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Abstract 

Massive stock market failures in the past decades cast a doubt on the standard normality assumption of many 

economic models. Despite decent research on the non-Gaussian characteristics of many financial time series, the 

question of tail heaviness still remains open. We conduct diagnostic analysis on the conditional distribution of asset 

returns of small/large companies (Russell 2000 and S&P 500) to look for clear evidence on the presence of heavy 

tails. We employ extreme value (EVT) tools in order to estimate the shape parameter (�̂�) of Generalized Pareto 

distribution (GPD) using a well-known “Hill estimator”. It turns out that the shape parameter lies in the interval 

�̂� ∈ ,2.6; 2.8- implying that the conditional distribution of asset returns supposedly has finite mean and variance. 

We also find an evidence that the tail estimates experience structural breaks during 2008 Global Financial Crisis.  

Keywords: conditional distribution of asset returns, heavy tails, extreme value tools, generalized pareto distribution, 

Hill estimator, tail index 

JEL: C01, C46, C58. 

1. Introduction 

Imagine predicting the unpredictable or expecting the unexpected. Our lives would lose its taste and meaning. It is 

the unpredictable which makes humanity to outdo itself, leading to great achievements throughout the history. “Black 

Swans” in the literature are known as rare and unpredictable events with serious ramifications, which are not 

normally expected. The famous book of Taleb (2007) “Black Swans” inspired me to express the idea of extremal 

events from the perspective of economics. In the last few decades, we have witnessed some serious economic crises, 

which are directly reflected in stock market indicators. It is obvious that many economic models fail to predict such 

abnormalities in the world, the standard assumption in which is the normality of distribution under the consideration. 

For instance, the option pricing models require the normality of asset returns or take any other models in risk 

management. It is a well-known fact that the empirical unconditional distribution of most of the financial time series 

possess fat tails (Mandlebort, 1969). In spite of the fact that Gaussian or in other words Normal distribution has 

attractive limiting properties, it might lead to erroneous results when the data is not modelled with heavy tails. The 

difference between the two is that Normal distribution does not give enough weight to extreme observations in the 

tails. Or in other words, the fat tailed distribution‟s tails decay slowly, so that they are not exponentially bounded.  

This paper has two goals. The first one being concerned with whether the conditional distribution of asset returns is 

heavy tailed and then to quantify the corresponding tail characteristics. Following this, the second objective is to 

check this tail behaviour over time for the existence of structural breaks. In order to do conduct our research, we look 

at the financial asset returns of S&P 500 and Russell 2000 that are composite stock indexes, which represent large 

and small companies respectively. The choice of our sample is motivated by the hypothesis that companies with a 

huge gap in terms of market capitalization tend to have different tail characteristics (Cenezoglu, 2008). Consequently, 

these indexes are modelled with GARCH (1;1) that introduced by Bollerslev (1986) to capture the volatility 

clustering. Then we obtain the corresponding standardized residuals. Family of GARCH models assume the normal 

distribution for innovations that in fact have the same shape as the distribution of conditional returns. As a 

consequence of this, various diagnostic tests to check the normality assumption are carried out on standardized 

residuals. Therefore, after collecting preliminary evidence for the existence of heavy tails, we embark on the 

evaluation of tails without making any assumptions about the underlying distribution. Generally, the behaviour of a 

tail is characterized in the so-called tail index 𝛼, which is positive 𝛼 > 0 for the class of heavy tailed distributions. 

Tail index is ambiguous in terms of interpretation. For instance, it implies that the lower the index the heavier the tail, 
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and it also tells the number of finite moments of a distribution (Cont, 2001). Going further, we apply one of the 

branches of extreme value theory (EVT), mainly the peak over threshold (POT) approach in order to estimate the tail 

index. Literature provides with wide variety of tail index estimators, so the choice is given to the popular “Hill 

estimator because of its attractive asymptotic characteristics and computational simplicity. However, it requires a 

choice of the number of extreme observations in the tails. As a solution to this, we construct so called “Hill Plot” that 

plots Hill estimates against different number of upper order statistics, which is mainly the sequence of observations 

in an ascending order. Then, one can infer the estimated tail index from the stabilized area of the graph. In cases, 

when the “Hill plot” is uninformative, we use the methods proposed by Dree et al. (2000) and Resnic and Starica 

(1997). These techniques help to remove the volatility of the graph and give more weight to small order statistics, so 

that they appear to be more distinguishable in the plot. Analysis are done with respect to both left and right tails of 

conditional distribution of asset returns based on the stylized fact of profit and loss asymmetry in returns. Diagnostic 

analysis shows clear evidence of tail heaviness so that the tails can be modelled by Generalized Pareto distribution 

(GPD). The results in Table 5 present that the tail index estimates can be summarized in the interval �̂� ∈ ,2.6; 2.8-, 
which are based on the smoothed version of the “Hill plots”. The implication is that the underlying distribution has 

finite first and second moments, but infinite upper moments such as kurtosis. 

In the next step, we are interested in the tail index constancy over time, since it has huge implications for the 

financial risk management and forecasting. Mainly, we suspect that tails become heavier after the 2008 Global 

Financial crisis. It implies that the probability of extreme events increases in the tails of conditional asset returns. In 

order to check this hypothesis, we refer to the test proposed by Quintos et. al (2001) for unequal sample size. This 

test is an extension from the work of Loretan and Phillips (1994), which has a null of tail constancy. Overall, we can 

state two research questions: 

1. Whether conditional distribution of asset returns possess heavy tails, and if yes how heavy are they? 

2. Whether the tail index, which represents the tail behaviour, is constant over time? 

The paper is planned as follows. First, we introduce the theoretical background of our topic. Then, we shift to the 

data analysis, which is followed by the discussion of methods that are applied in throughout the paper. Finally, we 

report the results and give a conclusion about our findings and their implications.  

2. Literature Review 

One of the pioneers to discuss the distributional properties of financial data was Mandlebort (1960, 1963, 1969), who 

argues that empirical distributions of asset price changes are too “peaked” around the mean with extraordinarily long 

tails and proposes a family of stable Paretian distributions, which is primarily defined by location, scale and shape 

parameters. Stable distributions have a parameter, which defines the tail behaviour, called the tail index, the stability 

index or the „tail shape‟ parameter alpha (𝛼), which is between zero and two for a distribution to be stable. So that 

the less the index the heavy the tail, whereas the boundary 𝛼 = 2 corresponds to a normal distribution. In contrast, 

vast majority of papers rejected the stable models with 𝛼 > 2 (DuMouchel 1983, Jansen and De Vries 1991, 

Loretan and Phillips 1994). However, McCulloch (1997) demonstrates the invalidity of their findings. Since then, it 

has been empirically tested and found that asset returns are leptokurtic, or that they have observations peaked around 

the around the mean and heavy tails (Fama 1965, Press 1975, Buckle 1995, Eberlein and Keller 1995). This high 

“tailedness”, also known as kurtosis, does not converge to 3 in the case of normal random variable even in extensive 

periods. Literature provides some models that can successfully explain the excess fourth moment in the financial 

time series. For instance, Engle (1982) introduces autoregressive conditional heteroscedastic (ARCH) processes with 

varying conditional variance, which capture the presence of non-linearities in the data or the fact of tail heaviness. In 

these processes, one period forecast variance is explained by the past information. Or in other words, the universal 

feature of asset returns is that large returns are expected to be followed by large returns, of either sign, or small 

returns tend to be followed by small returns. Then, Bollerslev (1986) generalises it by extending the lag structure 

(GARCH), where he models the return as an innovation times variance conditional on past volatility and returns. 

Generalized autoregressive conditionally heteroskedastic models (GARCH) allow to capture this phenomenon 

because it is parsimonious, since it allows conditional variance to be affected by the infinite past. However, the 

disadvantage of such models is that they are still unable to explain the extreme outlier activity in the tails of 

distribution. It is a fact that, GARCH models assume the normality of innovations and that the shape of the 

distribution of innovations is the same as the shape of conditional distribution of returns. Thus, any mistake in 

modeling the distribution of innovations might cause inaccurate assessment of future risks or mispricing of options. 

Therefore, McNeil and Frey (2000) demonstrate the efficiency of GARCH processes for financial risk management, 

when they are modelled with fat tailed innovations. Generally, the distributions of GARCH innovations are subject to 
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proper diagnostics, which is based on estimated innovations. The literature on analysis of GARCH residuals suggests 

a three-step plan or so-called Backing-out approach (McNeil and Frey, 2000). First, one gets the maximum 

likelihood estimates of GARCH coefficients and residuals. Then, graphical tools such as Q-Q plots could be applied 

in order to determine whether innovations match normal distribution. And finally, if you get enough evidence on the 

existence of fat tails or the evidence that data comes from Paretian distributions, shape parameter of the tail could be 

estimated. The main reason of using stable law distributions was their attractive central limit property, but this 

property is not persuasive when 1.5 < 𝛼 < 2 because of slow convergence of “convolutions” to their limit 

(DuMouchel 1983). Thus, the idea “let the tails speak for themselves” comes to light, which gives a rise to a family 

of tail index estimators that only utilize extreme observations instead of using the whole distribution. Thus, it does 

not require the existence of fourth moment. Pickands III (1975) uses percentile method to estimate the tail index, 

which was proven to be strongly consistent and asymptotically normal by Dekkers and De Haan (1989). In this 

manner, Hill (1975) proposes an estimator, which is consistent (Mason, 1982) and asymptotically normal (Hall, 1982) 

and depends on the choice of extreme order statistics from the sample. Furthermore, Dekkers et al. (1989) present an 

extension of Hill‟s estimator for high quantile and endpoint estimations. A very important contribution to the 

comparison of above estimators was made by De Haan and Peng (1998). They calculate the asymptotic mean 

squared errors for each estimator and conclude that no estimator dominates another, unless one determines the 

optimal choice of threshold and convergence parameters. Threshold selection creates trade-off between bias and 

variance. Therefore, literature provides various ways of doing it. For instance, the standard method is to graph the 

values of Hill estimator against the number of upper order statistics and then depict the value of shape parameter 

from the stable region in the plot. But above methods are called heuristic or non-parametric. Another way of 

threshold selection is to choose a fixed fraction of sample such as 10% or 5%, otherwise one might end up including 

too many observations in the tails, which would lead to the biased estimates (Loretan and Phillips, 1994; DuMouchel, 

1983). Moreover, other methods include the minimization of the mean squared error of the estimator, which is 

usually done by bootstrapping and beyond the scope of our paper (Hall, 1990; Danielsson et al., 2001). On contrast, 

DuMouchel (1983) suggests choosing some fixed fraction of the sample (5%, 10% etc) and defines it as „a 

compromise between the practical need for enough observations to be included in the estimation and theoretical 

desire to describe the distribution‟.  

One aspect of tail behaviour whether tail changes over time, implying that the probability of extreme market 

movements rise or decrease, is also important for risk assessment and modelling. There is empirical evidence that the 

tail index of some financial data is time varying. For instance, Phillips-Loretan (1990) and Koedijk et al. (1990) 

create tests, which use “Hill estimator” and presume the break-date is known, and reject the null hypothesis that tail 

fatness doesn‟t change over time, for the cases of Japan and Western European countries by applying exchange rate 

data. Pagan and Schwert (1990a,b) also reject the tail constancy by applying tests, which require stricter moment 

conditions. Great contribution is done by Quintos and Phillips (2001), who also construct recursive, rolling and 

sequential test by using “Hill estimator” for the constancy of tail over time where the breakpoint is unknown and 

apply it for daily stock prices during Asian financial crisis. However, since the “Hill estimator” is based on the k 

largest order statistics. Interestingly, Quintos and Phillips (2001) show that DuMouchel‟s (1983) rule about fixed 

threshold selection, that 𝑘 should be a fixed fraction of sample, leads to wrong test sizes, since that fixed fraction 

increases rapidly as sample size rises leading to divergence. The importance of tail variation over time lay in the 

Value at Risk (VaR) estimations for the riskiness of loss for investments. Bollerslev and Todorov (2014) emphasize 

the importance of tail change over time because it facilitates to grasp the aggregate returns in the market and their 

cross-sectional differences. 

Overall, the literature provides evidence on the fat tailness of many financial times series. In addition to that, we 

observe a number of studies confirming the existence of structural breaks in the financial times series, implying that 

the tail characteristics change over time. However, the literature lacks the complex analysis of asset returns of small 

and large companies, with expected different tail risks, tail constancy over time and proper application of superior 

types of Hill estimator.  

3. Data 

The dataset contains two composite indexes, mainly the S&P 500 and Russell 2000, which represent 500 largest and 

2000 small (Note 1) companies respectively. This dataset is available from Yahoo database (MSFT, 2019). It is 

important to choose a span so that market turnovers with severe consequences are included. Because of this, the 

length has been chosen depending on the availability and includes different stock market crashes such as 1987 

“Black Monday”, Asian crisis and Global Financial crisis. Also, the choice of this particular dataset is motivated by 

the interesting fact that small and large companies are expected to have different tail risks since they react differently 
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to unexpected changes in the market (Cenesizoglu, 2008). Our sample consists of the daily closing prices of stock 

indexes, so that the returns are calculated as continuously compounded  

𝑋𝑡 = log(𝑃𝑡) − log(𝑃𝑡−1) 

where 𝑋𝑡 is a log return for time 𝑡 and 𝑃𝑡 is the respective price for time 𝑡. The data ranges from 09/09/1987 to 

07/18/2019 for the full sample. In order to check the existence of structural breaks in our time series during the 2008 

Global Financial crisis, we divide our sample into two sub-samples, where they range from 11
st
 January 1988 (Note 2) 

to 31
st
 August 2008 and from 1

st
 September 2008 to 18

th
 July 2019 respectively. Table 1 gives the summary statistics 

for full and sub samples. The starting point is to analyse the raw data and look for the preliminary tendencies for tail 

heaviness. To start with, one notices that in absolute values the minimum return is lower than maximum return for 

large caps and the opposite for small caps. Yet this might indicate the distributional imbalances. The biggest losses 

and gains (Note 3) in the full sample happened during the times of Global financial crisis for both stock indices, 

specifically the interval includes the October and November 2008. All this implies the immensely unstable phase 

during of which extreme movements occurred. Another interesting feature is the negative skewness of both stock 

returns, which means that the left tail of distribution is turn out to be longer. Least but not the last argument against 

non-normality is the phenomenon of highly excess kurtosis in all cases. For instance, the kurtosis of 10 and 8 for 

large and small caps respectively is significantly higher than the reference point of 3 that belongs to Normal 

distribution. Overall, one falls into doubt when observes such abnormalities in the data. Thus, our next steps are 

about getting stronger evidence in favour of tail heaviness and then to quantify it. 

4. Methodology 

4.1 Modelling Asset Returns With GARCH 

From the statistical point of view different types of financial time series share some common statistical properties 

such as the absence of autocorrelations in return, or in other words it means that returns follow a „random walk‟. 

Nevertheless, it does not implicate the independence of increments because some non-linear functions of returns 

exhibit volatility clustering (Cont, 2001). For that reason, we model our log-return using GARCH (1;1) with one 

period lag structure, which is sufficient for financial time series modelling according to Brooks (2008). GARCH was 

introduced by Engle (1982) and extended by Bollelrslev (1986). The extension was that the conditional past variance 

now affects the conditional current variance (2). 

 𝑡 =     𝑡−1   𝑡   𝑡  (0;  𝑡
 )                                 (1) 

 𝑡
 = 𝛼  𝛼1 𝑡−1

    𝑡−1
                                     (2) 

Accordingly, these equations (1) and (2) are referred to as mean and variance specifications of GARCH (1;1). In the 

second equation the variance depends on its past and 𝛼1  and   are non-negative constants. In detail, 𝛼1 

determines the short-run impact of  𝑡−1
  on conditional variance and   is the long-run impact of past variance on 

current conditional variance. Afterwards, the software estimates parameters using maximum likelihood and the log 

likelihood function is given by equation (3). 

 = −
 

 
log(2 ) −

1

 
∑ log( 𝑡

 ) 
𝑡 1 −

1

 
∑ ( 𝑡 −  −   𝑡−1)

   𝑡
  

𝑡 1 .                 (3) 

By using the fact in equation (4), 

 𝑡 = 𝑣𝑡 𝑡  𝑣𝑡  (0; 1)                                     (4) 

we want to check the conditional normality assumption of standardized residuals (5), 

𝑣𝑡 =
𝑢𝑡

𝜎𝑡
                                           (5) 

„which would be the model disturbance at each point in time 𝑡 divided by the conditional standard deviation at that 

point in time. Thus, it is the 𝑣𝑡 that are assumed to be normally distributed, not  𝑡‟ (Brooks 2008, p.399). Thus, the 

sample counterpart 𝑣�̂� can be tested using normality tests such as Jarque-Bera, by looking at quantile-quantile (Q-Q) 

plots and by comparing the kurtosis with standard normal kurtosis. 
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4.2 Tail Index Estimation 

In order to model the frequency of extreme events in the tails, we apply the extreme value theory (EVT) techniques. 

EVT provides two different approaches, the block maxima (BMM) and peak over threshold (POT). They differ in a 

sense that POT practices more efficient usage of data, or in other words, BMM models the largest values from the 

data, while POT models only extreme observations based on the exceedance over a specific threshold (Embrechts et 

al., 1999). In our case, we apply the peaks over threshold approach, which follows so called generalized Pareto 

distribution (GPD). The cumulative distribution function of GPD is given by equation (6), 

𝐺𝛼 𝛽(𝑥) = {
1 − .1  

𝛼𝑥

𝛽
/
−
1

𝛼
             𝛼 ≠ 0

1 − exp .1 −
𝑥

𝛽
/              𝛼 = 0

                                (6) 

where 𝛼 and   are known as scale and shape parameters accordingly. In general, GPD is a probability distribution 

that models the left or right tail of another distribution without looking at the body of that distribution. GDP comes 

with two main issues. The first one is a need for a sufficient number of observations in the tail, which means that one 

needs a large underlying sample and the second the determination of the beginning and the end of the tail. Our goal is 

to estimate the tail shape parameter (Note 4) 𝛼 that determines the “fatness of the tail”, so that the lower the alpha 

the thicker the tails. Literature differentiates the tail index into three categories. Specifically, 𝛼 < 0, 𝛼 = 0 and 

𝛼 > 0 are the cases of short, light and heavy tailed distributions respectively. And a random variable 𝑋 has a heavy 

tail if „the sample comes from a univariate 𝛼-stable distribution and observations asymptotically have a Pareto tail‟ 

(7),  

𝑃(𝑋1 > 𝑥) 𝑥
−𝛼 (𝑥)      𝑥                                      (7) 

where 𝛼 is tail index and   is slowly varying function (Rachev, 2003). The tail index represents the decay of tail to 

zero and there are three cases of 𝛼 within the heavy tailed category (Finkenstadt and Rootzén, 2003). First, for 

0 < 𝛼 < 1 the distribution has very heavy tails with infinite mean and variance. Second, for 1 < 𝛼 < 2 the 

distribution with heavy tails has only first finite moment. Finally, 𝛼 > 2 is commonly observed in financial time 

series and belongs to the case of distribution with finite variance. Another interpretation of tail index is that it shows 

the number of finite moments of the variable under consideration. For instance, if 𝛼 > 4, then variable has finite 

kurtosis, or when 𝛼 > 2 the variances are finite. According to recent studies, most of the financial returns have 

finite first and second moments but infinite kurtosis (Ibragivom, 2009; Gabaix et al. 2009). In other words, the 

existence of two moments is equivalent to stating that the distribution has finite mean and variance, which is 

essential for the soundness of many economic models, econometric and statistical approaches, such as value at risk 

analysis of profit and loss for investments and least square regression methods for the various economic and financial 

variables (Ibragimov and Walden, 2007). We employ Hill‟s (1975) popular tail index estimator, which is based on iid 

observations that is decreasingly ordered. Particularly, 𝑋(1) > ⋯ > 𝑋(𝑛) is considered as the order statistics of our 

random sample. Then Hill‟s (1975) estimator is based on 𝑘  1 order statistics and given by equation (8), 

�̂�𝐻𝑖𝑙𝑙 = .
1

𝑘
∑ 𝑙𝑜𝑔𝑋𝑛+1−𝑗
𝑘
𝑗 1 − 𝑙𝑜𝑔𝑋𝑛−𝑘/

−1

                           (8) 

where 𝑘 is the number of upper order statistics and �̂�𝐻𝑖𝑙𝑙  is Hill estimator, which is proven to be consistent and 

asymptotically normal by Mason (1982) and Hall (1982) respectively. It is important to mention that the only 

problem with this estimator is an optimal choice of 𝑘 and the well-known solution is given by “Hill Plot”, which 

plots tail indexes for various levels of upper order statistics and then shape parameter is detected from the stable 

region of the graph. In detail, Hill plot is a function of ((𝑘 �̂�𝑘 𝑛) 1 ≤ 𝑘 < 𝑛). In cases when the plot is volatile, 

Resnic and Starica (1997) suggest averaging or smoothing the „Hill estimator‟ (avHill) values or to rescale the axis of 

𝑘 (threshold), so that small number of order statistics (𝑘) is shown more clearly on the graph. The smoothed “Hill 

plot” averages different “Hill estimators” according to the number of order statistics (9), 
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𝑎𝑣�̂�𝑘 𝑛 =
1

(𝑢−1)𝑘
∑ �̂�𝑝 𝑛
𝑢𝑘
𝑝 𝑘+1                                   (9) 

where  > 1 is smoothing factor. Technically this modification reduces the volatility of the plot by averaging and 

decreasing the variance of the estimator. For the same reason, they also recommend transforming 𝑘 axis into 

logarithmic scale, which is referred to as alternative Hill plot (altHill), which plots ((𝜃 �̂�𝑛𝜃 𝑛) 0 ≤ 𝜃 ≤ 1), where 𝜃 

is a logarithmic scale of 𝑘. 

4.3 Structural Breaks in Tail Behaviour 

In order to find whether tail index changed during stock market crashes, we split our sample into two sub-samples 

and compare the estimated tail indices. The general method of comparison is done by testing the equality of those tail 

estimates by using their asymptotic normal distribution. We start with theorem 2 in Hall (1982), 𝑘
1

2(�̂�𝑘 − 𝑎)

𝑑
  (0 𝑎 ), which gives the asymptotic normal distribution of “Hill estimator” and which can be used to test 

whether the tail index is constant across sub-periods. The null and alternative hypotheses are, 

   𝑎
(1) = 𝑎( ) = 𝑎          𝑎𝑛            1 𝑎

(1) ≠ 𝑎( )                        (10) 

However, Loretan and Phillips (1994) construct a test statistic for an equal sample split 𝑛1 = 𝑛 = 𝑛 2 that is based 

on differences (11), 

  =
𝑘*1+(𝛼*1+̂−𝛼*2+̂)

2

(𝛼*1+̂+𝛼*2+̂)
   
𝑑
   1

     ,                               (11) 

which follows a chi-square distribution. However, since we have unequal sample split, we refer to Quintos et al. 

(2001) who extends the above test for an unequal sample size (12), 

 1 =
𝑘*1+ �̂�*2+

2  (
�̂�*1+

�̂�*2+
−1)

2

�̂�*1+
2 +(

 *1+

 *2+
) �̂�*2+

2
    

𝑑
   1

                                (12) 

We apply the extended version of the test to our tail behaviour analysis over time. 

5. Results 

5.1 Discussion of GARCH (1;1) Results and Diagnostics of Standardized Innovations 

As pointed out in methodology part, we fitted GARCH (1;1) to our stock indices and Table 2 shows the outcomes 

that apparently satisfy the general features of these processes. Mainly, coefficients of ARCH and GARCH 

specifications sum up to one, which indicates the persistence of volatility (Chan, 2011). In addition, the coefficients 

of lagged value of residual (Note 5) and the past variance are statistically significant. Overall, the results confirm the 

idea of Brooks (2008) that GARCH (1;1) model is sufficient to capture the volatility clustering in the financial data. 

However, this type of modelling of returns assume the normal distribution of innovations, which has the same shape 

as the conditional distribution of future returns, so that any deviation from the normality assumption might have 

serious consequences such as undervaluation and overvaluation in financial risk management or in terms of option 

pricings (Sun and Zhou, 2014). Because of this and according to the literature, it is in our best interest to inspect the 

conditional distribution of future returns for the presence of fat tails. In the first place, inappropriateness of normal 

distribution to model returns can be shown by Q-Q plots. This method plots the quantiles of two distributions on 

vertical and horizontal axis, and difference in quantiles could be seen as a departure from the straight line that 

corresponds to standard normal distribution. Hence in Figure 1 the sample curves significantly deviate from the 

straight line both for small and large cap companies. In other words, quantiles of data does not match the quantiles of 

normal distribution in the upper and lower parts of the data, which implies the presence of heavy tails.  
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Figure 1 

 

It can also be confirmed by the histograms of standardized GARCH residuals. Particularly, in both cases empirical 

distribution is symmetric, but there is significant amount of mass around the origin and in the tails compared to 

standards normal distribution (Figure 2). 

 

 

Figure 2. Histograms of standardized GARCH residuals (Note 6) 

 

In spite of the fact that GARCH explains most of the non-linearity in our data, it can‟t explain the excess kurtosis, 

which is equal to 9.28 and 6.77 for large and small companies respectively (Table 3). Kurtosis higher than three 

(Note 7) is a strong evidence of leptokurtic distribution compared to standard normal distribution. Moreover, we also 

implement the test for normality assumption, which matches the 3
rd

 and 4
th
 moments with normal distribution, and 

reject the null hypothesis of normality (Table 4). 

5.2 Tail Index Estimation 

One of the prominent methods of estimating the tail shape parameter (𝛼) is the “Hill estimator”, which requires the 

pre choice of the number of upper order statistics (𝑘). To overcome this issue we construct a “Hill plot”, which 

graphs the different values of �̂� against the 𝑘, and then one can infer the value of the tail index from the stable 

region of the graph. Besides, being motivated by another stylized fact about financial returns, mainly the gain and 

loss asymmetry (Note 8), we analyze left and right tails of our estimated GARCH residuals separately, since they 

tend to experience unequal up and down movements (Cont, 2001). Moreover, we also construct various versions of 

classical Hill plots for the sake of comparison. These include avHill, altHill, smooHill and altsmooHill as discussed 

in methodology part. The subsequent two sub-sections discuss the tail index estimation for the cases of S&P 500 and 
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Russell 2000 accordingly. The software R studio automatically infers an estimate from the stabilised region of the 

graph. However, we still check for their validity using our best judgement. Table 5 summarizes the tail estimates 

inferred from different types of Hill plots and gives their standard errors and confidence intervals. In general, our 

sample consists more than 3000 observations per each tail, which is more than recommended by Goldberg et al. 

(2008) 

 

Table 5. Estimated tail indices for S&P 500 and Russell 2000 (full sample) 

      SP500       

Russell 

2000   

    Left   Right   Left   Right 

 

tail index �̂� 3 

 

2.9 

 

3.1 

 

2.9 

 

standard error 0.0192 

 

0.0196 

 

0.0188 

 

0.0191 

Hill 95% ci (2.7;3.3) 

 

(2.8;3.7) 

 

(2.8;3.5) 

 

(2.6;3.3) 

 

threshold k (Note 

9) 306 

 

314 

 

295 

 

320 

 

value of threshold 

(Note 10) 1.6 

 

1.5 

 

1.7 

 

1.4 

  % of sample 9.9   9.8   9.7   9.8 

 

tail index �̂� 3 

 

2.9 

 

3.1 

 

2.9 

 

standard error 0.0192 

 

0.0196 

 

0.0188 

 

0.0191 

altHill 95% ci (2.7;3.4) 

 

(2.8;3.7) 

 

(2.8;3.5) 

 

(2.6;3.3) 

 

threshold k 306 

 

314 

 

295 

 

320 

 

value of threshold 1.6 

 

1.5 

 

1.7 

 

1.4 

  % of sample 9.9   9.8   9.7   9.8 

 

tail index �̂� 2.7 

 

2.6 

 

2.8 

 

2.7 

 

standard error 0.0166 

 

0.0168 

 

0.0162 

 

0.0164 

smooHill 95% ci (2.5;2.96) 

 

(2.5;2.93) 

 

(2.6;3.1) 

 

(2.5;2.9) 

 

threshold k 306 

 

307 

 

295 

 

322 

 

value of threshold 1.6 

 

1.5 

 

1.7 

 

1.4 

  % of sample 9.9   9.6   9.7   9.9 

 

tail index �̂� 2.7 

 

2.6 

 

2.8 

 

2.7 

 

standard error 0.0166 

 

0.0168 

 

0.0162 

 

0.0164 

altsmooHill 95% ci (2.5;2.96) 

 

(2.5;2.93) 

 

(2.6;3.1) 

 

(2.5;2.9) 

 

threshold k 306 

 

307 

 

295 

 

322 

 

value of threshold 1.6 

 

1.5 

 

1.7 

 

1.4 

  % of sample 9.9   9.6   9.7   9.9 

  N 3102   3189   3038   3252 

 

5.2.1 The Case of S&P 500 

As planned, the classical Hill plots (Note 11) for S&P 500 are depicted in the Figure 3. On the face of it, the plots for 

left and right tails appear to be rather vague and volatile. In the literature they are called “Horror plots”, and as one of 

the solutions is to get a better picture by zooming the original Hill Plots in the 10% of the sample. Here, the zooming 

does not imply restricting the 𝑘 axis by a fixed fraction of the sample (10%, 5% and etc). As expected, enlarged 

versions of plots allow us to extract the approximate value of shape parameter, since it seems to be stabilized in the 

neighbourhood of 3 for both tails (Figure 4).  
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Figure 4. Zoomed Classical Hill Plots for S&P 500 

 

This implies that the heavy left tail of our standardized GARCH residuals starts from corresponding threshold value 

of 1.6 and goes up to its largest value, or in other words it means that Hill estimator utilizes highest 306
th
 

observations (around 10%) from the sample in order to estimate the tail index (Table 5). This threshold of 

standardized residuals corresponds to a negative movement in terms of asset returns. The reason why it appears to be 

positive is that their absolute values were used as required by the “Hill estimator”. In contrast, the right tail gives 

almost the same result in terms of tail index, threshold and confidence interval. Now we shift to the alternative Hill 

plot (AltHill) proposed by Dree et al. (2000). In this new method, a logarithmic scale for the axis of upper order 

statistics is used. Practically, it implies stretching the left side of the plot that gives a room for smaller observations 

and better picture, which is displayed in Figure 5. At first glance, we indeed observe the improvement over the 

visibility of elements to the left side of the graph, but it still remains uninformative. In spite of this fact, we still 

report the estimates given by the software for the sake of comparison. More interestingly, we could not apply the 

zooming technique in this particular case, because of the logarithmic scale is used on 𝑘 axis. The next solution is to 

apply the averaging technique (smooHill (Note 12)) build by Resnic and Starica (1997) with respect to the various 

number of upper order statistics. This smoothing method decreases the variance of Hill estimator and thus it removes 

volatility of the plot to some extent. Accordingly, Figure 6 represents smoothed versions of Hill plots, while Figure 7 

gives zoomed versions of these figures. It is apparent that the volatility of plots is completely erased, and looking at 

zoomed versions one can now easily confirm the value of estimated tail indexes that are 𝛼�̂� = 2.7 for the left and 

𝛼�̂� = 2.6 for the right tails. 
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Figure 7. Smoothed Hill plots for S&P 500, zoomed version 

 

Finally, we apply another advice by Drees et al. (2000), so called alternative SmooHill that is displayed on the Figure 

8. In spite of the fact that altsmooHill erases the volatility of the plot, one could not see the stabilized region with 

naked eyes. With an aim of comparing methods between each other, we can refer to Table 5. Overall, we observe an 

improvement in terms of tail estimates when we use smooHill and altsmoHill. This is in a line with our expectation 

in a sense that (Drees et al., 2000) has shown its superiority over other versions of Hill plots. The second interesting 

remark is that left and right tails does not differ in terms of tail estimates, so that we do not observe any distributional 

imbalances. This however contradicts to the stylized fact of asymmetry of asset returns. More interestingly, the 

threshold number of observations amounts for 10% of the sample for both tails across all types of Hill plots, which 

confirms the popular suggestion of DuMouchel (1982) about the 10% fixed fraction selection rule for threshold. 

5.2.2 The Case of Russell 2000 

Turning to the analysis of another composite index-Russell 2000, we again observe the vagueness of classical Hill 

Plots in Figure 9. The same procedure in the case of S&P 500 is applied here. First, we look at the zoomed versions 

at 10% of the sample, which clearly shows the stabilization area around the 3.1 and 2.9 for left and right tails 

respectively (Figure 10). 

 

 

Figure 10. Zoomed Classical Hill Plots for Russell 2000 
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Then we shift to altHill plots, where in the right tail one can clearly see the stabilized area and infer an estimate of 

2.9 (Figure 11). However, there might be some doubts about the left tail‟s estimate of 3.1 by software, because it 

does not seem to stabilize in that region. Therefore, we apply the smoothed version of Hill plot and get an estimate of 

2.8 and 2.7 for each tail respectively (Figure 12). However, we think that plots are not informative and thus try to 

look at the zoomed versions in order to get better picture. And indeed, Figure 13 illustrate the clearly stabilized are at 

�̂�𝑅 = 2.7 on the right, but not so really convincing �̂�𝐿 = 2.8 on the left. 

 

 

Figure 13. Zoomed smooHill Russell 2000 

 

And we finish the “threshold finding” process by constructing the alternative smoothed Hill plots (Figure 14). 

Obviously, we could not say anything about these unstable graphs, but still report the estimates provided by software 

in the Table 5. Overall, for the case of Russell 2000, we observe different tail estimates across different types of Hill 

plots, which indicates the superiority of some versions over others, which are confirmed by our investigation. As in 

the case of S&P 500, the tails turn out to be similar, since they have almost the same shape and threshold levels, 

which is again contradicts to the expectation of the theory. Interestingly, every tail of large caps includes 

approximately 10% of the sample in the tail estimation process, which is in line with DuMouchel‟s (1982) rule of 

thumb. 

5.2.3 Main Findings and Inference on the Shape Parameter 

The evidence acquired from the diagnostic analysis for the presence of heavy tails indicates that both left and right 

conditional tails of S&P 500 and Russell 2000 accordingly lie in the domain of attraction of Generalized Pareto 

distributions (GPD). Overall, our results for tail index estimates lie in the interval �̂� ∈ ,2.6; 3.1- for all types of 

“Hill plots”. Thus, we assume that the data does not come from stable distribution and has finite first and second 

moments. We reject the existence of the fourth moment at 95% confidence level in all cases. These results are mostly 

observed in financial time series (Gabaix, 2009; Ibragimov, 2009). Results also show that the kurtosis fails to 

converge in the limit, which is in line with findings of Loretan and Phillips (1994). The infiniteness of fourth 

moments comes with severe consequences, such as working with techniques based on autocorrelation functions 

(Granger and Orr, 1972).  

In the interest of comparison of tail indices of two stocks, we stick to Smooth Hill estimates, since they are proven to 

be superior to standard methods (Drees et al., 2000) and shown to be valid in the above discussions. Therefore, left 

tail index 𝛼�̂� = 2.7 for the standardized GARCH residuals of S&P 500 returns is lower than the corresponding tail 

index 𝛼�̂� = 2.8 for the case of Russell 2000. The situation is the same for winner stocks, where 𝛼�̂� = 2.6 and 

𝛼�̂� = 2.7 for large and small companies. Based on this we can conclude that both tails of S&P 500 are a little bit 
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heavier than the tails of Russell 2000. It implies that there is a high tendency for extreme changes in stock returns for 

larger companies, which is in conformity with the conclusion of (Cenezoglu, 2008), who states that portfolios of 

large companies react stronger than the small companies to the macroeconomic news over time, such as interest rates, 

employment rate and etc. In addition, the tail estimates for left and right tails are approximately equal to each other 

with similar threshold level, which is against the hypothesis of profit and loss asymmetry. 

5.3 Structural Breaks in the Tail Behavior 

The significance of the structural breaks during the times of market turbulences in the tails is pointed out above. In 

2008, humanity experienced one of the serious global financial crises in its history since the Great Depression. 

Therefore, we estimate the tail index for two sub-periods and look whether it changes or not. For instance, a fall in 

tail index would imply an increase in the probability of extremal events. Sub-periods include 2008 pre- and 

post-crash years. The summary of tail indices for each sub-sample is given in Table 6. Merely looking at tail indexes 

for the pre- and post-crash sample one notices that all tails became heavier after the global financial crisis. In order to 

test for the tail behavior over time we employ the test statistics provided by Quintos et al. (2001) (Note 13). Evidence 

shows that we reject the null hypothesis of constant tail index at 5% critical level both for S&P 500 and Russell 2000 

composite indices and for their respective left and right tails (Table 7). 

5.3.1 Implications of Changes in Tail Indices 

Results imply the existence of so called “volatility regimes” where markets are represented by persistently low/high 

phases with different market characteristics during the market cycles in contrast to the average volatility (Peters, 

2009). In other words, the fact that the tails become heavier after a certain breakpoint means that one should expect 

large up/down movements in the markets. This tells us that the standard volatility measures can‟t alone explain the 

behavior of tails and assessing market risk based solely on those measures might be erroneous and have serious 

consequences in terms of adequately prevents those “tails risks” (Werner and Upper, 2004). Thus, after 2008 crisis 

there has been an increased awareness towards hedging the “black swan” events. 

5.3.2 Questioning the Number of Breakpoints 

We are curious about the number of breakpoints in tail indices in our full sample. Preliminarily, we look at the 

behaviour of standardized log return across time. Since our sample ranges from 09/09/1987 to 07/18/2019, we divide 

it into 4 equal sub-samples. We do it since we have a suspicion that there were other structural breaks in the tails of 

condition asset returns. The first sub-sample spans from 1987 to 1994, which includes the 1987 “Black Monday” 

stock crash in US. The second sample goes to the “Asian financial crisis” that lies in the range from 1995 to 2003. 

Then, the period of 2004-2012 contains the 2008 Global financial crisis. Finally, the time period 2013-2019 includes 

the European Debt crisis. De-facto, we expect the tails to become heavier after the main events. Figure 15 and Figure 

16 graphically illustrates the behaviour of tail indices for large and small caps respectively throughout the newly 

created time spans. For the case of S&P 500, we observe that both right and left tails move in the same direction, 

becoming heavier only during the period that includes 2008 crisis. Interestingly, the tail indices rise during the Asian 

crisis, which might indicate the severity of 1987 stock market crash and consequent recovery. Shifting to Russel 

2000, we observe the same picture as in the previous case. Based on this informal investigation one can conclude that 

there was only one structural break in our sample. 

6. Conclusion 

This paper has discussed the heavy tailed nature of conditional asset returns of large and small companies. The first 

question of our interest was whether our modelled asset returns present any signs of tail heaviness. This has been 

addressed by fitting log returns with GARCH (1;1) process, which give sound results. In the next step, after utilizing 

different diagnostic analysis of standardized GARCH residuals we find sufficient evidence for the presence of tail 

heaviness, so that the conditional empirical distribution of our log returns does not follow standard normal 

distribution. Mainly this has been done as follows. First, we compare the distribution of our sample with standard 

normal distribution using Q-Q plots. In addition, the same comparison is done by constructing histograms, where we 

observe some peculiarities, implying that there are too many observations peaked around the mean and that the 

distribution of returns has long tails. We also employ the Jarque Bera test and reject the null hypothesis of normality 

and encounter with excess kurtosis that is way above the level of normal density. The next logical step is to calculate 

the tail index, which summarizes the tail behavior. In order to do this, the traditional “Hil estimator” is used for the 

conditional asset returns. In this spirit, we overcome the problem of choice of threshold by plotting the values of 

“Hill estimator” on the vertical and the number of upper order statistics on the horizontal lines and then we look for 
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the stabilized region of the plot to find the estimated tail index. Hill plots might be uninformative when the plot is 

volatile. We follow the recommendations of Deed et al. (2001) to decrease the variance of “Hill estimators” by 

simply averaging them, or as mentioned in Resnic and Starica (1997) to rescale the 𝑘 axis and stretch the plot by 

giving more room for smaller observations. Initially, the classical Hill plots for all stocks appear to be uninformative, 

and the application of modified Hill plots help us to acquire the tail index. In general, when it comes to inference on 

the estimated tail indices, we rely on the so called smooHill estimates since we practically confirm their superiority 

among other methods as mentioned in the Deed et al. (2001). According to this, the tail estimates obtained by 

averaging technique always less than three and more than two (2 < �̂� < 3) according to their confidence intervals, 

which implies that the conditional distribution of asset returns is not a stable one and has finite mean and finite 

variance. This is often observed in financial time series (Gabaix, 2009; Ibragimov, 2009). Another interesting finding 

is that the tails of large and small companies are different, which confirms the proposition of Cenezoglu (2008). 

Third, we do not observe any distributional imbalances in all cases. This is in odds with a hypothesis of gain and loss 

asymmetry (Cont, 2001). And the last but not the least finding is that the thresholds in the process “Hill estimation” 

amounts for 10% of the sample for both left and right tails of S&P 500 and Russell 2000 respectively. Interestingly, it 

confirms the advice of DuMouchel (1982) to choose the fixed fraction (10%,) of the sample in order to avoid 

overfitting of the tails. Overall, the presence of heavy tails is of huge importance for the risk management, 

Value-at-Risk (VaR) calculations and many other economic models.  

The second issue were concerned with the tail invariance over time. Otherwise stated, can highly volatile periods like 

the 2008 Global Financial Crisis affect the tail characteristics of conditional distribution of returns under 

consideration? For instance, if they become heavier after a crisis, it is interpreted as an increase in the probability of 

positive and negative events. In order to find out whether conditional tails of asset return experience abrupt changes 

during the Global Financial crisis, we divide our sample into the pre 2008 and post 2008 sub samples. To test this, we 

refer to test statistics created by Loretan and Phillips (1994) and modified for the case of unequal sample sizes by 

Quintos et. al (2001). We reject the null hypothesis of tail invariance over time on 5% significance level. We 

conclude that the conditional tails of large and small caps experienced structural break during the 2008 Global 

Financial Crisis. Additionally, we informally check the presence of other structural breaks in the tails throughout our 

full sample. Thus, based on this verbal analysis we can state that there was only one date of change in the tails of 

conditional asset returns that occurred during the 2008 crisis. 

In a nutshell, our findings might be catastrophic for financial risk management, forecasting, option pricing, 

Value-at-Risk (VaR) calculations and others in terms of inconsistent results. Thus, this paper encourages to 

reconsider the normality assumption of those economic models. 
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Appendix 

Tables 

Table 1. Descriptive Statistics for the Composite Stock Returns 

Returns  Obs  Mean  Std.Dev.  Min  Max  p1  p99  Skew.  Kurt. 

 S&P 500 full sample 6229 0 0.011 -0.095 0.102 -0.03 0.029 -0.259 10.099 

 Russell 2000 full 

sample 
6229 0.001 0.012 -0.1 0.081 -0.034 0.034 -0.258 8.607 

 S&P 500 before 

crisis 
3953 0 0.01 -0.07 0.056 -0.026 0.026 -0.134 6.647 

 S&P 500 after crisis 2276 0 0.012 -0.095 0.102 -0.035 0.035 -0.371 11.903 

 Russell 2000 before 

crisis 
3953 0.001 0.01 -0.075 0.057 -0.028 0.027 -0.234 5.91 

 Russell 2000 after 

crisis 
2276 0 0.015 -0.1 0.081 -0.044 0.046 -0.238 7.785 

 

Table 2. The Results of Fitting GARCH(1;1) for Both Stocks and for Full Sample 

 SP500  Coef. 
 

St.Err. 
 t-value 

 

p-value 
 [95% Conf 

 

Interval] 
 Sig 

 Constant 0 0 3.83 0 0 0.001 *** 

 L.arch 0.263 0.016 16.09 0 0.231 0.294 *** 

 L.garch 0.714 0.049 14.47 0 0.617 0.81 *** 

 Constant 0 0 0.78 0.438 0 0 
 

 
Mean dependent var 0 SD dependent var  0.011 

Number of obs  6291 Chi-square  . 
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Prob > chi2  . Akaike crit. (AIC) -39829.007 

 
*** p<0.01, ** p<0.05, * p<0.1  

 

Russell2000 
 Coef. 

 

St.Err. 
 t-value 

 

p-value 
 [95% Conf 

 

Interval] 
 Sig 

 Constant 0.001 0 6.7 0 0.001 0.001 *** 

 L.arch 0.336 0.017 19.77 0 0.303 0.369 *** 

 L.garch 0.749 0.04 18.71 0 0.671 0.828 *** 

 Constant 0 0 -2.8 0.005 0 0 *** 

  

Mean dependent var 0.001 SD dependent var  0.012 

Number of obs  6290 Chi-square  . 

Prob > chi2  . Akaike crit. (AIC) -38464.628 

  

*** p<0.01, ** p<0.05, * p<0.1  

 

Table 3. Descriptive Statistics 

Variables Obs Mean Std. Dev. Min Max p1 p99 Skew. Kurt. 

SP500 stdres 6291 -0.013 0.994 -9.679 9.387 -2.801 2.561 -0.311 9.282 

Russell2000 

stdres 
6290 -0.029 0.996 -7.72 5.792 -2.832 2.543 -0.312 6.767 

 

Table 4. Test of Normality 

Variable Obs Pr(Skewness) Pr(Kurtosis) 
Joint 

Prob>chi2 

SP500 stdres 6291 0 0 0 

Russell2000 

stdres 
6290 

0 0 0 

 

Table 6. The Summary of Tail Indices (Note 14) of S&P 500 and Russell 2000 for Sub-samples Based on 

SmooHill 

   

S&P 500 

   

  

Left 

  

Right 

 

 

alpha se k alpha se k 

1988-2007 3 0.018581 200 2.8 0.019584 193 

       2008-2019 2.3 0.033132 106 2.3 0.032493 106 
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Russell 2000 

   

  

Left 

  

Right 

 

 

alpha se k alpha se k 

1988-2007 3.1 0.018308 193 2.8 0.019584 193 

       2008-2019 2.5 0.030192 106 2.3 0.03275 103 

 

Table 7. Structural Change Tests 

  

Test statistics 

 

 

Left 

 

Right Critical 5% 

S&P 500 8.415727 

 

4.176269 3.841 

Russell 2000 5.079763 

 

4.087626 3.841 

 

Figures 

 

Figure 3. Classical Hill Plots for S&P 500 
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Figure 5. Alternative Hill Plots for S&P 500 

 

 

Figure 6. Smoothed Hill Plots for S&P 500 
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Figure 8. Alternative Smooth Hill Plots for S&P 500 

 

 

 

Figure 9. Classical Hill Plots for Russell 2000 
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Figure 11. Alternative Hill Plots for Russell 2000 

 

 

Figure 12. Smoohill Russell 2000 
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Figure 14. Alternative Smooth Hill Plots for Russel 2000 

 

 

Figure 15 
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Figure 16 

 

Notes 

Note 1. Companies with relatively small market capitalization. 

Note 2. We start our sub-sample from 1988 to avoid the 1987 “Black Monday” stock market crash. 

Note 3. Both the largest loss of -0.095 and profit of 0.102 goes to S&P 500. 

Note 4. Also known as “tail index”. 

Note 5. From the mean specification (see methodology section) 

Note 6. The solid dark blue line represents the normal density. 

Note 7. 3 corresponds to normal distribution. 

Note 8. In theory also referred to as loss and profit; or loser and winner stocks. 

Note 9. This is the number of upper order statistics. For example, 306 means that Hill estimator used highest 306 
observations. 

Note 10. The value of standardized GARCH residual corresponding to 𝑘𝑡ℎ upper order statistics. 

Note 11. Software gives the estimated tail index from the stabilized area of the graph, which can be seen on the 

intersection of horizontal blue and vertical dashed lines. 

Note 12. Smoothing factor is set to 2 

Note 13. See the methodology. 

Note 14. Only estimator based on SmooHill is given, since it is proven to be superior to others (Drees et al., 2000). 

Note 15. 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 
license (http://creativecommons.org/licenses/by/4.0/). 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1987-1994 1995-2003 2004-2012 2013-2019 

TA
IL

 IN
D

EX
 

SUB-SAMPLES 

Russel 2000 
 

Right Left


