0.0303 was observed in the evaluation of DEVS-ANFIS system on 33 test data sample, 32 precise detections were made
with one incorrect detection, this gives 96.97% level of confidence in the DEVS-ANFIS model for detection, classification and
localization of PPP activities.
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1. INTRODUCTION

Over the years, petroleum products have sustained its role as
a major and dependable source of fuel and income in many
economies of the world. The transportation, distribution and
delivery of crude oil and its products is a large-scale global
business and an important component of the petroleum indus-
try downstream sector. It focuses on the movement of natural
gas, crude oil and other refined petroleum products from
the refining countries to the consuming countries as well as
distribution and sales of such products within a country or
region.!!-?] This can be carried out through trucking, railroad

tank-cars, water carriers and pipelines. The choice of any of
these modes of transportation depends on the cost.’! While
trucks are the most expensive, the cost of rail remains multi-
ples of pipeline and marine options. Pipeline is the cheapest
and safest medium, hence a widely used mode of transporta-
tion and distribution of crude oil and its products. They
are, therefore, the irreplaceable core of the petroleum prod-
ucts transportation system and the key to meeting petroleum
products demand in the world. They provide transportation,
temporary storage and logistics services in the oil and gas
industries.[>4!
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The unavailaibility of appropriate guidelines, policies and
standards for the design, construction, and operation of oil
pipelines in many developing countries has affected the qual-
ity, durability and integrity of pipelines.?! Causes of pipline
failure include structural problems (40%), operator errors
(6%), external influence damage (27%), control problems
(2%) and others (25%). Besides petroleum products pipeline
(PPP) failure, the tampering with PPP and other oil installa-
tions, which has assumed wide dimensions through any of
these forms; oil bunkering, oil theft, fuel scooping, militancy
(oil terrorism) and PPP vandalism is another source of oil
spillage from PPP. PPP vandalism is the deliberate destruc-
tion of PPP with the intent of stealing petroleum products or
sabotaging government politically or economically.!

The risk associated with PPP failure and vandalism in terms
of safety of people(security), damage to the ecosystem, loss
of income, threat to infrastructural and economic develop-
ment, has been a central issue to PPP integrity managers, host
communities, oil prospecting companies, governments and
other stakeholders.!®! In many developing economies, there
are no contingency plans for rapid response to oil spillages,
poor detection and mitigation procedures, which in turn in-
creases the risks associated with PPP failures and vandalism.
In consideration of these negative impacts, there is need to
effectively monitor, protect and prevent activities with neg-
ative effect on pretroleum products transportation. These
activities on PPP domain could be classified as normal, ab-
normal, highly abnormal or extremely abnormal in response
to varying and dynamic attributes like pressure, flowrate,
temperature, viscosity, density and other PPP parameters.
The impact of petroleum product spillage could be mitigated
by an effective PPP monitoring system.[”! PPP monitoring
involves constant checks on events of oil spillage-induced
parameters with a view to providing real time information
and response to events with significant deviation from the
stipulated threshold of normal operations. Regular monitor-
ing with parameters featuring the structural and functional
conditions of the flow line can help prevent failure, detect a
problem and its position and undertake maintenance and re-
pair activities in time.[’! Different approaches have been used
to evolve systems that monitor, detect, classify or respond to
emergencies resulting from oil spillages and leakages.!8-13!
These systems are limited by lack of a systematic way of
tracking the time of activities, high probability of false de-
tection and inefficient localization of detected activities due
to non inclusion of intelligent tools for explicit timing of op-
erations, pattern recognition and data imprecision handling.
Discrete event system specification (DEVS) offers a plausi-
ble solution for the specification of timing and localization
need of this problem, while adaptive neuro-fuzzy inference
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system (ANFIS) proffers solution for pattern recognition
and data imprecision. DEVS is a set-theoretic mathematical
formalism for structural representation and organisation of
similar or diverse computing tools in solving time-relevant
and complex problems.['%171 DEVS has been successfully
applied in wild fire spread and containment;'®! sensing and
detection of intruder in a network environment;"®) wind
speed detection;?” environmental fire detection;?!! moni-
toring of oil pipelines.””’ DEVS has a formal means for
explicit specification of timing operations, which is central
for real-time systems.!>>?#l In DEVS, the state and state
transitions of the source system are dynamic, in response to
occurrences of events which are inherently imprecise, un-
certain and vague.”! DEVS systems are good at specifying
timing of events but lack the cognitive ability to recognize
patterns or handle imprecise data.['”l The combination of
DEVS with intelligent tools that recognise patterns and pro-
cess imprecise data into a single system becomes one of the
best approaches for classification of activities on PPP. These
intelligent tools include neural networks (NN), fuzzy logic
(FL), and genetic algorithm (GA) and so on.

This paper proposes a framework that integrates ANFIS into
DEVS where the unique strengths of each sub-system will be
enhanced and the weaknesses compensated in the detection
and classification of activities on PPP. The remainder of this
paper is organized as follows. Section 2 presents a review of
related literature while the methodology, data collection and
system design techniques of ANFIS and DEVS for pipeline
activities classification are carried out in Section 3. Section 4
gives the implementation techniques and discussion of output
results. The conclusions of the paper and recommendations
for further research are presented in Section 5.

2. RELATED WORKS

In Filippi and Bisgambiglia,*! DEVS-NN model is pro-
posed for detection of atmosperic gas in a plot of land. The
DEVS-NN hybrid provides intelligent system timing opera-
tions and automatic coordination of the system learning ca-
pabilities but lacks the ability to handle imprecise and vague
information. In Prasanna et al.,"”! DEVS-FL model is pro-
posed to address imprecision in the detection of intruders in
a networked environment. The DEVS-FL system established
a platform for keeping time of attacks on computer networks
as well as automatic coordination of membership function
computation, inferencing and defuzzification procedures but
lacks the facility for collective situational awareness and
training. In Nikles et al.,'®) a fibre optics system is presented
to monitor, detect and localize defects in PPP. The fibre op-
tics system provided real-time information about the pipeline
integrity which guided management decision but was charac-
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terized by high frequency of false detection and localization
of oil spills due to non inclusion of intelligent tools to aid
decision in human-like pattern. In Daniel and Mihaela,[® an
intelligent system for monitoring pipeline leakages using FL
technology is proposed. The FL system facilitated human-
like classification of oil leakages in pipeline infrastructure but
cannot learn from previous input variables and generalization
into unseen patterns. Motivated by the need to overcome the
low success rates recorded by traditional and mechanical sys-
tems in oil spill emergency response, FL system to monitor,
detect, localize and respond to oil spill emergency situations
in Artic waters was proposed./?”? Though the system could
capture, store and encapsulate substantial knowledge per-
taining to location and severity of oil spillages, vague and
imprecise timing related parameters of oil spill events in
the marine environment were not formalized and modelled
appropriately, thereby hindering efficient rescue decisions.
Lin and Ying'?®! extended crisp DEVS system by incorpo-
rating fuzzy set theory (fuzzy finite automaton model) into
DEVS. In Santucci and Capocchi,?! the integration of FL
into DEVS spans three steps; definition and characterization
of FL concepts of the problem domain (fuzzification, fuzzy
rules definition and firing as well as defuzzification). The
next stage focuses on choosing the programming language
environment for the integration of FL and DEVS. In the fi-
nal stage, the implementation and integration of the design
into DEVS framework is proposed. A methodology for the
enhancement of DEVS formalism through the integration
of cognitive reasoning capabilities into the classical DEVS
system is proposed in Sheikh-Bahaei et al.*”! The results
obtained showed a better performance than traditional algo-
rithms, especially when implemented with a large number of
rules and membership functions.

In Udoh,!"% the practical value of NN is demonstrated in a
petroleum products distribution depot. The NN technique en-
abled system training and generalization into future patterns
but lacks ability to deal with imprecise and vague petroleum
products data. In Adewuyi and Okelola,!®! pipeline leak de-
tection and control is presented using NN. The NN tools pro-
duced an intelligent system with learning capabilities for de-
tecting the anomalies on PPP but were not capable of dealing
with imprecise PPP data. In Akinyokun and Inyang,['> !4 oil
spillage risk managment framework is proposed using neuro-
fuzzy-genetic platform. The neuro-fuzzy-genetic system
demonstrated optimized training and imprecise data handling
capabilities in the task of recognising patterns in complex oil
spillage dataset but lacks facility for timing and automatic
management of simultaneous oil spillage-induced parameters
from multi pipeline locations. A pattern discovery system is
also developed from NN training based on modified Apriori
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rule-mining technique. The system enhances learning from
previous data, identification, extraction and classification of
oil spillage patterns but lacks the capability for timing and
automatic monitoring of events that led to the oil spillage on
PPP. In Santos et al.,l'!! prediction of leak magnitude in a gas
pipeline is presented using NN and acoustic sensors. The NN
and acoustic sensors hybrid produced accurate predictions
for high frequency signals of oil leakages but could not give
correct predictions for low frequency signals even under oc-
currences of leakages. In Goran et al.,*! evacuation model
at liquefied natural gas (LNG) terminal is proposed using
FL techniques. The FL system minimises the possibility of
errors during the selection of an evacuation route in accident
situations but lacks components for learning from previous
accidents and route evacuation patterns.

An ANFIS-based scheme for petroleum pipeline monitoring
by training a set of natural frequencies and time-domain sig-
nals from acoustic emission sensors is proposed in Vishash.!”!
The signals were generated by simulating leakage and cor-
rosion in the pipeline and by varying the pressure and flow
rate. The system demonstrated the ability of ANFIS-based
system in learning from previous petroleum pipeline data,
dealing with imprecise knowledge and making correct pre-
dictions on the test data but lacked the capability of timing
of oil pipeline events as well as dealing with simultaneous
events from multi-pipeline locations. In Mashford et al.,[**
an approach for monitoring leakages in pipeline infrastruc-
ture using support vector machine (SVM) is presented. The
system lacked the capability for automatic control and timing
of pipeline leakages to guide effective rescue operations.

The limitations in the existing works could be surmounted
by integrating DEVS and ANFIS into a single system where
their unique strengths are harnessed and their weaknesses
eliminated in the task of monitoring PPP.

2.1 Classical and fuzzy DEVS atomic models descrip-
tion

A Classical DEVS is expressed as a set of rules or mathemat-

ical equations used to approximate the inputs and outputs

trajectories of the source systems.[>}! The basic formalism

called Atomic Model (AM) in Zeigler'®33# is represented as

follows:

AM = (XY, S, dcat, Oints Ay ta) (1
where X is a set of external inputs events, Y is the set
of external output events, S is a set of states, Jezq
@ x X — S is the external transition function where
Q = {(s,e) | s € Sand 0 < e <t,(s)}; is the total state
set, e is the time elapsed since last transition. §;,,; : S — S,
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is the internal transition function; A : S — Y/, is the output
function; t, : S — RT 0,00, 18 time advance function.

X Y

‘x y
§'=0,,(s,6,%)

P °

s Y1, () e o AS)

§'=8,,(5)

Figure 1. Elements of DEVS structure!>!

The interaction of these elements is depicted in Figure 1.

The AM model of DEVS is extended in Chow and Zeigler.!*!
A proposal of Parallel DEVS (PDEVS) formalism is pre-
sented with the incorporation of confluent function into the
classical DEVS to facilitate parallel processing. The PDEVS
model is given as:

PDEVS = <X7 Ya Sa 5emta 5int; 5con7 )‘7 ta> (2)
where X, Y, S, §int, Ocxt, A and t, are the same as classical
DEVS model. 6.0, : Q X X? — S is the confluent transition
function, b is a collection of input events.

In Fuzzy-DEVS hybridization, a human like reasoning capa-
bilities of FL are exploited to process imprecise or vague data
while DEVS handles timing related issues and automatic sys-
tem control.*®! The Fuzzy-DEVS model involves the follow-
ing Membership Functions (MF) atomic models, antecedent
MF (AMF) - Equation (3), Consequent MF (CMF)- Equation
(4), Defuzzfiers MF (DMF) - Equation (5), and connectives -
Equation (6).13"

AMF = <X,KS, 6emt75int75conv)\ata7/ia> (3)

CMF = <X7 K 57 6emt7 6int7 60071; )\a ta, Mc> (4)

DMF = <X1aX27 e aXn7Y7 Sv 6ea:t7 6i'rbt76cona Aata> (5)

CNT = <X17X27 T 7Xn7 K S7 6@:1:157 §int7 6con7 )\uta7ﬂd>

(6)

where X is a set of real values that represents the inputs.
Y = [0, 1] the output set, S is the fuzzified input sequence

S = {8i | 8 = Oewt(q, $i=1,%) — beat(q,5,2)} = p(x),
42

where p(x) is the MF associated with this fuzzifier. 0;,,:(s)
and dcon () are the identity functions. ¢, (s) = 0 denotes the
time advance.

A consequent MF defined in Equation 4 has the input
values, X = [0,1], while the output YV is a fuzzy set.
Y ={X | Y isa fuzzy set}, S is a sequence of MF values
S =-.%_1,%,%11, - p(x) is the MF associated
with this fuzzifier.

=% min(p(a;), )

6ewt(Q7 $,T) = (7)
a;

The connectives - Equation (6) provides link between an-
tecedent and consequent pairs using AND/OR operators. An
AND connective takes the minimum, while an OR returns
the maximum value of two pairs.®”] A description of the
AND and OR is provided in Equations (8) and (9).5!

(®)

5@xt(‘1783$17"' axn) = min(xlv"' axn)

Ocxt(q, S, T1,+ y&Tp) = max(Ty, - ,Tp) ©)
A fuzzy rule is a coupled model which consists of AMF,
CMF, CNT and DFM atomic models. The AMF are ac-
tivated when new inputs events are received, it generates
output events when the new fuzzified values are not the same
with the earlier ones. In addition, CNT models are activated
only when there is a variation in their inputs values. Tunning
can be achieved either by adding extra input to the DEVS
models or modifying the parameter simplicitly. NN is a
suitable tool and widely adopted in both cases.

3. RESEARCH METHODOLOGY

The stages of the research, presented in Figure 2, begin with
dataset collection and pre-processing followed by the DEVS-
ANFIS design and implementation. A dataset of 330 data
sample was collected from Pipeline and Products Marketing
Company (PPMC) in Port Harcourt Area Office, Nigeria,
covering Port Harcout and Aba (PHAB), Port Harcourt and
Enugu (PHEN) as well as Enugu and Markurdi (ENMK)
pipeline segments. The dataset was divided into training,
validation and testing datasets in the ratio of 8:1:1 which
translates into 264 records for training and 33 records each
for validation and testing. Fourteen (14) input indicators
and one (1) output variable describing PPP behavior were
captured in the dataset.

The next stage was the pre-processing and dimension reduc-
tion using Neuro Solutions. The attribute description and
dimension reduction results are presented in Table 1. Vari-
ables IPS, IVS, ITP, PDM, PLT, CRN, TPS, OVS, OTP, OPS,
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IVM, DTY, VSC, and OVM are inputs attributes, while the
FLR is the output variable. The attribute contribution to the
FLR shows that IPS has the highest score of 65.32%, while

= =
PPP Activities
Dataset

IVM and OVM have a score of 55.10% and 50.19% respec- *  PreProcessing
tively. The variables ITP, VSC, TPS, OTP, DTY and OPS . e

scored above 10% each. PLT and PDM scored 4.23% and
3.00% respectively while IVS and OVS contibuted 0.12%
each to the determination of output. The best four scorers
are IPS, IVM, OVM and ITP. Hence these best performing
attributes are used as inputs to the system, pruning the others.

[l
Training Validation
Dataset Dataset

| Fuzzification (Triangular Membership Function) |

v v
Table 1. Sensitivity test of PPP attributes to flow rate ANFIS Model (Supervised Model Validation
Training) Sugeno-Type FIS RMS
Attributes Score Back-propagation Algorithm 1™  Train and Validation
SN — Sensitivity Hybrid Learning Algorithm Error
Description Code (%)
1 Inlet_Pressure IPS 0.653155 65.32 v
2 Inlet_Volume IVM 0.551048 55.1 DEVS_ANFIS Model %lot;rd;lazgging
3 Outlet_Volume OVM  0.501936 50.19 e Confusion Matrix
4 Inlet_Temperature ITP 0.307525 30.75 PPP Events States
) ) ANFIS Consequent Parameters
5 Viscosity VSC 0.212619 21.26
6 Transient_Pressure TPS 0.149851 14.99 ¢
PPP Activities Classificati
7 Outlet_Temperature ~ OTP  0.119292 11.93 iy e PR
8 Density DTY  0.115519 11.55 Fuzzy Membership Function
9 Outlet_Pressure OPS 0.10982 10.98 i
10 Pipe_Length PLT 0.042343 4.23 Decision Support
11 Pipe_Diameter PDM  0.030021 3.00
12 Corrosion CRN  0.012341 1.23 i
13 Outlet_Valve_Size OVS  1.23E-03 0.12 ];E':l';'r"’;“
14 Inlet_Valve_Size IVS 1.23E-03 0.12 Response
Figure 2. DEVS-ANFIS development stages
Knowledge Base
Fuzzy Fuzzy
»| Database Rule Base Membership
Function
— ANFIS —.l
Y ;
X ——» Antecedent o . Consequent
X Parameters Sugeno-Type Parameters
— | T Inference System  ZwOutpuy|
Inputs : : Consequent
(Crisp Values) ' Fuzzifier Paramgters Dcfuzziﬁci‘
Xn |
T Y
DEVS Controller
» Event Controller
e
v t Output
Time Controller

Figure 3. Block diagram of DEVS-ANFIS system
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The block diagram of the system (see Figure 3) consists of
three parts; Knowledge Base (KB), ANFIS and the DEVS-
Controller. The KB contains fuzzy Membership Functions
(MF), fuzzy rulebase and the database. The Database rep-
resents the properties of fuzzy sets, rules and membership
function. The ANFIS consists of fuzzifier, Sugeno infer-
ence engine and defuzzfier while the DEVS controller has in
addition to it atomic components, the Events and the Time
controllers.

3.1 ANFIS

The ANFIS is designed for descrete events parameter identi-
fication through a hybrid learning rule combining the back-
propagation gradient descent and a least-squares method.
ANFIS is basically a graphical network bestowed with the
neural learning capabilities. The network comprises adaptive
and fixed nodes with specific functions arranged in five (5)
layers. The input layer consists of PPP attributes. The system
is based on Sugeno inference mechanism whose reasoning
methodology presents the output of each rule as a sequential
combination of each rule input variable plus the constant
term as shown in Equation (10).

IFzis A, y is B and z is C, then

f=px+qy+---+rz+s (10)

where x, y, z are the inputs or antecedent parameters; A,
B, C are the fuzzy sets of inputs parameters, f is the fuzzy
set of output parameters and p, ¢, r and s are consequent
parameters.

The fuzzifieris in layer one, accepts crisp values and trans-
forms them into linguistic variables. The membership func-
tions defined on the input values are applied to their actual
values in order to determine the degree at which they belong
to a particular fuzzy set. Every node ¢ in layer 1 has a node
function:

1_

O; = pA(z) (11)
Wir1 Wiy Wiz1 W1 Wax1 WY1 W22
WiTy WiYz Wiz W1 Wk WYz WaZe

w1
WiTE W1Yr Wik W1 Wk WYk W2Zk
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where x is the input to node 4, and A; is the linguistic label
(Very Low, Low, Moderate, High and Very High) associated
with this node function. O} is the MF of A; and it specifies
the degree to which the given « satisfies the quantifier A;. It
is confirmed in Inyang and Akinyokun!'#! that the triangu-
lar MF performs better than others in the task of predicting
and classifying oil spillage patterns. The general form of a
triangular MF is shown in Equation (5).

1 ifxr=2»5
r—a 3
_ ) b ifa<x<bd 12
Ha() T ifp<g<c (12)
0 ifc==x

where a, b, c are the parameters of the MF governing trian-
gular shape such that a < x < b, x is the external input from
PPP. Layer 2 computes the firing strength of each rule as
given in Equation (13), while nodes in layer 3 calculate the
ratio of the ith, rule’s firing strength to the sum of all rules’s
firing strengths as shown in Equation (14). The defuzzifier
(layer 4), which consists of consequent nodes for comput-
ing each rule contribution to the overall output is given in
Equation (15). Layer 5 has a single node and it computes
the overall output as the summation of all incoming signals
using Equation (16).

0? = w; = pAi(z) x uB;i(y) x puC;(2) (13)
03 = w; = =L (14)
i=1
Of =wifi =wilpir + qiy+ - +riz+s) (15
2 wifi
5 _ wif =+
Oi - Xi:wzfz - sz (16)
o
a1
T1
51
Wz W3T1 W3Yy1 Wz W3| [p, Y1
Wy W3ry W3Y2 W3Z2 W3| |g Y2
= a7
w2 wy| |2 :
Wy W3Tp WsYyk Wz W3] |52 Yi
b3
a3
T3
1S3 ]
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The hybrid learning comprises a forward pass and a back-
ward pass. During the forward pass, the node output goes
forward until layer 4 and the consequent parameters are up-
dated by least square method.""*38! In the backward pass,
the error signal propagates backwards and the premise pa-
rameters are updated by gradient method.['”) Suppose the
PPP training data set has £ entries, U represents the matrix
of premise parameters, B represents a matrix of consequent
parameters and V' is a vector of the desired output from the
training data set as shown in Equation (17).

Equation (17) can be compressed as follows:

where B is an unknown matrix whose elements are from
the consequent parameters set. The Least Square Estimator
(LSE) of B, B* is given by Equation (19).

B* = UTU)"'Uutv (19)
where U7 is the transpose of U and U ! is the inverse of
U. The elements of the consequent parameter matrix B are
estimated by Equation (19). The LSE B* seeks to minimize
the squared error |UB — V||? between the computed output
and the desired output.?® The consequent parameters that
correspond to this minimum squared error are captured by
the DEVS model for detection of activities on PPP.

UB=V (18)
Y
- 17 o > 5 [l
s'=6_(s,e,x )
.............................................. 5C(xi. n
§ 4 & jkt . A(A(S))
N R
s' :5;(s,e)

Figure 4. DEVS state transition model

3.2 DEVS controller

The DEVS controller for monitoring PPP as illustrated in
Figure 4 maintains an internal coupling mechanism which
enables the output of one component to be connected to the
input of another component.

At any time, the pipeline is in some states. The pipeline con-
tinues in this state until there are changes in PPP attributes
at time 7} (s). PPP data at time 7} (s) are ordered by the con-
fluent function (J..) and submitted to the external transition
function d,,(s, e, ) for processing. Time controller converts
the time crisp value into a pulse of specific time duration
usually a binary code. This binary code is used to activate
the discrete event controller to generate specific event for
a certain time. The combination of fuzzy logic time con-
trol system and discrete event system will form the resultant
DEVS.% The output function A in the DEVS controller
employs the flow rate value to determine the status y of PPP.
The DEVS model for PPP monitoring is described in a set
form in Equation (20) as follows:

DEVS-ANFIS = (X, 0., 0., T3, 6.,5, A\, Y) (20)

where X is a set of PPP input variables to be fuzzified;
0. : X — C, is the confluent function; §, : X — C, is the
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external transition function; T} : S — R* 0,00, 1S time as-
signed for monitoring petroleum pipeline; 6/, : S — S, is the
internal transition function; S is the set of PPP intermediate
and final states, Intermediate State = { Very Low, Low, Mod-
erate, High, Very High}, Final State = {Normal, Abnormal,
Highly Abnormal, Extremely Abnormal}; A : S — 5, is the
ANFIS function; A : S — Y, is the output function; Y is a
set of PPP status output.

The domain problem model formulation is illustrated thus.
Given that P, k = 1,2, --- , g is the set of PPP being mon-
itored; z;, j = 1,2,--- ,m represents the set of attributes
of PPP; x;,7 = 1,2,--- ,n represents the set of records in
the PPP dataset collected and T}, t = R ( o represents the
discrete time (positive real number between zero and infin-
ity) specified in DEVS model, then the confluent function 4,
which returns the ordered samples of ith data for jth attribute
of kth pipeline at time 7 is represented as follows:

Oc(@i g, Ty) = wi i (21)
where w; ;1 is the ordered samples of data x; ;j at time
T;. The elements of matrix of ordered attributes of PPP
arerepresented by E = {w111, W211,W311, " » Wnmq}. If
0z (w; ;1) while 8, (g; 1) represent external and internal tran-
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sition functions, respectively which return the average of
ordered data and the fuzzy value respectively for jth attribute
of kth pipeline, then:

,
6w(wi,j,7€) = ﬁzwi,jJC J= 1a27"' am7k: 1a27"' »q
i=1

(22)
0 ifgjr <a
(9j.k—a) ifa < a.
—;_a < g5k < b
03(95k) = 4 ) ’ 23)
P ifb<g;r<c
0 ifc < gk

where g; ;. is the average of ordered data of PPP; a, b and
c represent the parameters of the MF governing triangular

shape. The fuzzy value v; j,, returned by internal transition
function in Equation (23) is used by ANFIS function A(v; x)
for computation of flow rate as shown in Equation (24).

N
A(vjx) =Y _ Wy fr = Flow rate (f)

r=1

Very Low if f<0.1

Low  if0.1<f<0.4 (24)
= < Moderate if0.4 < f <0.7
High if0.7< f<0.8
Very High if0.8 < f < 1.0
where r = 1,2--- , N represents rules that govern the in-

put and output events on PPP based on Sugeno inference
mechanism. 0, is the normalized firing strength of rules f,
represents CMF which determines the flow rate.
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Figure 5. ANFIS inference editor
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Figure 6. ANFIS rule base editor
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4. IMPLEMENTATION AND DISCUSSION

The system was implemented with NetBeans IDE 7.3.1 and
MatLab 7.10 (R2010a) as the front-end tools; Microsoft
Excel and MYSQL Wamp Server 2.2 were the database man-
agement tools.

Matlab 7.10 (2010a) was chosen because of the rich libraries
of machine learning tools and the ease of defining FL func-
tion blocks and implementing FL. and ANFIS as well as
DEVS. The other tools are compatible with Matlab 2010a
and provided support for integrated processing of PPP param-
eters. ANFIS Inference and Rule Base Editors are shown in
Figures 5 and 6 respectively. The rulebase has a total of 625
rules; this is evaluated from five (5) membership functions
and four (4) attributes of PPP.

4.1 ANFIS training procedure

The ANFIS training window using hybrid learning algorithm
is depicted in Figures 7 and 8. It accepts four (4) input vari-
ables and one (1) output variable. Each of these variables
has five (5) membership functions, namely: Very Low, Low,
Moderate, High and Very High. The optimization method
employed is hybrid algorithm with error tolerance of 0.001.
The result shows that training error decreases as epoch in-
creases (from 1 to 5) and maintains a constant value from
epoch 6 with average training error of 0.10234. The testing
error at epoch 10 is depicted in Figure 7, while the summary
of training, testing, checking and average errors from epoch
1 to 10 are presented in Table 2 for hybrid algorithm and
Table 3 for back propagation algorithm.

B} Anfis Editor: S_ANFIS B3 E=R X Testing data : . FIS output : * — ANFISIfo.  —
File Edit View 0.6 . . ¥ .
o N Training Error — ANFISInfo.  — 05 , ‘. e . ) :z: ml:li:;1

ot Y| S b, + | lssss

o025 + el B . #. * " " * o4 #oftestdta

: - 0 03 .+++ *4 ++N++ + ¢ ;‘4* pairs: 33
0.1024 . 02 X P ** o4

A A A Structure vt 't * __ Stuctwre_|
01023y ) § 6 8 10 | Cesrput | MOS0 w0 5 w % | G |
Epochs M
Figure 7. ANFIS training with hybrid algorithm Figure 8. Plot of FIS input and ouput data
Table 2. ANFIS performance with hybrid algorithm

SN Number of epochs Training error Checking error Testing error Averageerror

1 100 0.10259 0.12960 0.12949 0.12056

2 200 0.10251 0.12957 0.12948 0.12052

3 300 0.10244 0.12945 0.11946 0.11712

4 400 0.10237 0.12943 0.11945 0.11708

5 500 0.11980 0.11920 0.01023 0.08307

6 600 0.10234 0.17394 0.16512 0.14713

7 700 0.10234 0.17394 0.16512 0.14713

8 800 0.10234 0.17394 0.16512 0.14713

9 900 0.10234 0.173%4 0.16512 0.14713

10 1000 0.10234 0.17394 0.16512 0.14713

A comparison of hybrid learning with back propagation algo-
rithm shows that ANFIS hybrid learning is relatively faster
to implement than back propagation algorithm. Hybrid learn-
ing algorithm requires a few number of training epochs to
converge, for instance in Table 3 the least training error is
observed at epoch 5. This training epoch is relatively small
compared to the 500 training epochs which has the least av-
erage error of 0.1203 in ANFIS back propagation algorithm
performance evaluation of Table 3. The quick convergence
Published by Sciedu Press

and fast reduction in training errors observed in the hybrid
learning algorithm is due to the integration of least square
strategy in the forward phase and back propagation gradi-
ent descent method in the backward phase. In this work,
hybrid learning strategy is employed and the values of conse-
quent paramaters with least testing and checking errors are
extracted and used in the DEVS system for classification of
activities on PPP.
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Table 3. ANFIS performance with backpropagation algorithm

SN Number of epochs Training error Checking error Testing error Averageerror
1 100 0.1383 0.1542 0.1513 0.1479
2 200 0.1295 0.1460 0.1442 0.1399
3 300 0.1208 0.1378 0.1388 0.1325
4 400 0.1120 0.1296 0.1325 0.1247
5 500 0.1103 0.1214 0.1292 0.1203
6 600 0.1102 0.1533 0.1751 0.1462
7 700 0.1101 0.1751 0.1868 0.1573
8 800 0.1200 0.1869 0.1831 0.1633
9 900 0.1602 0.1982 0.1934 0.1839
10 1000 0.1664 0.2180 0.1992 0.1945
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4.2 DEVS-controller Results

DEVS automatically monitors the input interface using the
time and event contollers, detects presence of new data and
coordinates for the PPP data computation while ANFIS pro-
vides the intellegence needed for efficient evaluation of PPP
status. Figures 9 and 10 show PPP events classification using
DEVS-ANFIS and comparison with desired output respec-
tively. As shown in Figure 10, the desired output value of
0.27 and DEVS-ANFIS value of 0.297 are observed for test
data series 1. The desired and DEVS-ANFIS outputs in-
crease to 0.643 and 0.636 respectively at test data 2. The
values of 0.98 and 1.000 are observed for desired and DEVS-
ANFIS outputs at test data 3, these values drop to 0.24 and
0.210 respectively at test data 4.

The value of desired and DEVS-ANFIS outputs tend to each
other at every test data series with exception of test data 13
where the desired output value of 0.17 differs significantly
from DEVS-ANFIS output of 0.521. Out of 33 data samples
in test data series, 32 correct detections and 1 incorrect detec-
tion were observed. The Mean Squared Error (MSE) value
of 0.0303 and correlation coefficient (r) value of 0.9697 was
obtained between the desired and the computed output. This
gives 96.97% correct detections on the test data.

5. CONCLUSIONS

This paper presents the development of a DEVS-ANFIS
platform suitable for monitoring PPP with automatic tools
for timing and dealing with simultaneous events from multi
pipeline locations as well as proposed an in-built intelligent
deductive inference mechanism for PPP status evaluation and
promotion of timely response to pipeline anomalies in the
petroleum industry. The introduction of cognitive reasoning
and self adaptive capabilities into DEVS systems enhance
the real time control and monitoring of these dynamic events.

It provides a speedy classification with minimized error level,
96.97% accuracy. The performance of DEVS-ANFIS on the
monitoring of pipeline activities yielded correlation coeffi-
cient (r) and Mean Squared Error (MSE) of 0.9697, 0.0303
respectively. These results are significantly better than per-
formance of Support Vector Machine (SVM) and Extreme
Learning Machine (ELM) of 0.1508 and 0.4258 for SVM and
0.1017 and 0.2063 for ELM Normalized Root Mean Square
Error (NRMSE) in the prediction of magnitude of leaks and
location of leaks reported in Salam et al.1*°! DEVS-ANFIS
is superior to SVM and ELM tools, therefore more suitable
for classification and detection of events on PPP.

This research, indeed develops an intelligent hybrid system
driven by DEVS and ANFIS for classification of activities
on PPP. In the ANFIS model, hybrid learning algorithm was
observed to converge faster than the back propagtion algo-
rithm in the detection of flowrate of petroleum products in
pipeline. DEVS coordinates PPP input and its transition func-
tionsto classify activities on PPP. A testing error of 0.0303
was observed in the evaluation of DEVS-ANFIS system on
33 test data set, 32 precise detections were observed with 1
incorrect detection. The DEVS-ANFIS system could resolve
conflicts of random data transmitted to the base station from
various petroleum products pipelines and could monitor, de-
tect, localize, quantify and classify activities such as “Very
Low”, “Low”, “Moderate”, “High”, “Very High” from multi-
locations PPPwith 96.97% level of confidence. As futher
directions, visualization of the underlying structures and rela-
tionships between the time and control parameters of PPP in
an unsupervised marnner will be demonstrated. In addition,
design and development of techniques to formally interface
DEVS-ANFIS towards the creation of interactive virtual re-
ality and simulation-based platform for PPP monitoring is
necessary.
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