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Abstract 

Pricing complex financial derivatives such as collateralized debt obligations (CDO) is considered as the main reason 
triggering the 2008 financial crisis. The correlation structure related to the credit risks involved in a portfolio for 
pricing issues have been tried to overcome via a Gaussian copula framework first introduced by David Li (2000). This 
approach regards the correlation among the credit risks as normally distributed (tied with a Gaussian copula 
framework), enabling us to derive analytical solutions. However, despite its simplicity, this approach is far from reality, 
which caused mispricing of the tranches of CDOs. This phenomenon is called the correlation smile. This paper takes 
the correlation smile issue by considering a Levy copula framework. When this is introduced to pricing equations, one 
can see that the correlation smile is “corrected”. Thus, a more accurate model of pricing the above-mentioned tranches 
is introduced. 

Keywords: collateralized debt obligation (CDO), Gaussian copula, Levy copula 

1. Introduction 

Credit derivatives market drew quite a lot of attention beginning from 1998 and experienced a vast growth until the 
financial market crises in 2008. The asset price bubble in 2008 caused a shrinkage, however, could not be able to 
eliminate huge trading amounts of these products.  

Typically, a credit derivative is a financial asset which takes into account the possibility of the default of a certain 
underlying instrument. A widely used credit derivative is a credit default swap (CDS). In a CDS agreement, the 
protection buyer is insured against the default of an asset backed loan via paying periodic predetermined installments 
to the protection seller as in an ordinary insurance contract.  

On the other hand, a collateralized debt obligation (CDO) is another extensively used credit derivative which is usually 
regarded as the main instrument triggering the 2008 world financial crisis. CDO is a portfolio of credit derivatives 
which consist of multiple tranches, each having a different risk and return profile. The structure of a CDO is as follows: 
Regional banks assign certain loans to public usually collateralized with mortgage. These loans are paid with periodic 
predetermined installments. An investment bank acts as a gatherer of these loans in a pool. When these loans are 
collected, the investment bank arranges certain tranches as senior, mezzanine and junior (equity). Whenever the pool is 
filled with payments, the senior tranche is firstly paid, then mezzanine and finally the junior tranche gets paid. In that 
sense, junior tranche is the most vulnerable among them. If defaults happen there will be no flow of payment from the 
loan pool to the junior tranche. Thus junior tranche is attractive to risk lover investors. Since more risk means more 
return, the junior trance owners are promised to be paid higher return than other tranches. The return structure 
gradually decreases from junior to senior tranches. The investment banks were rated by the trusted rating agencies 
where even one day prior to sub prime meltdown, Lehman Brothers was rated top by three big rating agencies namely 
Standards & Poors, Fitch and Moody’s. Although these ratings put Lehman Brothers to a position of “as reliable as the 
US government”, still the senior tranches were paying interest which was considerably above the government T-bill 
rates. This was one of the attractiveness of these instruments.  

At the beginning, the credit pools were consisting of actual loans given to public. The loans were basically mortgage 
based loans, credit cards etc. Later on the structure became a Ponzi scheme. Since the investment banks were top rated, 
there was no cut in the demand for CDO tranches. Therefore, in order to meet higher demands, banks began offer loans 
to low paying ability customers. This rendered the quality of the loan pool to diminish, thus the number of defaults to 
increase.  
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Meanwhile, the banks secured themselves via taking collaterals as houses for mortgage based loans. Up to sub prime 
meltdown the real estate prices perform a steady growth for nearly a decade; therefore the banks safely gave those 
loans to low paying ability clients. The sub prime meltdown not only raised questions regarding the credibility of 
investment banks it also seriously undermined the reputation of credit rating agencies and FED. After the collapse, in 
order to boost up the economy, FED decided to follow some unorthodox monetary policies as quantitative easing. As a 
butterfly effect major banks through the world began to pump money into economies. However, this did not go as 
expected, since the newly created money flows to financial markets instead of real economies. Nowadays, we are still 
facing the problem of excess liquidity and decreasing growth in the entire world. Yet, after these loose monetary 
policies we began to witness new records in stock exchanges which render the trading of these complex derivatives to 
increase even further. 

In addition to all these, there was another quite important issue which was not taken seriously by the investment banks 
due to possible computation complexities. The pricing of these CDOs is not obvious in the sense that the expected time 
of defaults of the loan payers has to be taken into account. Moreover, it is known that due to recessions or depressions 
the default correlation among different sectors in the economy tends to rise. A typical CDO consists of 125 loans, so in 
order to calculate the price of this CDO we have to know the correlation structure of these loans which corresponds to 
a variance covariance matrix of 7750 cells!  

It was the first attempt introduced by David Li (2000) that the correlation structure can be represented by a single 
common factor “a” yielding a single factor Gaussian copula framework enabling the practitioners to compute the price 
of these complex financial derivatives. However, this computation technique inherited a major drawback which came 
to surface at the financial crisis.  

The Gaussian copula approach rendered the tranches to be mispriced, thus triggering some inefficiency in the market. 
Although several attempts are proposed to overcome this issue, practitioners still use this technique just as they do to 
compute the prices of options via Black-Scholes model keeping mind the volatility smile phenomenon. Here, we face 
with another smile surface, namely the correlation smile. The smile shape comes from the implied correlation 
paramater derived from the existing tranche spreads in the market. The methodology of treating the tranches in a 
separate manner also exhibits a uniqueness of solution problem. Later, a base correlation approach is introduced which 
takes into account the pricing of a series several tranches in order to fit the correlation skew curve. This paper, 
contorary to the literature, tries to understand the effect of unexpected jumps in the pricing of CDO tranches by the 
introduction of a Levy copula which directly intervenes into the pricing formula.  

The remaining of the paper is as follows: In the next section, Gaussian copula which is presented by David Li is 
summarized in the sense that it is the benchmark for pricing these complex derivatives throughout the literature. 
Therefore, in order to grasp the idea of Li, basic preliminaries regarding copulas are given. Then, the major drawback 
of this pricing technique is considered. In Section 3 Levy copulas are introduced and the new model is discussed. 
Section 4 is devoted to numerical results and comparisons. Finally Section 5 concludes. 

2. Pricing of the CDO Tranches via Gaussian Copula Framework 

Let X and Y be random variables with distribution functions ( ) [ ]F x P X x  , ( ) [ ]G y P Y y   and joint distribution 

function ( , ) [ , ]H x y P X x Y y   . For each pair of real numbers ( , )x y  three numbers can be associated, namely 

( ), ( )F x G y  and ( , )H x y  each lying on the interval [0,1] . In other words, each pair ( , )x y  gives a point 

( ( ), ( ))F x G y  in the unit square[0,1] [0,1] , and this ordered pair corresponds to a number ( , )H x y  in [0,1] . This 

correspondence, which assigns the value of the joint distribution function to each ordered pair of values of individual 

functions, is called a copula. 

Let H  be a joint distribution function with boundaries F  and G . Then there exists a copula C  such that for all 

x, y in . If F  and G  are continuous, then C  is unique; otherwise, C  is uniquely determined 

on RanF RanG . Conversely, if C  is a copula and F  and G  are distribution functions, then the function H  

defined by ( , ) ( ( ), ( ))H x y C F x G y  is a joint distribution function with margins F  and G . This is known as the 

Sklar’s theorem. 

Let us consider a synthetic CDO, a CDO formed by CDSs. A protection seller of a synthetic CDO obtains 
intermittent payments from the protection buyer, acting as a security for certain losses of subordinated tranches. The 
loss that the protection seller has to reimburse is determined via a reference credit portfolio.  
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The pricing of a synthetic CDO works similar as the pricing of ordinary CDSs since a synthetic CDO consists of 
CDSs. To calculate the loss of a certain tranche say from K1 to K2 (with 0   K1 < K2  1) of the reference portfolio 
let us make further assumptions and introduce some new notations. 

Assume that the spread payment dates are discrete, 1 2 nt t ... t T     where T denotes the maturity of the 

synthetic CDO. Actually, this makes quite sense since the payment due dates are also discrete in real life. Some 

further relevant notations are as follows: 

 s denotes the yearly spread payments made by the protection buyer 

 
1 2

( )R
K KL t  denotes the loss of tranche K1, K2 up to time t, taking into consideration the possibility of 

recoveries. Usually models assume zero recovery, which is also the assumption; however, conventionally 

recovery rate is taken as 40%. Moreover, there are models taking into account stochastic recovery rates 

which are beyond the aim of this work. 
 The short term interest rate r(t) is given, considered to be constant and independent of the tranche loss. 

Again, there are studies taking into account stochastic interest rate which according to us is not the main 
item in pricing synthetic CDOs. 

Now, utilizing from Girsanov’s theorem, consider the risk neutral measure and denote it by Q. Denote the 

expectation of the abovementioned tranche loss under this new measure by 
1 2Q ,E ( )R

K KL t    or simply by 

1 2, ( )R
K KEL t . The discount factor is 

0

QE exp ( )
it

t

r u du
  
      

  or simply 0( , )iD t t . 

The valuation of a synthetic CDO very much looks like the valuation of a simple swap. One first has to evaluate the 
present value of the spread payments, then evaluate the discounted value of protection payments taking into account 
the expectation of defaults, and finally equalize them.  

The value of the premium leg is computed as follows: 

0

1 2

1 2

( )n

Q ,
i=1

n

, 0
i=1

Premium Leg = E (1 ( ))

                      = (1 ( )) ( , ) ,

ti

t

r u du
R

i K K i

R
i K K i i

t s L t e

t s EL t D t t





     
  

     




                       (1) 

where 1i i it t t    . 

Protection payments are made in case of a default. For simplicity, integration is avoided by discretization. Therefore 
we have the following: 

 

0

1 2
0

0

1 2 1 2

1 2 1 2

( )

Q ,

( )n

Q , , 1
i=1

n

Q , ,
i=1

Protection Leg  = E ( )

                          E ( ) ( )

                          = E ( ) (

s

n t

ti

t

r u du
t R

K Kt

r u du
R R
K K i K K i

R R
K K i K K i

e dL s

e L t L t

EL t EL t









  
 
  

    
  







  1 0) ( , ).iD t t

                      (2) 
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Equalizing the premium and protection leg yields: 

 
1 2 1 2

1 2

n

Q , , 1 0
i=1

n

, 0
i=1

E ( ) ( ) ( , )
 .

(1 ( )) ( , )

R R
K K i K K i i

R
i K K i i

EL t EL t D t t
s

t s EL t D t t

 


     




                      (3) 

In case a loss occurs in the portfolio denoted by ( )portfolioL t , one can calculate the corresponding percentage loss as 

follows: 

 
1 2

portfolio 2 1

,
2 1

min ( ( ), )
( ) .

R

R
K K

L t K K
L t

K K





                           (4) 

If the discrete distribution of the aggregate loss of the reference portfolio up to time t is known (considering 
recoveries) and can take only m possible values then, 

 R R,k R
portfolio portfolio k=1,...,m

with risk neutral probabilityL (t) L (t)   F (t, k)  

Thus, we have the following: 

 
1 2

2 1

,
2 1

min ( ( ), )
( )

R
portfolioR

K K Q

L t K K
EL t E

K K

 
 
 
 

 

 2 1
12 1

min
1

( ( ), ) . ( , ).
m

R R
portfolio

k

L t K K F t k
K K





 
                     (5) 

If the loss distribution function of the portfolio is continuous, then  

 

   

     

1 2

1

2

1 2

1 2 2

1

, 2 1
2 1

1

1 2 1
2 1

1 1 1

1 1 2 1
2 1

1
( ) min( , )  ( , )

1
                (  ( , ) (  ( , )

1
               (  ( , ) (  ( , ) (  ( , )

R R
K K

K

K
R R

K K

R R R

K K K

EL t x K K dF t x
K K

x K dF t x K K dF t x
K K

x K dF t x x K dF t x K K dF t x
K K

 
     

 
       

     




 

  

   
1 2

1 1

1 2
2 1

1
                (  ( , ) (  ( , ) .R R

K K

x K dF t x x K dF t x
K K

 
  
 
 

       
 

    (6) 

It can realized that it is crucial in the pricing of a CDO tranche to obtain the loss distribution function. The 
benchmark model for this, which will be presented below is the one factor Gaussian copula model first introduced by 
David Li. 

Let i  be a random variable denoting the time to default of a firm i  from the reference portfolio. Instead of 
concentrating the firms default times one by one, under this framework the default correlations among the firms 
become crucial for pricing. The Gaussian copula approach allows us to price CDO tranches without taking into 
account the marginal distribution of the firms.  
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Let ( )iA t  be the standardized asset return of firm i up to time which is assumed to be of the following form: 

2( ) ( ) 1 ( )i i i iA t a M t a X t                                    (7) 

where M(t) is the market risk and ( )iX t  is the firm based (idiosyncratic) risk, both standard normally distributed. 

(This is a commonly used convention since asset returns are “almost” normally distributed as the Black-Scholes 

option pricing formula proclaims). The above equation renders ( )iA t  to be standard normally distributed as well. If 

we denote the distribution function of the default time i  by iQ  then the issuer said to be defaulted before time t 

when ( ( )) ( )i iA t Q t   or equivalently
1( ) ( ( )) : ( )i i iA t Q t C t   . Here ( ) [ ] i iQ t Q t  where Q denotes the risk 

neutral probability implied from the observable market prices. In fact, as we shall see later, in the Gaussian copula 

framework the whole asset return structure of the firms reduce to a single component, which is derived from the 

existing market prices, enabling us to price the tranches of CDOs. According to the asset return equation the ith issuer 

defaults up to time t when 

2

( ) ( )
( )

1

i i

i

i

C t a M t
X t

a





,                                 (8) 

Then the probability that the ith issuer defaults up to time t, conditional on the factor M(t) becomes, 

2

( ) ( )
( | )

1

i i

i

i

C t a M t
p t M

a







 
 
 
 

.                            (9) 

Just like the idea of central limit theorem, here the aim is to derive analytical results for pricing the CDO tranches for 
the limiting cases. The related assumptions for the credit issuers now are: 

 same portfolio weights 

 same default probability ( )Q t  

 same recovery rate R 

 same correlation to the sensitivity of the market 

Then we have  

2

( ) ( )
( | )

1

C t aM t
p t M

a







 
 
 

.                                (10) 

In large homogeneous portfolio model, the expected loss at time t  of the mezzanine tranche taking losses from K1 
to K2 percent of the overall portfolio assuming zero recovery is given by 

1 2

1 1

2 1 2 2
,

2 1

( ( , ( ), )) ( ( , ( ), ))
( )K K

K C t K C t
EL t

K K

        


 ,                   (11) 

where 2  is the bivariate normal distribution function with the covariance matrix  

2

2

        1  1

1      1

a

a


 


 

 
 
 
 

. 
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3. Levy Copulas 

A stochastic process (Xt) on d with 0 0X   is called a Levy process if:  

 For 1n   and 0 10 ... nt t t T     , the random variables 
0 1 0 2 1 1
, , ,...,

n nt t t t t t tX X X X X X X


    are 

independent 

 The distribution of t s tX X   does not depend on t 

 For every [0, ]t T and 0 , lim  [ ] 0s ts t
P X X


    

 0 F   with 0[ ] 1P    such that 0  , ( )tX   is right-continuous and has left limits in [0, ]t T . 

This definition allows a Levy process (Xt) to have discontinuities (jumps). The jump behavior is described by the 

jump measure   defined on [0, ]T  d by  ( ) # ( , )tA t X A   . For every measurable set A  d, 

1 2([ , ] )t t A  counts the number of jumps with sizes not exceeding A between 1t  and 2t . On the other hand, Levy 

measure  is defined as  ( ) [# [0,1] : 0, ],  t tA E t X X A      indicating the expected number of jumps, per 

unit time belonging to A where A B ( d). 

Let (Xt) be a Levy process on d with Levy measure  .The tail integral of  is a function U: ( d \{0})  

defined as follows 

1
1 1

( ,..., ) ( ) sgn( )
d d

d i i
i i

U x x x x 
 

 
  

 
   

where 

[ , ),   0;
( )

( , ], 0.

x x
I x

x x

 
   

 

A function F: d
    is called a Levy d-copula function (or Levy copula), if 

 1( ,..., )dF u u    for 1( ,..., ) ( ,..., )du u     

 1( ,..., ) 0dF u u   if 0iu   for at least one  1,...,i d  

 F is d-increasing 

 ( )iF u u  for any  1,...,i d , u  

Let   be a Levy measure on d. Then there exists a Levy copula F such that the tail integrals of   satisfy 

(( ) ) (( ( )) )I I ii ii I i IU x F U x  for any non-empty  1,...,I d  and any ( )i i Ix   I. Conversely, if F is a 

d-dimensional Levy copula and 1,..., d   are Levy measures on  with tail integrals 1,..., dU U  then there exists a 

unique Levy measure d with one-dimensional tail integrals 1,..., dU U . This is known as the generalized Sklar’s 

theorem. 

Let (Xt) be a Levy process on d. Then the independence copula is given by 

1
1

( ,..., ) ( )
d

d i j
i j i

F u u u I u 
 

    

Let be a Levy process on  d whose Levy measure is supported by an ordered set D S . Then the complete positive 

dependence Levy copula is given by 
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|| 1 1 1
1

( ,..., ) min( ,..., ) ( ,..., ) sgn( )
d

d d S d i
i

F u u u u I u u u


    

4. Numerical Results and Comparison  

The Gaussian copula approach involves some improper integrals which has to be computed numerically. Moreover, 
the correlation coefficient " "a  involved in the variance covariance matrix should be calculated via an “implied 
correlation” from the existing market prices of CDO’s. However, having obtained " "a  will only enable one to price 
the other tranches instantly. Here, the aim is to offer another theoretical model which explains the correlation 
surfaces better than the traditional approach. A direct application of Sklar’s theorem yields  

 1 1
1 2 1 1

1 11 1

( ( ),..., ( )
( , ,..., ) . ( ) ( ( ),..., ( )). ( )

( )... ( )

n n n
n n

n i i n n i i
i in n

C F x F x
f x x x f x c F x F x f x

F x F x  


 

     

where 1 1 1 2
1

( ( ),..., ( )) ( , ,..., ) / ( )
n

n n n i i
i

c F x F x f x x x f x


   

Let   be the parameter space and   be the k-dimensional vector of parameters to be estimated. Let ( )tLKL   

and ( )tlkl   be, respectively, the likelihood and log-likelihood function for the observation at time t. Define the 

log-likelihood function ( )lkl   as the following: 

1

( ) ( )
T

t
t

lkl lkl


    

Taking into account the canonical form described above 

1 1
1 1 1

( ) ln ( ( ),..., ( )) ln ( )
T T N

t t t
N N n n

t t n

lkl c F x F x f x
  

    

the maximum likelihood estimator can be defined accordingly. 

For the Gaussian copula let  ={V:V  NxN} denote the parameter space with V being a symmetric and positive 

definite matrix. The application of canonical form yields:  

1

1

gaussian 1
( ) ln '( )

2 2

T

t t
t

T
lkl V V I



       

Assuming that the log likelihood function is differentiable we have the solution of the equation / 0    defining 

a global maximum. Thus the log likelihood for the Gaussian copula becomes: 

1
1 1

gaussian 1 1ˆ( ) ' '
2 2

T T

t t t t
t t

T
lkl V V

V T
    

 


   

    

Let A and B the attachment and detachment points respectively. If we denote the accumulated loss of the reference 

portfolio at time t as L(t) the loss of the tranche can be given as: 

 
,

,

1
,

( ) ( ( ) ) ( ) ( ) ( )A B
A B n
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Just like a regular swap analysis a fair price of a CDO tranche is given by 
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                      (12) 

where D denotes the discount factor, the numerator being the expected loss (default leg) and the denominator being 
the installments (premium leg). 

The simulation done by MatLab is divided into 3 parts 

 Generating default times via Gaussian copula by the help of log likelihood estimation 

 Equalizing the default and premium legs 

 Calculating the tranche spreads for different values of correlation and recovery rates 

For 125 loan payers, 1 year of maturity and 1000 simulations we have Figure 1, Figure 2 and Figure 3 as 
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Figure 1. Equity tranche spread modeled with Gaussian copula for different recovery rates 

 
Figure 2. Mezzanine tranche spread modeled with Gaussian copula for different recovery rates 
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Figure 3. Senior tranche spread modeled with Gaussian copula for different recovery rates 

 

 
Figure 4. Itaxx125 CDS spreads for seven sectors and their average 

 

The daily Itraxx125 data between 2004-2012 indicates that the 7 sectors on which the CDSs are written comprising 
the synthetic CDO have almost the same correlation structure during times of crises. That is, all sectors tend to jump 
at the same time. Actually this is not data specific in the sense that the CDS spreads have tendency to move together 
during crisis periods. For instance if there is a negative financial shock then we expect the possibility of bankruptcy 
to rise for all possible companies, even for the countries. Therefore for modeling purposes a perfectly dependent 
Levy copula having following form is added to the pricing 

77

|| 1,...,7
1 1

min( ) ( ) sgn( )i S i i i
i i

F u I u u
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Now again for 125 loan payers, 1 year of maturity and 1000 simulations, we now have Figure 5, Figure 6 and Figure 
7 as  
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Figure 5. Equity tranche spread modeled with Levy copula for different recovery rates 

 

 
Figure 6. Equity tranche spread modeled with Levy copula for different recovery rates 
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Figure 7. Equity tranche spread modeled with Levy copula for different recovery rates 

 

Here the default times are generated by Gaussian copula conjoined with a Levy copula added to the variance 
covariance matrix as a “corrector”. 

5. Summary and Conclusions 

With Gaussian copula framework we confront the “correlation smile” problem. This phenomenon occurs due to the 
inconsistency of single parameter correlation structure. When the correlation parameter is derived from the market 
prices i.e. implied correlation, senior tranches imply high correlation whereas junior and part of mezzanine tranches 
imply low correlation.  

Comparing Figure 1 and Figure 5 we see that for junior tranche when correlation parameter gets higher so does the 
expected tranche loss and the associated fair spread. Gaussian copula framework implies higher correlation and thus 
higher fair spread. On the contrary the new model gives lower spread everywhere. 

For senior tranche the case is different when we look at Figure 2 and Figure 6. Since senior tranche investors are 
affected only when losses in the collateral go beyond most of the pool notional, many defaults should occur in order 
for this to happen. However, in practice higher correlation implies lower spread since the probability of huge number 
of defaults is quite unlikely. Gaussian copula framework implies lower correlation and thus lower fair spread. The 
new model, on the other hand gives higher spread. 

Finally, looking at Figure 3 and Figure 7, for mezzanine tranche, we witness that Gaussian copula model gives 
higher and sometime later lower correlation. The new model gives lower spread at the beginning and later higher 
spread which is consistent for correcting the correlation smile phenomenon. 
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