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ABSTRACT

Exploiting neural networks to solve control problems of robots is becoming commonly and effectively in academia and engineering.
Due to the remarkable features like distributed storage, parallelism, easy implementation by hardware, adaptive self-learning
capability, and free of off-line training, the solutions of neural networks break the bottlenecks of serial-processing strategies and
methods, and serve as significant alternatives for robotic engineers and researchers. Especially, various types and branches of
recurrent neural networks (RNNs) have been sequentially developed since the seminal works by Hopfield and Tank. Successively,
many classes and branches of RNNs such as primal-dual neural networks (PDNNs), zeroing neural networks (ZNNs) and gradient
neural networks (GNNs) are proposed, investigated, developed and applied to the robot autonomy. The objective of this paper is
to present a comprehensive review of the research on neural networks (especially RNNs) for control problems solving of different
kinds of robots. Specifically, the state-of-the-art research of RNNs, PDNNs, ZNNs and GNNs in different robot control problems
solving are detailedly revisited and reported. The readers can readily find many effective and valuable solutions on the basis of
neural networks for the robot autonomy in this paper.
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1. INTRODUCTION

Neural networks (or termed artificial neural networks) are
simple systems that are composed of many connected neu-
rons to simulate the structure of human brain.[1–5] Neural
networks usually possess the characteristics of adaptivity,
nonlinearity, parallelism and distributed storage, which can
be used to solve the complicated problems that can not be
solved by other approaches.[6–9] Specifically, the applications
of neural networks including (but not limited to) the pat-
tern classification,[10, 11] deep learning,[12, 13] approximation
and prediction,[14, 15] image processing,[16, 17] machine learn-
ing,[18, 19] optimization and computation,[20, 21] complex sys-
tem control[22–24] (including the robot system control).[25, 26]

Due to the extensive and significant applications of neu-

ral networks, the development and investigation of neural
networks have become common and heated topics for the
researchers in biology, mathematics, physics, and computer
science.[27–40]

According to different standards of classification, neural net-
works can be divided into different categories. From the
point of topology, neural networks can be divided into feed-
forward neural networks (FNNs)[41–44] and recurrent neural
networks (RNNs).[45–65] Note that the FNNs are the hierar-
chical structure with each layer divided by the function as the
input-layer, the hidden-layer, and the output-layer. Each neu-
ron in FNNs receives the inputs from the previous layer, and
exports the information to the next layer. The information is
transmitted with a fixed (or to say, single) direction without
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feedback.[66] Differing from the FNNs, the RNNs are those
neural networks that possess the feedback connections of
each network layers.[67] The network structure of RNNs is
more complicated than the one of FNNs. Specifically, each
neuron in the RNNs exports outputs to other neurons via the
connected synapses. At the same time, each neuron in the
RNNs receives inputs from other neurons via the connected
synapses. The input information lies on the initial states
of RNNs. Then, real-time states of RNNs vary adaptively.
Finally, the RNNs converge to the equilibrium states (or
termed steady states), and the steady states are the outputs of
the RNNs. Recently, many special classes and branches of
RNNs have been developed and investigated, such as primal-
dual neural networks (PDNNs),[68–76] Zhang neural networks
[or termed zeroing neural networks (ZNNs)[77–106] and gra-
dient neural networks (GNNs).[107–114] Note that the ZNN
is a special class and branch of RNNs, which is originated
and extended from the research of Hopfield neural networks.
The ZNNs have been proposed developed, and investigated
as a systematic as well as efficient approach to solve dif-
ferent dynamical engineering problems in real time since
2001.[68, 69] The applications, especially the applications in
robot autonomy, of those RNNs have become interesting
issues for researchers and engineers.[115–120]

With the national industrialization, robot systems play an
increasingly significant role in applications of modern en-

gineering, life services as well as numerous fields. Robot
systems have been widely used in engineering applications
for cutting, welding, painting and assembly, etc. In addition,
they have been widely used in life services for medical as-
sistance, rescue, etc. Generally speaking, robot systems can
be divided into serial robot manipulators (e.g., the Baxter
robot[121–127]), parallel robot manipulators (e.g., the Stewart
platform[128–130]), mobile platform robots (e.g., the Mobile
Kinova manipulator[131, 132]), multirobot systems (e.g., the
multiple redundant manipulators[133, 134]), flying robots (e.g.,
the unmanned aerial vehicle[135]) and exoskeleton robots
(e.g., the knee exoskeleton[136]). One significant issue in
the research of robot systems is the motion planning and
control problem. Up to now, a large number of effective
approaches for robot systems have been creatively proposed
and effectively employed, such as the neural networks ap-
proach,[137] the active control approach,[138] the robust con-
trol approach,[139] the optimal control approach,[140] etc. In
this survey, we aim to provide a comprehensive review on the
research of neural networks (or to say, neural dynamics) in
robot autonomy. Specifically, the state-of-the-art research of
RNNs, PDNNs, ZNNs and GNNs in different robot control
problems solving are detailedly revisited and reported, with
the typical applications shown in Figure 1. The readers can
readily find many referenced and valuable solutions on the
basis of neural networks for the robot autonomy in this paper.

Figure 1. Applications of neural networks in robot autonomy

2. RNN IN ROBOT AUTONOMY

In the past three decades, by leveraging the advantages of par-
allelism and adaptivity as well as the free of off-line learning,
the RNNs have received considerable investigation in robot
autonomy. For example, Zhang and Zhang[116] effectively
solved the joint-angle as well as joint-velocity drift problems
during the repeated motion of robot manipulators, by propos-

ing a drift-free method in acceleration-level limited by the
linear equality constraint. Noth that the effectiveness was
detailedly analysed on the basis of the theory of a second-
order system. Such a method proposed in[116] is afterwards
formulated as the quadratic programming (QP), and solved
by corresponding RNNs. In,[141] a novel dual-manipulator
repetitive motion generation strategy was proposed by the
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neural dynamics approach to handle and address a joint-drift
problem of the humanoid robot. Specifically, based on such
a neural dynamics approach, a performance index for repet-
itive motion was effectively utilized in,[141] and then such
a performance index was integrated as the QP formulation
with the time-varying constraints. Specifically it was named
as the time-varying constrained scheme. Such a scheme can
effectively produce a repeated motion of two manipulators
of the humanoid robot. Besides, it also can control two ma-
nipulators to move to a desired position, which was finally
solved by a RNN to achieve the optimal solutions. In ad-
dition, Zhang et al.[142] employed a virtual plane method
to produce a analytical solution for the motion of the robot
head. Then, a QP-based method was exploited to formulate
the coordinated dual-arm motion. By utilizing a simplified
RNN, the optimal solution was finally found. Mohammed
and Li[128] investigated and formulated the kinematics control
for the Stewart platform as the QP with constraint. Note that
Karush-Kuhn-Tucker conditions of problem were attained
via considering the primal one in dual space, and afterwards
an RNN was developed to handle such a optimization prob-
lem. Detailed theoretical analyses in[128] prove the global
convergence of such a neural network to the optimal solution
according to the defined performance index. In 2017, Li et
al.[143] identified two major limitations of the RNN solutions
for the robot manipulator autonomy, that is the accumulation
of position error as well as the convex restriction of projec-
tion set. The proposed method in reference[143] overcame the
above mentioned limitations by developing modified neural
network models, which enables nonconvex sets of projection
operations, and the position error will not accumulate over
time under the influence of the noise. Differing from many
works the corresponding RNNs are utilized to address time
sequences, the corresponding method has the advantages of
model-based as well as training-free. It makes it feasible to
obtain rapid tracking of reference signals. In,[144] three differ-
ent RNNs and three different numerical methods was investi-
gated, developed, and compared to solve a repetitive motion
planning (RMP) scheme for remedying joint-drift problems
of redundant robot manipulators. Three RNNs presented
in[144] are recurrent and real time, and they do not need to be
trained in advance. Li et al.[145] proposed a novel RNN to
handle the redundancy of robots for efficient kinematics prob-
lem under the influence of polynomial-type noises. By taking
advantage of high-order derivative properties of polynomial-
type noises, the devised neural network model was developed
to remove the negative influence of noises, and regain the
effective tracking of reference trajectories in high accuracy.
To solve the joint drift phenomenon that might lead to the
failure of the given task, or even worse, the damage of the

robot, a finite time varying parameter RNN was introduced
and developed in.[146] A QP-type joint drift-free solution was
proposed, which consists of an optimization performance
index and a velocity-level kinematics equation. Note that a
feedback information was added to the kinematics equation
as a constrained equality. In addition, a novel joint drift-free
solution considering feedback was achieved. Then, a novel
RNN model was developed to solve the proposed scheme,
and the related finite-time convergence theorem was given.
Specifically, the superiorities of the proposed RNN in[146]

the real-time computation, the exponential convergence, as
well as the capacity to remove initial errors. Moreover, Jin et
al.[147] revisited the existing RNN and it related models for
addressing zero-finding, such as the inversion of matrix, with
time-varying parameters from control perspective, and then
formulated as a control-theoretical framework. Afterwards,
the constraints of activated functions of RNN and the related
models were presented, and handled by taking advantage of
control techniques. Besides, the gradient-based RNN, as a
typical solution for zero-finding, were represented to handle
the dynamic issues in manners free of errors as well as matrix
inversions. The research in[147] provided a systematic and
general method on using control techniques to develop the
corresponding RNN and the related models for robustly as
well as accurately handling algebraic equations and the robot
autonomy problems. More detailed research by utilizing
the RNNs with application to robot autonomy can also be
refereed in the state-of-the-art works.[148–150]

3. PDNN IN ROBOT AUTONOMY

Many special classes and branches of RNNs have been in-
troduced and investigated for the robot kinematic as well as
dynamic autonomy, e.g., the Lagrangian neural networks and
the PDNNs.[151] In particular, Zhang et al.[68] proposed a
dual neural network (i.e., a special case of PDNNs) for the
bi-criteria kinematics issue of robot manipulators. In order
to eliminate discontinuity of minimum infinity-norm solu-
tions, the kinematics control issue was reformulated as the
bi-criteria of infinity and Euclidean norms in.[68] Note that
physical constraints, like joint-angle limit as well as joint-
velocity limits were incorporated in the kinematics control
solution. Such a dual neural network was proven to converge
to the optimal solutions globally in a bi-criteria sense, and
was illustrated to be effective for the the PA10 robot auton-
omy in.[68] In addition, a dual neural network was developed
in[69] for the real-time joint-torque optimization of redun-
dant robot manipulators corresponding to the global energy
minimization of robot manipulators. Differing from existing
computational schemes on the inverse kinematics, a dual
neural network was introduced at acceleration level to handle
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redundancy issue of limited joint-range robots. Note that
such a dual neural network possesses a quite simple struc-
ture with one layer of neurons. It was proved to converge
to the optimal solutions globally as well as exponentially
in.[69] Such a dual neural network was finally simulated with
a PUMA 560 robot manipulator to substantiate effectiveness.
In 2004, Zhang and Wang[71] proposed and developed a new
dual neural network with application to kinematics autonomy
of redundant robot manipulators with the ability of obstacle
avoidance. Note that the requirement of obstacle avoidance
was represented by the dynamical inequality limits, an im-
proved problem formulation was presented in.[71] On the
basis of the above improved problem formulation, a novel
dual neural network was introduced for solving real-time
collision-free problem of inverse kinematics. Such a pro-
posed new dual neural network was applied to the autonomy
of a PA10 robot manipulator with a point obstacle as well
as a window-shaped obstacle. In 2007, the neural compu-
tation of real-time solution of the matrix-inverse problems
was investigated in.[152] The basic concepts of primal neural
network and power-sigmoid activation function were thus
formally proposed for the general neural computation of
matrix inverse. Different activation functions were exam-
ined and presented in[152] for the superior convergence as
well as robustness of the system involved. In addition to the
singular case, the reference[152] investigated a robotic exam-
ple, that is, inverse kinematic autonomy of redundant robots
by using real-time pseudo-inverse computation. Chen and
Zhang[153] proposed a novel minimum jerk norm solution
with the obstacle-avoidance constraint with the application
to a redundant manipulator, of which its joint jerks keep
bounded for the human-friendly robot autonomy. For the
aim of superior tracking performance of the redundant manip-
ulator, the presented jerk bounded MJN solution in[153] was
further improved by feedback information. Moreover, the
effectiveness of the obstacle avoidance of the solution was
proven by a variable-magnitude escape-jerk theorem. Then,
the proposed solution was formulated into the dynamical QP
which is then handled by a special kind of PDNNs. In 2017,
a hybrid multi-objective (HMO) solution was novelly devel-
oped in[76] to simultaneously achieve four objectives, i.e.,
the specified main task for end-effector, obstacle avoidance,
joint-physical limits avoidance, as well as repetitive motion
of robot manipulators. Afterwards, such an HMO solution
in[76] was formulated into a dynamical QP with the optimal
solution of the dynamical QP problem found by a special
kind of PDNNs and also by a numerical algorithm imple-
mented on the computer. In,[154] a jerk-level synchronous
repetitive motion solution was introduced to handle the joint-
angle-drift issue, and obtain the synchronous autonomy of a

dual manipulators of redundant robot. Such a solution in[154]

was solved at joint-jerk level making all the joint variables,
i.e., joint angles, joint velocities as well as joint accelera-
tions, smooth and bounded. In addition, different types of
dynamics algorithms, that is the gradient-type as well as
zeroing-type dynamics algorithms, to design the repetitive
motion variable vectors, were detailedly shown with circuit
schematics. Afterwards, the presented solution in[154] was
formulated into two dynamical QPs, and then integrated into
unified dynamical QP for the synchronous autonomy of a
dual manipulator of robot system. Note that the optimal
solution for UDQP was successfully achieved via a kind of
PDNNs. More detailed research by utilizing the PDNNs with
application to robot autonomy can also be refereed in the
state-of-the-art works.[155–157]

4. ZNN IN ROBOT AUTONOMY

Remarkably, as a new class of RNNs, Zhang neural networks
(or to say, zeroing neural networks, ZNN) can handle prob-
lems with multiple state dimensions.[158] Specifically, such
class of RNNs can zero out each element of error function
in the neural dynamics manner,[159] which is thus deemed
as a systematic as well as effective methodology to solve
different real-time robotic issues.[160–162] For example, to ef-
fectively handle inverse kinematics issue of redundant robots,
the redundancy-resolution solutions were investigated in.[84]

The first one was solved at the joint-velocity level, and the
second one was solved at the joint-acceleration level. Both
the solutions in[84] were formulated into a dynamical QP.
Then, the ZNN was introduced and presented for real-time
solution of the related QP. For the purpose of accurate solu-
tion of the real-time inverse kinematics issue for the mobile
robots, an interesting ZNN is introduced and developed by
Xiao and Zhang.[85] It was theoretically proven that the cor-
responding model of ZNN in[85] can globally as well as ex-
ponentially converge to the solution of the real-time inverse
kinematics problem for mobile robots. Moreover, kinematics
equations of a mobile platform as well as a manipulator were
integrated as one robot system, and thus the corresponding
solution can coordinate simultaneously wheels as well as
manipulator to successfully achieve a desired end-effector
job. In,[163] the authors made progress along the direction
by introducing a modified zeroing neural network (i.e., the
MZNN) model for solving the time-varying QP problem.
Noth that an original ZNN model and a GNN model are
used to compare with the presented MZNN model. Note
that detailed theoretical analyses in[163] prove that the pre-
sented MZNN model globally and exponentially converges
to the exact real-time solution of the real-time QP without
measurement noise In addition, under the influence of the
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measurement noises, such a presented MZNN model would
possess a satisfactory performance. Moreover, Jin et al.[164]

presented and investigated an integration-enhanced ZNN and
the related model for solving time-varying matrix inversion.
Note that theoretical analyses in[164] prove that the presented
integration-enhanced ZNN model possesses the global and
exponential convergence property. In addition, under the
influence of different kinds of noises, such an integration-
enhanced ZNN together with the related model was proven to
possess an improved performance. Note that no matter how
large the matrix-form constant noise is, such an integration-
enhanced ZNN model in[164] can converge to the theoretical
solution. In addition, the residual errors of the presented
integration-enhanced ZNN model would be arbitrarily small
as for the time-varying noises as well as the random noises.
Finally, such an integration-enhanced ZNN model was used
to the autonomy problem handling of robots. For the research
of discrete-time ZNN, a novel Taylor numerical differenti-
ation formula was introduced for the discretization of the
continuous-time ZNN in[165] to achieve higher computational
accuracy. On the basis of such a Taylor numerical differenti-
ation formula, the corresponding Taylor-type discrete-time
ZNN models were then introduced and discussed to perform
the real-time dynamic equality-constrained QP. For compar-
ison purpose, the Euler-type discrete-time ZNN models as
well as the Newton iteration together with their links being
found, were also shown in.[165] It was shown in[165] that the
steady-state residual errors of the presented Taylor-type ZNN
models, Euler-type ZNN models, as well as Newton iteration
have the patterns of O(h3), O(h2), as well as O(h), respec-
tively, with h being the sampling gap. Finally, such a Taylor-
type discrete-time ZNN model was applied to the control
problem solving of robot manipulators. Moreover, Chen and
Zhang[166] proposed a novel robust ZNN model for handling
the inverse kinematics issue of the mobile robots. Differing
from most ZNN works on the basis of the assumption that
neural networks are free of external disturbances, four com-
mon forms of time-varying disturbances suppressed by the
presented robust ZNN model were developed in.[166] Note
that theoretical analyses of anti-disturbance performance
therein were presented to prove the effectiveness as well as
robustness of the presented robust ZNN model with time-
varying disturbances suppressed for handling the inverse
kinematics issue of mobile robots. In addition, to overcome
two major limitations in traditional Jacobian-matrix-pseudo-
inverse method, Chen et al.[167] proposed an interesting
Jacobian- matrix-adaption (JMA) approach for the tracking
autonomy of robots via the ZNN design process. Differ-
ing from most ZNN works requiring the information of the
known robot model, the proposed JMA approach used only

the input-output information to control the robot with un-
known model. The solution on the basis of such a JMA
approach in[167] successfully transforms the internal, implicit
and unmeasurable model information to the external, explicit
as well as measurable input-output information. In,[168] the
authors proposed a novel control method for the controlling
knee exoskeleton robot with the real-time inertial and vis-
cous coefficients. Note that the controller was designed on
the basis of the ZNN approach and utilized twice Zhang
function so as to make the tracking error of joint angle expo-
nentially converge to zero. In,[135] the authors proposed and
investigated a varying-parameter convergent neural dynamic
(VP-CND) autonomy approach by exploiting ZNN design
approach to stably control the position and attitude angles of
an unmanned aerial vehicle (specifically, a flying robot). The
proposed VP-CND autonomy approach for the flying robot
in[135] not only can track time-varying desired values but also
possesses super-exponential convergence performance. Jin
et al.[133] proposed and developed a distributed solution for
the cooperative motion generation in a distributed network of
multiple redundant robots (specifically, multirobot system).
In order to suppress the noises originating from communica-
tion interferences and computational errors, a noise-tolerant
ZNN is constructed to solve the QP in real-time. Note that
the theoretical as well as the simulative results shown that,
in the presence of noise, the proposed distributed scheme
in[133, 134] with the aid of noise-tolerant ZNN model has a
satisfactory performance.

5. GNN IN ROBOT AUTONOMY

Another special class of RNN, i.e., the GNN, has been intro-
duced and developed as an effective option for the real-time
scientific problems handling including the robotics redun-
dancy resolution problem. For example, in 2005, a gradient
based neural dynamics system for matrix inversion was re-
visited by examining different activation functions as well
as various implementation errors in.[107] Then, a general
GNN for matrix inversion was thus introduced which was
constructed by utilizing the monotonically-increasing odd
activation functions. For the aim of superior convergence
and robustness of the presented system, the power-sigmoid
activation function was preferred to be in use. In addition
to investigating the singular case, the reference[107] also pre-
sented an example on inverse kinematic autonomy of redun-
dant robots via real-time pseudo-inverse solution. In 2008, a
QP-type method was employed for repetitive motion genera-
tion of robot manipulators together with the joint-physical
limits considered by Chen et al.[169] In order to illustrate
the effectiveness of such a QP-type repetitive motion gen-
eration solution, different kinds of multi-link planar manip-

24 ISSN 2577-7742 E-ISSN 2577-7769



http://ijrc.sciedupress.com International Journal of Robotics and Control 2018, Vol. 1, No. 1

ulators are used to perform square end-effector trajectories
through different simulations. Note that theoretical analysis
based on GNN therein was conducted to prove the efficacy
of the presented scheme. In 2011, the performance of a
GNN, which was developed for handling static problems
intrinsically, was introduced as well as analyzed in the situa-
tion of time-varying coefficients in.[111] Specifically, it was
theoretically shown that the GNN for real-time solution of
time-varying quadratic minimization as well as the corre-
sponding QP problems could only approximately approach
the time-varying theoretical solution, instead of converging
exactly. In other words, the steady-state error between the
GNN solution and the theoretical solution can not decrease
to 0. For better understanding the situation, the upper bound
of such an error was estimated firstly, and then the global
and exponential convergence rate was investigated for such a
GNN when approaching the error bound. In 2016, to avoid
the Jacobian inversion in the conventional pseudo-inverse
solution effectively, and also to achieve the solution of the
minimum two-norm position error to the inverse kinematics
of the mobile robot, a novel inverse-free solution using the
GNN design approach was introduce and developed in.[170]

Note that the inversion of Jacobian matrix is usually required
in the pseudo-inverse approach as handling the robotic auton-
omy problem, which is computationally intensive, especially
for the complex mobile robots. By using the advantages of
the mutual coordination effect between a mobile platform
with two omnidirectional driving wheels and a six-joint ma-
nipulator, the integrated kinematics of a robot system was
derived and developed therein to coordinate the motions of
the platform as well as the manipulator. Moreover, the pre-
sented inverse-free solution in[170] with different values of
design parameter as well as the conventional pseudo-inverse
solution were conducted for comparison on the basis of the
robot system for specific tracking jobs. In addition, Chen and
Zhang[154] proposed a novel jerk-level synchronous repetitive
motion solution to address the joint drift problem, and obtain
the synchronous autonomy of a dual manipulators of robot
system. Note that the corresponding solution was resolved
at joint-jerk level making the joint variables, i.e. the joint
angles, the joint velocities as well as the joint accelerations,

smooth and bounded. In,[154] different kinds of dynamics
algorithms, i.e. gradient-type (G-type) as well as zeroing-
type (Z-type) dynamics algorithms, on the basis of the GNN
and the ZNN design approaches respectively, for designing
repetitive motion vectors, were shown together with circuit
schematics.

6. CONCLUSION
In this review, a comprehensive survey of the research on neu-
ral networks in robot autonomy has been presented. Specifi-
cally, the state-of-the-art research of RNNs, PDNNs, ZNNs
and GNNs in different robot control problems have been
detailedly revisited and reported. In addition, the readers and
researchers can readily find many referenced solutions on the
basis of neural networks for the robot control problem in this
review. For future directions of the research on neural net-
works in robot autonomy, we now provide some prospective
outlooks.

• More classes and branches of advanced neural net-
works would be developed and investigated for solving
control problems of robots in different applications.

• The research of complexity, stability and robustness
of neural networks would be detailed investigated dur-
ing the applications to advanced robots in complex
environment.

• The corresponding circuit systems of related neural
networks would be developed, implemented and ap-
plied to the robot autonomy hardware systems in in-
dustry.
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