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Abstract 

In this paper, a portfolio-level Liquidity Adjusted Value at Risk model is formulated by using the adapted approach 
based on the Cornish-Fisher expansion technique to account for non-normality in liquidity risk. Most models ignore 
the fact that liquidity costs which measure market liquidity are non-normally distributed and this leads to a severe 
underestimation of the total risk. The Cornish-Fisher expansion technique, as proposed by prior studies is used for 
correcting the percentiles of a standard normal distribution for non-normality and is simple to implement in practice. 
The empirical evidence obtained in this study shows that accounting for non-normality at portfolio level and using the 
modified approach produces much more accurate results than alternative risk estimation methodologies. The model is 
tested using emerging markets’ data as research on liquidity that primarily focuses on emerging markets yield 
particularly powerful tests and useful independent evidence since liquidity premium is an important feature of these 
data. 
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1. Introduction 

Large and random security price movements during financial crises cause liquidity gaps and most hedging strategies 
tend to fail when these crises occur. The financial crisis and the subsequent global recession of 2008-2012 have 
demonstrated how “a complete evaporation of liquidity” (Note 1) can cause the collapse of many financial institutions. 
Existing literature shows that investors should worry about a security’s performance and tradability both in market 
downturns and when liquidity “dries up” (Amihud 2002, Chordia et al. 2001, Acharya and Pedersen 2005, Bekaert et al. 
2007). There are many alternative measures of liquidity in the literature such as quoted bid-ask spreads, effective 
bid-ask spreads, turnover, the ratio of absolute returns-to-volume, adverse-selection and market-making cost 
components of price impact (Korajczyk and Sadka 2008).  

Prior studies have analyzed the importance of liquidity risk using a comprehensive liquidity measure in a 
Value-at-Risk (VaR) framework (Jarrow and Subramaniam 1997, Bangia et al. 2002, Angelidis and Benos 2006, 
Stange and Kaserer 2011). However, most LVaR models ignore the fact that liquidity costs, which measure market 
liquidity, are non-normally distributed displaying fat tails and skewness. Many studies show that the assumption of 
normally distributed returns is rejected for most financial time series, including those for individual stocks, stock 
indexes, exchange rates and precious metals. The argument of non-normality holds equally for liquidity costs. Stange 
and Kaserer (2008) analyze the distributional properties of liquidity costs and show that they are heavily skewed and 
fat-tailed. Ernst et al. (2012) suggest a parametric approach based on the Cornish–Fisher approximation to account for 
non-normality in liquidity risk.  

The goal of this paper is to extend the concept of including liquidity measure in centralized risk management tools such 
as VaR in order to develop a portfolio LVaR (Liquidity adjusted Value-at-Risk) model. The univariate or instrument 
level methodology suggested by Ernst et al. (2012) is used to develop a portfolio level LVaR model. The data on Indian 
stocks is used for the empirical part of the analysis as research on liquidity that primarily focuses on emerging markets 
yield particularly powerful tests and useful independent evidence since the liquidity premium is an important feature of 
these data (Bekaert et al. 2007). In recent years, many financial institutions have seen growth in their emerging markets 
trading activity due to higher margins. A risk-adjusted view of performance in those markets should account for 
liquidity risk as it is usually found to be higher in emerging markets due to lower volumes.  
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The paper is organized as follows; Section 2 provides a comprehensive literature review, Section 3 discusses the 
research methodology, Section 4 describes the data, Section 5 discusses the empirical performance of the modified 
LVaR model at the portfolio level, Section 6 presents robustness checks and Section 7 concludes. 

2. Literature Review 

The risk that a given security or asset cannot be traded quickly enough in the market to prevent or minimize a loss is 
termed liquidity risk. The last decade has seen considerable amount of research work directed towards managing 
liquidity risk while pricing an option. According to Acharya and Pedersen (2005), liquidity is risky and has 
commonalty: it varies over time both for individual stocks and for market as a whole. Their Liquidity –Adjusted 
Capital Asset Pricing Model provides a unified theoretical framework that explains the empirical findings that return 
sensitivity to market liquidity is priced (Pastor and Stambaugh, 2003), that average return is priced (Amihud and 
Mendelson, 1986) and that liquidity commoves with returns and predicts future returns (Amihud, 2002; Chordia et al., 
2001; Bekaert et al., 2007). Said differently, the model implies that investors should worry about a security’s 
performance and tradability both in market downturns and when liquidity “dries up”. Brunnermeier and Pedersen 
(2009) provide a model that links an asset’s market liquidity and trader’s funding liquidity. The model explains 
empirically documented features that market liquidity (i) can suddenly dry up, (ii) has commonality across securities, 
(iii) is related to volatility, (iv) is subject to “flight to quality” and (v) co-moves with the market. Importantly, the 
model links a security’s market illiquidity and risk premium to its margin requirement (i.e. funding use) and the general 
shadow cost of funding.  

There are many alternative measures of liquidity in the literature. Measures that have appeared in the literature include 
quoted bid-ask spreads, effective bid-ask spreads, turnover, the ratio of absolute returns-to-volume, and 
adverse-selection and market-making cost components of price impact. Korajczyk and Sadka (2008) estimate latent 
factor models of liquidity and a measure of global, across-measure systematic liquidity by estimating a latent factor 
model pooled across all measures. The results show that there is commonality, across assets, for each individual 
measure of liquidity and that these common factors are correlated across measures of liquidity. Return shocks are 
contemporaneously correlated with liquidity shocks and lead changes in liquidity. Additionally, shocks to liquidity 
tend to die out slowly over time. 

Liquidity risk is neglected by widely used risk management measures such as VaR. Derivatives users generally 
calculate a VaR measure for their derivatives portfolio and by not taking into account the liquidity risk component; 
they underestimate the portfolio risk exposures. VaR is an estimate of the maximum potential loss that may be incurred 
on a position for a given time horizon and a specified level of confidence. Since the publication of the 
market-risk-management system RiskMetrics (Note 2) of JP Morgan in 1994, VaR has gained increasing acceptance 
and is now considered as industry’s standard tool to measure market risk. In calculating VaR, it is assumed that the 
positions concerned can be liquidated or hedged within a fixed and fairly short timeframe (in general one day to ten 
days), that the liquidation of positions will have no impact on the market and that the bid-ask spread will remain stable 
irrespective of the size of the position, in essence a perfect market is assumed. The price referred to is often the 
mid-price or the last known market price. However, the quoted market price cannot be used as a basis for valuating a 
portfolio that is to be sold on a less than perfectly liquid market: in practice, account must be taken of its orderly 
liquidation value or even its distress liquidation value.  

Jarrow and Subramaniam (1997) were among the first to estimate liquidity-adjusted VaR (LVaR), taking account of 
the expected execution lag in closing a position and the market impact of prices being adversely effected by a quantity 
discount that varies with the size of the trade. The model requires three quantities which increase the loss level – 
namely a liquidity discount, the volatility of the liquidity discount and the volatility of the time horizon to liquidation. 
Whilst this model is robust and fairly easy to implement, estimating these quantities is by no means trivial. Indeed, 
some may only be determined empirically with the accompanying introduction of significant bias. Bangia et al. (2002) 
propose similar measures of LVaR, they classify the liquidity risk into two different categories: (i) the exogenous 
illiquidity that depends on the general conditions of the market and (ii) the endogenous illiquidity which relates the 
position of a trader with the bid-ask spread. By focusing on the exogenous risk, they construct an LVaR measure for 
both the underlying instrument and the bid-ask spread. Specifically, they adjust the VaR number for “fat” tails and for 
the variation of the bid-ask spread. 

Hisata and Yamai (2000) propose a practical framework for the quantification of LVaR which incorporates the market 
liquidity of financial products. The framework incorporates the mechanism of the market impact caused by the 
investor’s own dealings through adjusting VaR according to the level of market liquidity and the scale of the investor’s 
position. In addition, they propose a closed-form solution for calculating LVaR as well as a method of estimating 
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portfolio LVaR. Angelidis and Benos (2006) relax the traditional, yet unrealistic, assumption of a perfect, frictionless 
financial market where investors can either buy or sell any amount of stock without causing significant price changes. 
They extend the work of Madhavan et al. (1997) (who argue that traded volume can explain price movements) and 
develop a liquidity VaR measure based on spread components. Under this framework, the liquidity risk is decomposed 
into its endogenous and exogenous components, thereby permitting an assessment of the liquidation risk of a specific 
position.  

Stange and Kaserer (2011) analyze the importance of liquidity risk using a comprehensive liquidity measure, weighted 
spread, in a Value-at-Risk (VaR) framework. The weighted spread measure extracts liquidity costs by order size from 
the limit order book. Using a unique, representative data set of 160 German stocks over 5.5 years, they show that 
liquidity risk is an important risk component. Liquidity risk increases the total price risk by over 25%, even at 10-day 
horizons and for liquid blue chip stocks and especially in larger, yet realistic order sizes beyond €1 million. When 
correcting for liquidity risk, it is commonly assumed that liquidity risk can be simply added to price risk. The empirical 
results show that this is not correct, as the correlation between liquidity and price is non-perfect and total risk is thus 
overestimated. According to Ernst et al. (2012) liquidity costs, which measure market liquidity, are non-normally 
distributed, displaying fat tails and skewness. Most liquidity risk models either ignore this fact or use the historical 
distribution to empirically estimate worst losses. They suggest a parametric approach based on the Cornish–Fisher 
approximation to account for non-normality in liquidity risk. They show how to implement this methodology in a large 
sample of stocks and provide evidence that it produces much more accurate results than alternative empirical risk 
estimation. 

3. Research Methodology 

Value-at-Risk (VaR) is a number that represents the potential change in a portfolio’s/asset’s future value. This change 
is defined based on (1) the horizon over which the portfolio’s change in value is measured and (2) the “degree of 
confidence” chosen by the risk manager. To compute the VaR of an asset over a 1-day horizon with α% chance 
(confidence interval) that the actual loss in the asset’s value does not exceed VaR estimate consists of the following 
steps: 

Asset returns rt are computed as the log difference of mid-prices ௠ܲ௜ௗ,௧ (the average of bid ask values of the asset at 
time t) ݎ௧ାଵ = lnൣ ௠ܲ௜ௗ,௧ାଵ൧ − lnൣ ௠ܲ௜ௗ,௧൧ = ln ቈ ௠ܲ௜ௗ,௧ାଵ௠ܲ௜ௗ,௧ ቉ 
The α% worst case value assuming normal returns is   ෠ܲ௧ାଵ = ௠ܲ௜ௗ,௧݁[ఓೝି௭ഀ(௥)ఙೝ] 
Where ෠ܲ௧ାଵ = ௠ܲ௜ௗ,௧݁௥̂೟శభ ̂ݎ௧ାଵ = ௥ߤ −  ௥ߪ(ݎ)ఈݖ
Assuming the return on this asset is distributed conditionally normal, the relative VaR estimate is ܸܴܽ = ௉೘೔೏,೟ି௉෠೟శభ௉೘೔೏,೟ = ௉೘೔೏,೟൫ଵି௘[ഋೝష೥ഀ(ೝ)഑ೝ]൯௉೘೔೏,೟ = ൫1 − ݁[ఓೝି௭ഀ(௥)ఙೝ]൯            (Equation 1) 

The above expressions for α% worst case value ( ෠ܲ௧ାଵ) and potential loss (relative VaR estimate) only consider the 
volatility of the mid-price, whereas on an average the bid-price is expected to be ½ times average spread below that. 
Moreover, in unusual tail-event circumstances due to overall market conditions liquidity risk is defined in terms of a 
confidence interval or a tail probability. Bangia et al. (2002) define the exogenous cost of liquidity (COL) based on 
average spread plus a multiple of the spread volatility ̂ݖఈ(ܵ)ߪௌ to cover α% of the spread situations   ܮܱܥ = 12 ൣ ௠ܲ௜ௗ,௧(ߤௌ +  ௌ)൧ߪ(ܵ)ఈݖ̂
The achievable transaction price ்ܲ஺,௧ାଵ accounting for liquidity cost is  

்ܲ஺,௧ାଵ = ௠ܲ௜ௗ,௧݁[ఓೝି௭ഀ(௥)ఙೝ] − ܮܱܥ = ௠ܲ௜ௗ,௧݁[ఓೝି௭ഀ(௥)ఙೝ] − 12 ൣ ௠ܲ௜ௗ,௧(ߤௌ +  ௌ)൧ߪ(ܵ)ఈݖ̂
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்ܲ஺,௧ାଵ = ௠ܲ௜ௗ,௧ ൬݁௥೟శభ − 12 ݁௥೟శభܵ௧ାଵ൰ 

Where ݎ௧ାଵ = ௥ߤ − ௥ ܵ௧ାଵߪ(ݎ)ఈݖ = ௌߤ +  ௌߪ(ܵ)ఈݖ̂
Applying the simplification that ݁௥೟శభ is almost equal to 1, the price is 

்ܲ஺,௧ାଵ ≈ ௠ܲ௜ௗ,௧ ൬݁௥೟శభ − 12 ܵ௧ାଵ൰ 

The relative Liquidity-adjusted VaR measure (assuming a normal distribution with mean ߤ௥ as zero) according to 
Bangia et al. (2002) is   ܴܸܽܮ = ௠ܲ௜ௗ,௧ − ்ܲ஺,௧ାଵ௠ܲ௜ௗ,௧  

ܴܸܽܮ = ௠ܲ௜ௗ,௧ − ௠ܲ௜ௗ,௧݁௥೟శభ ቀ1 − 12ܵ௧ାଵቁ௠ܲ௜ௗ,௧  

ܴܸܽܮ = 1 − ݁௥೟శభ ൬1 − 12ܵ௧ାଵ൰ 

ܴܸܽܮ = 1 −	݁ି௭ഀ(௥)ఙೝ +	ଵଶ ௌߤ) +  ௌ)                   (Equation 2)ߪ(ܵ)ఈݖ̂

A normal distribution is fully described by its first two moments: mean and variance. Higher centralized moments like 
skewness and excess kurtosis are zero. However, if the distribution is non-Gaussian, higher moments will also 
determine loss probabilities. For this reason, it is not accurate to use standard percentiles of a normal distribution for 
the calculation of the LVaR of nonnormally distributed returns. Cornish and Fischer (1937) were the first to modify the 
standardized percentiles of a normal distribution in a manner that accounted for higher moments. They obtained 
explicit polynomial expansions for standardized percentiles of a general distribution in terms of its standardized 
moments and the corresponding percentiles of the standard normal distribution. Their procedure is commonly known 
as the Cornish-Fischer expansion. Using the first four moments (mean, variance, skewness and kurtosis), the 
Cornish-Fischer expansion approximating the α-percentile ̃ݖఈ of a standardized random variable is calculated as: ̃ݖఈ ≈ 	 ఈݖ +	ଵ଺ ఈଶݖ) − 1) ∗ ߛ +	 ଵଶସ ఈଷݖ) − (ఈݖ3 ∗ ߢ −	 ଵଷ଺ ఈଷݖ2) − (ఈݖ5 ∗  ଶ           (Equation 3)ߛ

Where ݖఈ is the α-percentile of an N (0,1) distribution, where ߛ denotes skewness and ߢ denotes the excess kurtosis 
of the random variable. The skewness of y is computed from historical data over n days as: ߛ = 	 ଵ௡ ∑ (௬೟ି௬ത)యఙෝయ௡௧ୀଵ                                   (Equation 4) 

With ݕത being the expected value and ߪො being the volatility of y. The excess kurtosis for y is:  ߢ = 	 ଵ௡ ∑ (௬೟ି௬ത)రఙෝర௡௧ୀଵ − 	3                                 (Equation 5) 

Ernst et al. (2012) propose an adapted model based on the Cornish Fisher expansion technique used to correct the 
percentiles of a standard normal distribution. They apply the Cornish-Fischer approximation ̃ݖఈ to the basic spread 
model of Bangia et al. (2002) to obtain the following modified LVaR estimate: ܴܸܽܮ = 1 −	݁ఓೝି௭෤ഀ(௥)ఙೝ(1 −	ଵଶ ௌߤ) +  ௌ))                      (Equation 6)ߪ(ܵ)ఈݖ̃

where ̃ݖఈ(ݎ) is the percentile of the return distribution accounting for its skewness and kurtosis, ̃ݖఈ(ܵ) is the 
corresponding spread distribution percentile. Ernst et al. (2012) use the methodology described above (Equation 6) to 
compute LVaR estimates at instrument level and simply take the mean of the LVaR estimates for the analysis of more 
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than one instrument. There is no explicit methodology suggested in their paper to compute a portfolio level LVaR 
model.  

One approach for a full portfolio level treatment for liquidity risk is suggested in Bangia et al. (2002). They suggest 
computing the portfolio-level bid and ask series by taking the weighted sum of the bids and asks of the instruments. 
However, Bangia et al. (2002) assume that the returns are normally distributed while computing the portfolio LVaR 
estimates using this approach. Many studies (Stange and Kaserere 2011, Ernst et al. 2012) show that the assumption of 
normally distributed returns is rejected for most financial time series, including those for individual stocks, exchange 
rates, precious metals etc.  

In this study, the portfolio level bid and ask series is computed by taking the weighted sum of the bids and asks of the 
instruments (suggested by Bangia et al. 2002) and this bid-ask data is used for calculating the portfolio-level estimate 
LVaR (Modified) using Equation 6 (discussed by Ernst at al. 2012). Therefore, this study discusses the approach for 
calculating a portfolio-level LVaR (Modified) measure by using the adapted model based on the Cornish-Fisher 
expansion technique used for correcting the percentiles of a standard normal distribution for non-normality. 

4. Data Description 

The required price and bid-ask spread data of the stocks is obtained from the database Datastream for the time period 
from January 2010 to December 2014. Table 1 contains the exact description of the sample portfolios used for the 
analysis. Indian stocks belonging to diverse sectors are selected based on data availability during the analysis period. 
Descriptive statistics of relative bid-ask spreads for the stocks in the Nifty portfolio are presented in Table 2. The 
analysis for all the portfolios is included in the next section. 

 

Table 1. Compositions of equally-weighted portfolios for analysis 

Nifty Infra Service Midcap Smallcap 

Bajaj Auto JSW Energy Infosys Apollo Hospitals Bombay Dyeing 

Cipla Crompton Greaves Adani Ports DLF Escorts 

ITC Tata Communications Axis Bank Jindal Steel Chambal Fertilizers 

Gail IRB Infra. Bharti Airtel SUN TV Gujarat Fluorochemicals 

 

The relative bid-ask is found via formula,  ܴ݈݁ܽ݁ݒ݅ݐ	ܾ݅݀ − ݀ܽ݁ݎ݌ݏ	݇ݏܽ = 	2 ∗ (௔௦௞ି௕௜ௗ)௔௦௞ା௕௜ௗ                         (Equation 7) 

 
Table 2. Descriptive statistics of relative bid-ask spreads calculation using Equation 7 (in percent) 

  2010 2011 2012 2013 2014 

BAJAJ AUTO            
Mean 0.113697 0.120219 0.099602 0.11798251 0.10985539 
Standard deviation 0.093527 0.112087 0.084476 0.11388243 0.08982457 
            
CIPLA            
Mean 0.098872 0.09883 0.08406 0.08636526 0.0887063 
Standard deviation 0.088175 0.082422 0.067186 0.06988485 0.07172833 
            
ITC            
Mean 0.078364 0.06339 0.066908 0.06300317 0.06114429 
Standard deviation 0.059586 0.049315 0.052912 0.05235501 0.05165432 
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GAIL            
Mean 0.109129 0.133158 0.129201 0.14582128 0.13523665 
Standard deviation 0.097361 0.114772 0.105513 0.13524092 0.11173876 
            
Observations per firm 247 247 247 248 243 

 

Table 2 shows that ITC is the most liquid stock with the smallest spread and GAIL is the least liquid stock with the 
largest spread for the time period from 2010 to 2014. The spread volatility values show that not only is the spread 
lowest for ITC but it also varied considerably less over time compared to the other stocks. 

5. Empirical Performance 

In this section, the risk estimates for the individual stocks are computed first using measures suggested by existing 
research to check whether the results obtained using emerging markets’ data are consistent with the prior theory. Then 
the empirical estimates for the portfolio are computed using the modified LVaR model.  

Conforming to the standard Basel framework, risk is estimated using a one-day horizon and a 99% confidence level. 
The values of relative spread means and return means required for the LVaR model (refer Equation 6) are estimated 
using a twenty day rolling procedure.  

One day asset returns at time t are calculated as the log difference of mid-prices: ݎ௧ାଵ = lnൣ ௠ܲ௜ௗ,௧ାଵ൧ − lnൣ ௠ܲ௜ௗ,௧൧ = ln ൤௉೘೔೏,೟శభ௉೘೔೏,೟ ൨                       (Equation 8) 

Volatilities of relative spread (Equation 7) and return (Equation 8) are also calculated rolling over twenty days. 
Volatility clustering is accounted for using a common exponential weighted moving average method with a weight δ of 
0.94 as: ߪ௧ଶ = (1 − ∑(ߜ ௧ି௜ଶݎ௜ିଵߜ +ଶ଴௜ୀଵ ௧ିଶ଴ଶݎଶ଴ߜ                           (Equation 9) 
Skewness (Equation 4) and excess kurtosis (Equation 5) are calculated as 500-day rolling estimates. The long 
estimation horizon is chosen as the estimates are heavily influenced by outliers. However, to keep the sample as large 
as possible and to include the first two years in the results period, shorter rolling windows in the increasing order of 20, 
50, 100 & 250-day are included at the beginning of the sample. Skewness and excess kurtosis estimates for Spread and 
return are presented in Table 3. 

 

Table 3. Relative Spread & Return moment estimates 

  (a) Spread moment estimates 

  BAJAJ AUTO CIPLA  ITC GAIL  

Skewness       

Mean 1.693839209 1.822292261 2.013397495 1.772488258 

Median 1.740354438 1.679014116 2.106195292 1.800388092 

Standard deviation 0.278628996 0.384730719 0.384833247 0.555467708 

  

Kurtosis 

Mean 3.647316173 4.922664444 6.690311755 5.595536253 

Median 3.890146269 3.857497105 6.814681255 4.302191846 

Standard deviation 1.441803241 2.462479477 2.661017741 4.253710592 
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  (b) Return moment estimates 

  BAJAJ AUTO CIPLA  ITC GAIL  

Skewness       

Mean 0.126332404 0.070600171 -0.05665188 0.045883306 

Median 0.037823072 0.081129108 -0.16960306 -0.042300135 

Standard deviation 0.25063248 0.281448566 0.423730486 0.262188642 

  

Kurtosis 

Mean 0.851454442 1.674145 1.882035737 0.485880215 

Median 0.902888808 1.424672729 1.858183712 0.337319939 

Standard deviation 0.3489489 0.915809932 0.977181887 0.549955371 

 

Empirical 99% percentile estimate of ̂ݖఈ(S) shown in Table 4 are calculated according to the Bangia et al. (2002) 
framework as: ̂ݖఈ = ( መܵఈ −  ௌ                               (Equation 10)ߪ/(ௌߤ
where መܵఈ is the percentile spread of the past twenty-day historical distribution and ߤௌ and ߪௌ are mean and volatility 
of the relative spread. 

 

Table 4. Empirical percentile estimates for the Bangia model 

  BAJAJ AUTO CIPLA  ITC GAIL  

Mean 1.646200565 1.562148885 1.555050208 1.621059388 

Median 1.600283939 1.504682854 1.477278938 1.595656437 

Standard deviation 0.460316135 0.474548719 0.510702042 0.486299454 

 

Using the first four moments (mean, variance, skewness and kurtosis), the percentiles based on the Cornish-Fisher 
approximation are calculated for relative spreads and returns using Equation 3 (Table 5). 

 

Table 5. Cornish-Fischer percentile estimates – Spread & Return 

  BAJAJ AUTO CIPLA  ITC GAIL  

Spread         

Mean 3.314796833 3.510807394 3.788462333 3.638404654 

Median 3.379408608 3.399985274 3.801174484 3.437969448 

Standard deviation 0.234776953 0.323706586 0.44515262 0.738801237 

Return 

Mean 2.588458345 2.737654317 2.655693383 2.446938434 

Median 2.557345522 2.76865779 2.500223997 2.380306519 

Standard deviation 0.153474096 0.192993233 0.37992527 0.202782626 

 

Table 6 shows empirical risk estimates for VaR or Price risk (Equation 1), LVaR measure (Equation 2) according to 
Bangia et al. (2002) and the LVaR measure suggested by Ernst et al. (2012) methodology (Equation 6). The LVaR 
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measure provides the highest risk estimates suggesting that neglecting liquidity risk or the assumption of normally 
distributed returns leads to underestimation of the total risk of an asset. Since, ITC is the most liquid stock with the 
smallest spread and GAIL is the least liquid stock with the largest spread therefore as expected GAIL has the highest 
risk estimate and ITC has the lowest.  

 

Table 6. Risk estimates for individual stocks 

 % BAJAJ AUTO  CIPLA  ITC GAIL  

Price risk       

Mean 3.632656699 3.37084671 3.258682793 3.70610231 

Median 3.467297221 3.186048101 3.106862453 3.549050878 

Standard dev. 1.081814956 1.04598625 1.032842813 1.050924702 

LVaR (Bangia et al.)         

Mean 3.803240547 3.504543781 3.354800877 3.904938768 

Median 3.633192289 3.327872271 3.192487517 3.756645786 

Standard dev. 1.087671406 1.05800485 1.034768181 1.060040644 

LVaR (Ernst et al.)       

Mean 4.221186275 4.139432607 3.80161315 4.254589843 

Median 4.03003585 3.943251974 3.612603736 4.107947502 

Standard dev. 1.255921982 1.300857475 1.305408989 1.21632208 

 

In order to compute the portfolio-level risk estimates, an equally-weighted portfolio is constructed using the stocks 
Bajaj Auto, Cipla, ITC and Gail. The portfolio level bid-ask series is computed by taking the equally weighted sum of 
the bids and asks of the instruments. Table 7 shows empirical estimates for the portfolio using equations 1-6. The 
portfolio LVaR (Modified) measure is calculated using the approach described in section 3 (Research Methodology). 
The portfolio level bid-ask series is computed by taking the weighted sum of the bids and asks of the instruments and 
this series is used to calculate LVaR (modified) measure. According to Table 7, the portfolio LVaR (Modified) 
measure provides the highest risk estimates, showing that neglecting liquidity risk or assuming that the returns are 
normally distributed leads to a severe underestimation of the total risk. The portfolio-level analysis is repeated using 
distinct portfolios (refer Table 1) and the results are presented in Tables 8, 9, 10 & 11. The results remain the same. 

 

Table 7. Portfolio risk estimates (weights: Bajaj Auto = .25, Cipla = .25, ITC = .25 & GAIL = .25) 

  Relative Spread Return Skewness(S) Kurtosis(S) Skewness (R) Kurtosis (R)

Mean 0.107504734 0.000659609 1.467476417 2.71448549 0.054965396 0.569078752 

Median 0.092079206 0.000591684 1.486144595 2.688464986 0.002645487 0.556628963 

Std Dev. 0.066141839 0.012148188 0.291730956 1.082309236 0.192383672 0.244441789 

  

  z-alpha(Bangia) z-cornish(S)
z-cornish 

(R) 
Price Risk 

(%) 
LVaR 

(Bangia) % 
LVaR 

(Modified) %

Mean 1.222216147 3.196860544 2.48462352 2.681242886 2.809134596 3.026726895 

Median 1.195095316 3.216251046 2.455297707 2.564681479 2.69314726 2.907314097 

Std Dev. 0.351456225 0.201711476 0.16309667 0.765116261 0.772016994 0.860140693 
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Table 8. Portfolio risk estimates - Infra (weights: JSW Energy = .25, Crompton Greaves = .25, Tata Communications 
= .25 & IRB Infra. = .25) 

Relative Spread Return Skewness(S) Kurtosis(S) Skewness (R) Kurtosis (R)

Mean 0.157935569 1.41699E-05 5.355810542 71.75344423 -0.248326109 0.469428191

Median 0.142673258 0.000426268 7.519791353 106.3839229 -0.288795359 0.351296393

Std Dev. 0.100376706 0.018994293 3.525948658 58.09914333 0.188124925 0.561464923

z-alpha(Bangia) z-cornish(S) z-cornish (R)
Price Risk 

(%) 
LVaR 

(Bangia) % 
LVaR 

(Modified) %

Mean 0.962803869 7.565285392 2.217071326 4.103538767 4.274740198 4.626610064

Median 0.826826105 7.052219911 2.147985599 3.896207647 4.03519867 4.446329983

Std Dev. 0.51004316 3.942126764 0.190830865 1.322265372 1.356173616 1.580766816

 

Table 9. Portfolio risk estimates – Service (weights: Infosys = .25, Adani Ports = .25, Axis Bank = .25 & Bharti Airtel 
= .25) 

  Relative Spread Return Skewness(S) Kurtosis(S) Skewness (R) Kurtosis (R)

Mean 0.0741 0.000435111 1.714800637 6.503649642 -0.653438834 5.888855817 

Median 0.06701 0.000322182 1.710293617 7.150128066 -0.400893165 1.650917704 

Std Dev. 0.03893 0.013166059 0.689939776 5.484808131 0.547232875 7.068327307 

          

  z-alpha(Bangia) z-cornish(S) z-cornish (R)

Price Risk 

(%) 

 LVaR 

(Bangia) % 

LVaR 

(Modified) %

Mean 0.99109 3.820876166 2.948796556 2.807252427 2.885473771 3.605684819 

Median 0.91061 3.972776354 2.371200501 2.602336958 2.673507938 3.374473219 

Std Dev. 0.36344 0.731215626 0.942148285 1.084436172 1.0905948 1.566669063 
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Table 10. Portfolio risk estimates – Midcap (weights: Apollo Hospitals = .25, DLF = .25, Jindal Steel = .25 & SUN TV 
= .25) 

  Relative Spread Return Skewness(S) Kurtosis(S) Skewness (R) Kurtosis (R)

Mean 0.146051035 -7.761E-06 1.489623316 3.54335582 -0.140138502 1.39654264 

Median 0.129639101 0.00036725 1.410208357 3.253552569 -0.134623322 1.52654544 

Std Dev. 0.082192034 0.015546717 0.290370656 1.609695564 0.247151212 0.640799716

          

  

z-alpha(Bangia

) z-cornish(S) z-cornish (R)

Price Risk 

(%) 

 LVaR 

(Bangia) % 

LVaR 

(Modified) %

Mean 0.997695483 3.382423285 2.519277212 3.350106665 3.504348381 3.958999614

Median 0.937836913 3.362695885 2.524618869 3.08827959 3.247171337 3.615072742

Std Dev. 0.357524515 0.251430845 0.207740312 1.137948206 1.149147036 1.400492434

 

Table 11. Portfolio risk estimates – Smallcap (weights: Bombay Dyeing = .25, Escorts = .25, Chambal Fertilizers = .25 
& Gujarat Fluorochemicals = .25) 

  Relative Spread Return Skewness(S) Kurtosis(S) Skewness (R) Kurtosis (R)

Mean 0.268267967 0.000657802 1.48803039 3.781139361 -0.185756732 1.713362573

Median 0.221000049 0.000629973 1.611484413 4.326471495 -0.213558163 1.432035791

Std Dev. 0.183821156 0.020233165 0.421688997 2.172755092 0.264387721 1.006434075

          

  

z-alpha(Bangia

) z-cornish(S)

z-cornish 

(R) 

Price Risk 

(%) 

 LVaR 

(Bangia) % 

LVaR 

(Modified) %

Mean 1.11368239 3.403449557 2.550865548 4.322830752 4.629891459 5.289657154

Median 1.030217681 3.511846396 2.582819486 4.049927902 4.370264702 4.99341017 

Std Dev. 0.393071007 0.426229472 0.213752974 1.492421893 1.507556678 1.753073502
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6. Backtesting Results 

Using the close price as the liquidation price of the stocks instead of the mid-value of the bid and ask prices, the return 
values are calculated as follows: ܴ݁݊ݎݑݐ௧ = ln ൬௉೟೎೗೚ೞ೐௉೟షభ೎೗೚ೞ೐൰                             (Equation 11) 

The value of exceedance E is taken as one if the value of the realized loss (computed using Equation 11) is larger than 
the predicted loss. ܧ = ௧݊ݎݑݐܴ݁ <  ௧                           (Equation 12)ܴܸܽܮ−	
Table 1 contains the exact composition of the equally-weighted portfolios from diverse segments for backtesting 
analysis. The values of Price Risk or VaR, LVaR (Bangia) and LVaR (Modified) for the portfolios are shown in Tables 
7, 8, 9, 10 and 11. The required close price of the stocks is obtained from the database Datastream for the time period 
from January 2010 to December 2014. Table 12 shows the magnitude of exceedances E at portfolio level for VaR, 
LVaR (Bangia) and LVaR (Modified) in period from January 2010 to December 2014 (Number of days = 1212). 
According to Kupiec’s ‘proportion of failures’ (PF) coverage tests, only LVaR (Modified) measure is not rejected 
at .01 significance level. 

 

Table 12. Magnitude of exceedances in period from January 2010 to December 2014 (1212 days) 

Measure\Portfolio Nifty Infra Service Midcap Smallcap 

VaR 18 24 23 26 27 

LVaR (Bangia) 12 20 21 23 21 

LVaR (Modified) 9 20 13 13 10 

 

7. Conclusion 

This paper discusses the approach for calculating a portfolio-level LVaR measure by using the adapted model based on 
the Cornish-Fisher expansion technique used for correcting the percentiles of a standard normal distribution for 
non-normality. The data on Indian stocks is used for the empirical part of the analysis as research on liquidity that 
primarily focuses on emerging markets yield particularly powerful tests and useful independent evidence since the 
liquidity premium is an important feature of these data (Bekaert et al. 2007). Indian stocks belonging to diverse sectors 
are selected based on data availability during the period from January 2010 to December 2014. The empirical evidence 
shows that the portfolio LVaR (Modified) measure provides the highest risk estimates. The backtesting results 
demonstrate the superiority of the LVaR (Modified) estimates when compared to alternative estimation techniques. 
Overall, the results prove that neglecting liquidity risk or assuming that the returns are normally distributed leads to a 
severe underestimation of the total risk. Furthermore, the Cornish-Fisher procedure used gains accuracy with the 
length of the estimation horizon hence future research could address this limitation.  

References 

Acharya, Viral, & Lasse Pedersen. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77(2), 
375-410. http://dx.doi.org/10.1016/j.jfineco.2004.06.007 

Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Marketsm 
5(1), 31–56. http://dx.doi.org/10.1016/S1386-4181(01)00024-6 

Amihud, Y., & H. Mendelson. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17(2), 
223–249. http://dx.doi.org/10.1016/0304-405X(86)90065-6 

Angelidis, T., & A. Benos. (2006). Liquidity adjusted value-at-risk based on the components of the bid–ask spread. 
Applied Financial Economics, 16(11), 835–851. http://dx.doi.org/10.1080/09603100500426440 

Bangia, A., Francis X. Diebold, Til Schuermann, & John D. Stroughair. (2002). Modeling Liquidity Risk with 
Implications for Traditional Market Risk Measurement and Management. The New York University Salomon 
Center Series on Financial Markets and Institutions, 8, 3-13. http://dx.doi.org/10.1007/978-1-4615-0791-8_1 

Bekaert, G., C.R Harvey, & C. Lundblad. (2007). Liquidity and Expected Returns: Lessons from Emerging Markets. 



http://ijfr.sciedupress.com International Journal of Financial Research Vol. 7, No. 5; 2016 

Published by Sciedu Press                        98                           ISSN 1923-4023  E-ISSN 1923-4031 

Review of Financial Studies, 20(6), 1783-1831. http://dx.doi.org/10.1093/rfs/hhm030 

Black, Fischer, & Myron Scholes. (1973). The Pricing of Options and Corporate Liabilities. The Journal of Political 
Economy, 81(3), 637-654. http://dx.doi.org/10.1086/260062 

Bongaerts, Dion, Frank De Jong, & Joost Driessen, (2011). Derivative Pricing with Liquidity Risk: Theory and 
Evidence from the Credit Default Swap Market. Journal of Finance, 66(1), 203-240. 
http://dx.doi.org/10.1111/j.1540-6261.2010.01630.x 

Breeden, Douglas T., & Robert H. Litzenberger. (1978). Prices of State-Contingent Claims Implicit in Option Prices. 
Journal of Business, 51(4), 621-651. http://dx.doi.org/ 10.1086/296025 

Brunnermeier, Markus K., & Lasse Heje Pedersen. (2009). Market Liquidity and Funding Liquidity. Review of 
Financial Studies, 22(6), 2201-2238. http://dx.doi.org/10.1093/rfs/hhn098 

Chordia, T., R. Roll, & A. Subrahmanyam. (2001). Market liquidity and trading activity. Journal of Finance, 56(2), 
501–530. http://dx.doi.org/10.1111/0022-1082.00335 

Ernst, C., Sebastian Stange, & Christoph Kaserer. (2012). Accounting for nonnormality in liquidity risk. The Journal 
of Risk, 14(3), 3–21. http://dx.doi.org/10.2139/ssrn.1316769 

Jarrow, R., & A. Subramanian, A. (1997). Mopping up liquidity. Risk, 170–173. 

Korajczyk, Robert, & Ronnie Sadka. (2008). Pricing the Commonality Across Alternative Measures of Liquidity. 
Journal of Financial Economics, 87(1), 45-72. http://dx.doi.org/10.1016/j.jfineco.2006.12.003 

Madhavan, A., M. Richardson, & M. Roomans. (1997). Why Do Security Prices Change? A Transaction-Level 
Analysis of NYSE Stocks. The Review of Financial Studies, 10(4), 1035–1064. 
http://dx.doi.org/10.1093/rfs/10.4.1035 

Pastor, Lubos, & Robert F. Stambaugh. (2003). Liquidity Risk and Expect Stock Returns. Journal of Political 
Economy, 111, 642-685. http://dx.doi.org/10.1086/374184 

Stange, S., & C. Kaserer. (2008). The impact of order size on stock liquidity – A representative study. CEFS Working 
Paper No. 2008-9. http://dx.doi.org/10.2139/ssrn.1292304 

Stange, S., & C. Kaserer. (2011). The impact of liquidity risk: a fresh look. International Review of Finance, 11(3), 
269–301. http://dx.doi.org/10.1111/j.1468-2443.2010.01113.x 

 

Notes 

Note 1. BNP Paribas terminated withdrawals from three hedge funds citing “a complete evaporation of liquidity” on 
August 9th, 2007. 

Note 2. JP Morgan, 1996, RiskMetrics – Technical Document, Fourth Edition, New York. 


