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ABSTRACT

An upper-body robot imitation (UBRI) system is proposed and developed to enable the human upper body imitation by a
humanoid robot in real time. To achieve the imitation of arm motions, a geometry-based analytical method is presented and
applied to extracting the joint angles of the human and mapping to the robot. Comparing to the traditional numerical methods
of inverse kinematic computations, the geometrical analysis method generates a lower computational cost and maintains good
imitation similarity. To map the human head motions to the head of the humanoid robot, a face tracking algorithm is employed to
recognize the human face and track the human head poses in real time. A hand extraction and hand state recognition algorithm is
proposed to achieve the hand motion mapping. At last, the completion rate and similarity evaluation experiments are conducted to
verify the effectiveness of the proposed UBRI system.
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1. INTRODUCTION

Robot imitation is an efficient technique that endows the
robot with the ability to transmit and reproduce human mo-
tions. It provides a novel and effective way of controlling the
robot, especially the humanoid robot with a high degree of
freedom. Through imitation, a robot can reproduce a user’s
motions simultaneously from a long distance,[1] and folk
dances can be reconstructed.[2]

Robot imitation can be divided into three stages, i.e., obser-
vation, representation and reproduction.[3] For observation,
Riley et al. used a 3D vision system which consisted of
external cameras and head-mounted cameras to capture hu-
man motions.[4] They put several color marks on a human
body and then calculated and recorded the positions of these
markers. Similar work using a maker-based visual capture
system can be found in Ref.[5] Another popular motion cap-

ture device is wearing device, such as “Xsens MVN” and
“ShapeTape”.[6–8] A more user-friendly and low-cost way is
to use markerless visual capture system such as the Microsoft
Kinect sensor.[9–14] They achieved robot imitation by using
the skeleton data provided by the Kinect.

In the representation stage, the human motions should be
mapped to the robot. The traditional methods for motion
mapping are numerical approaches of inverse kinematic com-
putations.[4, 9, 13–15] The problem is then converted to cal-
culating joint angles according to the positions of the end
effectors. This kind of method is effective in the work space
of an imitation task, but it needs higher computational cost
since only the information of the end effectors is considered
and employed. Some imitation system used geometry-based
analytical method to extract joint angles of the human and
apply them to the robot.[9–11, 16] They fully used the body
information and obtained the joint angles in a more direct
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way and with a lower computational cost.

Head motions enables the humanoid robot to generate more
human-like behaviors. Additionally, if the humanoid robot
has a head-mounted camera, the head motions will help
monitor the environment around the robot in a task such as
teleoperation. However, most of the existing work do not
consider the head motions.

Similarly, hand motions can improve the imitation similar-
ity and are essential for some tasks using imitation such
as grabbing and releasing objects. The hand motions are
also ignored by many researchers. In Ref.,[17] the humanoid
robot can imitate human arm motions in real time for a pen
shopping task. Its hand closing and opening are controlled
via speech signals. Obviously, if the robot’s hand state can
follow that of the human, the “pen shopping” will be more
convenient and enjoyable.

To take advantage of the existing work, solve the problems
mentioned above, and improve the performance of the upper-
body imitation, we propose and develop an upper-body robot
imitation (UBRI) system integrating the methods of arm
motion mapping, head motion mapping and hand motion
mapping. The system framework is depicted in Figure 1. In
our work, deep sensor Kinect is served as the human motion
capture device and imitation behaviors reproduced by the
Nao robot. In the observation stage, human motions are cap-
tured by the Kinect sensor, and the skeleton data, the depth
data and the color data are acquired. In the motion mapping
stage, the arm motion mapping, head motion mapping and
the hand motion mapping method are developed and applied,
so the human upper-body motions can be mapped to the
robot. At last in the reproduction stage, the humanoid robot
reproduce the upper-body motions in accordance with the
mapping results. Therefore, the robot can imitate various
upper-body motions in real time.

Figure 1. The framework of the proposed UBRI system

The remainder of this paper is organized as follows. In Sec-
tion 2, a geometry-based analytical arm motion mapping
method is proposed and presented. The face tracking algo-
rithm for head motion mapping is described in Section 3. In
Section 4, the hand motion mapping method using a hand
extraction and hand state recognition algorithm is proposed.
The experiments and results are described and analyzed in
Section 5. Section 6 concludes the paper with some final
remarks.

2. ARM MOTION MAPPING
To map arm motions of the human to the robot, some upper-
body link vectors are built through the skeleton points in
the human skeleton model, as shown in Figure 2. A link is
defined as a rigid connecting two skeleton points. Human’s
upper body can be simplified as a geometrical structure con-
sisting of these link vectors. Therefore, human motions can
be represented by the motions of the dynamic geometrical
structure and a joint angle can be extracted from the angle
between two vectors. For the convenience of mapping, the
joint angles should be calculated in accordance with the joint
structure of the robot. The joint structures and joint limits of
Nao’s arms can be seen in Figure 2 and Figure 3, and Shoul-
der Pitch, Shoulder Roll, Elbow Roll, Elbow Yaw joints are
considered for arm motions. In this paper, we take the left
arm as an example to present how to extract joint angles used
for arm motion mapping. The ranges of the joint angles are
also taken into consideration.

Figure 2. The joint structures of Nao and the human
skeleton model with link vectors
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Figure 3. Left arm joints and joint ranges of the Nao robot

As shown in Figure 2, supposing that the demonstrator is
facing the Kinect sensor, the calculation is discussed in the
Kinect frame of which the Z axis points to the demonstrator,
the Y axis points upwards and the X axis points to the right
side from the view of the demonstrator. The vector ~VH should
be parallel to the X axis. For the convenience of discussion,
a frame similar to the Kinect frame is set up corresponding
to the Nao robot. As depicted in Figure 4 (b), (c) and (d), the
X axis is parallel to the vector pointing from the left hip to
the right hip, the Y axis points upwards and the Z axis points
to the robot. The joints of Nao’s arms reach zero positions
when its arms raise forwards horizontally, parallel to the Z
axis. The zero position of the left arm is marked by the red
lines in Figure 4 (a), (b) and (d).

Figure 4. Diagrams of the calculation of each joint angle of
the left upper body limb

Shoulder Pitch joint enables arms to swing forwards and
backwards as shown in Figure 4 (a). We suppose that the
link vector pointing from the left shouder to the left elbow
in the Kinect frame is ~VLSE = (x, y, z). In accordance with
the definition of the joint angle of Nao’s left arm, the left
Shoulder Pitch joint angle ~VLSP can be obtained as follow:

(1)

Shoulder Roll joint enables arms to swing leftwards and
rightwards as shown in Figure 4 (b). To calculate the angle
of this joint, a vector pointing from the left hip to the right
hip, ~VH is introduced. The vector that points from the left
to the right shoulder denoted as ~VS is not used because it is
not stable enough, for its orientation is easily affected by the
movements of the upper body. Therefore, the left Shoulder
Roll joint angle, denoted as θLSR is obtained minus π/2 from
the angle between ~VH and ~VLSE:

(2)

where ~VLSE is the link vector pointing from the left elbow to
the left wrist.

As depicted in Figure 4 (c), the angle of the left Elbow Yaw
joint can be regarded as the angle between the plane formed
by left shoulder, right shoulder and left elbow (Plane BDE)
and the plane formed by left shoulder, left elbow and left
wrist (Plane ABD). The normal vectors of these two planes,
~N1 and ~N2 respectively, can be defined as:
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(3)

(4)

where ~VLEW is the left lower arm vector, and ~VLSE is the left
upper arm vector.

Suppose that the X coordinate of ~N1 is x1 and the angle can
be derived as:

(5)

The angle of the left Elbow Roll joint is the angle between
the left lower arm vector ~VLEW and the left upper arm vector
~VLSE as shown in Figure 4 (d), so it can be calculated by:

(6)

Then the extracted joint angles can be applied to the arm of
the robot. If the value of any is beyond the limit of the corre-
sponding robot joint, the angle will be assigned a marginal
value.

This arm motion mapping method can be also extended to

the lower limb, subjecting to the whole-body balance control,
thus the whole-body imitation can be achieved. In this paper,
the balance control is not discussed and we focus on the
upper-body imitation.

3. HEAD MOTION MAPPING
Robot’s imitation of human’s head motions was usually ig-
nored by researchers. In fact, head motions promotes the
completeness of the robot imitation and makes the robot act
more like a human. Besides, mapping head motions provides
a new way to control the orientation of the camera located
on the robot’s head so that the view of the robot changes
following human’s head, which contributes to monitoring the
real-time environment around the robot.[18]

Kinect SDK supports detecting and tracking the user’s face.
With inputs of color and depth images, the 3D head pose can
be derived, the principle of which is presented in Refs.[19, 20]

The head of the Nao robot has two joints, Head Yaw and
Head Pitch, and these joints of the human can be obtained
through this face tracking algorithm. The quality of input
images affects the tracking quality so the tracking result will
be better if the human is in a brighter environment.

As it can be seen in Figure 5, the black rectangular frame
shows the detected position of the human face which can
follow the human face when it turns upwards, downwards,
leftwards and rightwards even at a large angle. The angles
of Head Yaw and Head Pitch are output and applied to the
robot continuously in this process.

Figure 5. The face can be tracked well when the head is turned upwards, downwards, leftwards or rightwards at a large
angle.

4. HAND MOTION MAPPING

Hand motions enable the robot to generate more human-like
behaviors. Most importantly, hand motions are essential for
task operations such as grabbing and releasing objects in a

teleoperation task. Therefore, hand motions are considered in
our UBRI system, and the human hand motions are mapped
to the robot. The method of extracting the hands from the
depth image and recognizing the hand state are introduced in
this section, and the algorithm can be seen in Algorithm 1.
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Algorithm 1: Algorithm for hand motion mapping 

Initialize left hand open times ݐ୪ଵ ← 0, left hand closed 

times ݐ୪ଶ ← 0, right hand open times ݐ୰ଵ ← 0, right hand 

closed times ݐ୰ଶ ← 0 

Initialize hand imitation state ← True 

Initialize depth threshold ݀, area threshold ܵ, time 

threshold ݐ, distance threshold ݄଴, lower bound of pixel 

number ୪ܰ୭୵ୣ୰, upper bound of pixel number ୳ܰ୮୮ୣ୰ 

while hand imitation state = True do  

if ݄ ൒ ݄଴ then 
    Obtain the depth value of the human body’s     

    nearest point to the Kinect sensor ܦ୫୧୬ 

        Set ܦ୦ୟ୬ୢ ← ୫୧୬ܦ ൅ ݀      
        Count the number of pixels of the extracted left  

        part ୪ܰ and that of the extracted right part ୰ܰ in     

        the region [ܦ୫୧୬,  ୦ୟ୬ୢሿܦ
        if ୪ܰ୭୵ୣ୰ ൏ ୪ܰ ൏ ୳ܰ୮୮ୣ୰ then  

            Obtain the area of the minimum circle which  

            surrounds the left hand ୪ܵ 

            if ୪ܵ ൐ ܵ then 

୪ଵݐ                 ← ୪ଵݐ ൅ 1 

୪ଶݐ                 ← 0 

                if ݐ୪ଵ ൐    then ݐ
                    Open the left hand    

୪ଵݐ                     ← 0    

                end if 
            else 

୪ଶݐ                 ← ୪ଶݐ ൅ 1  

୪ଵݐ                 ← 0 

                if ݐ୪ଶ ൐    then ݐ
                    Close the left hand    

୪ଶݐ                     ← 0    

        end if 
    end if 

        end if 

        if ୪ܰ ൑ ୪ܰ୭୵ୣ୰ or ୪ܰ ൒ ୳ܰ୮୮ୣ୰ then 

୪ଵݐ             ← 0 

୪ଶݐ             ← 0 
        end if 

        if ୪ܰ୭୵ୣ୰ ൏ ୰ܰ ൏ ୳ܰ୮୮ୣ୰ then   

            Obtain the area of the minimum circle which  

            surrounds the right hand ܵ୰ 
            if ܵ୰ ൐ ܵ then 

୰ଵݐ                 ← ୰ଵݐ ൅ 1  

୰ଶݐ                 ← 0 

                if ݐ୰ଵ ൐  then ݐ
                    Open the left hand    

୰ଵݐ                     ← 0    
                end if 
            else 

୰ଶݐ                 ← ୰ଶݐ ൅ 1  

୰ଵݐ                 ← 0 

                if ݐ୰ଶ ൐    then ݐ
                    Close the left hand   

୰ଶݐ                     ← 0    
        end if 
    end if 

        end if 

    if ୰ܰ ൑ ୪ܰ୭୵ୣ୰ or ୰ܰ ൒ ୳ܰ୮୮ୣ୰ then 

୰ଵݐ             ← 0 

୰ଶݐ             ← 0 
        end if   
    end if  

end                       

 

4.1 Hand Extraction

First of all, the depth information of the human body is sepa-
rated from the raw depth image in accordance with the user
ID to remove interference of other people in the view of the
Kinect, then we obtain the image Mbodv. Next, we traverse
all the pixels in Mbodv to figure out the human body’s nearest
point to the Kinect with the depth value Dmin. After adding
an appropriate value d on Dmin, we can get Dhand:

(7)

which is a bit larger than the maximal depth value of hu-
man’s hand. Therefore, the hands can be extracted from the
human body using the depth interval [Dmin, Dhand] as shown
in Figure 6. We use the method of counting the number of
pixels of the extracted hand in a rectangle region, as can
be seen in Figure 7, to judge if the hand is detected. The

rectangles’ positions are determined by the positions of the
hands in the depth image. Their length and width are set to
cover all pixels of the hand. If the number of the pixels is be-
tween a lower bound and an upper bound, which are obtained
from experiments, the hand in this rectangular region will
be considered to be tracked successfully. If d is too small,
the hand extraction may fail when the hand is not opposite
to the Kinect. If d is too large, other parts of the body may
be extracted. Also, other parts o f the human body will be
extracted if the hand is too close to them, which will affect
the correctness of judging the hand state. To avoid errors,
the distance between the hand and the torso h is calculated
by 3D coordinates derived from skeleton information. If the
distance is shorter than a certain threshold distance h0, the
extraction will not be conducted. The extracted hand can be
seen from Figure 8 (a).
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Figure 6. Hand extraction through the depth interval [Dmin,
Dhand]

4.2 Hand State Recognition
After extracting the hand, the next step is to judge the hand
state from the extracted parts, in other words, to distinguish
between the palm and the fist. The problem can be simpli-
fied as comparing the area of the palm’s and the fist’s planar
graph, since only two states need to be distinguished and the
two areas are obviously different. To make this difference
more remarkable, we get a minimum circle which surrounds
one hand and then calculate the area of this circle, Sl for the
left hand and Sr for the right hand. If the area is larger than
a certain threshold S, the hand state is regarded as “open”
otherwise is regarded as “closed”. As shown in Figure 8, the
area of the palm is quite larger than the fist and this differ-
ence is more obvious after drawing the minimum circle. To
improve accuracy, a hand’s state will be finally confirmed
only when the same hand state is detected continuously for
several times. If we suppose that the occurrence times of the
open and closed state of the left hand and those of the left
hand are tl1, tl2, tr1 and tr2, respectively, the hand states will
be finally determined only if they are larger than t, which is
a threshold of the occurrence times.

Figure 7. The rectangle is the region containing all the
pixels of the corresponding extracted hand. PL represents
the position of the left hand.

Figure 8. The minimum circles that surround the hand

5. EXPERIMENTS AND EVALUATION

In the experiment, the Microsoft Kinect v1 was used as the
human motion capture device and the imitation task was ex-
ecuted by Nao v5. The program was run on a laptop. We
collected human body information from the Kinect and these
data were processed on the laptop. Then joint angles and the
hand states were transferred to Nao through WIFI. In case
that several people appear in the view of the Kinect, which
will disturb the experiment, we always select the person who
is nearest to the Kinect as the demonstrator.

Two indexes, the completion rate and similarity, are designed
to evaluate the performance of our system. Eight volunteers
were invited to finish the experiments. First, the poses of
the upper limb, open-and-close motions of each hand and
motions of moving head upwards, downwards, leftwards and
rightwards. Some of the specified poses and the imitation
results are shown in Figure 9, Figure 10, and Figure 11. One
successful completion would be recorded when the robot
managed to make a correct similar pose in real time. Specifi-
cally, a correct similar pose is the pose whose arms’ direction,
face’s direction, and hand state are the same as those of the
human, and which is regarded as similar to the human pose
by three observers. Then the completion rate can be obtained
by calculating the ratio of the number of successful comple-
tions to all trials. In this experiment, the completion rate of
the arm motion imitation is 95%, and both head and hand
motion imitation reach 91%. It is worth pointing out that
the arm motion mapping method of the proposed system
has a lower computational cost compared to the traditional
numerical inverse kinematic method such as Ref.[15] which
requires 1.04 ms for posture mapping on average. We set
a timer in the program and got the computational time of
the arm and head motion mapping in the above experiment.
Then we calculated the average time of the trials for different
volunteers and obtained the result which was 0.034 ms.
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Figure 9. Arm motion imitation and corresponding skeleton information

Figure 10. Head motion imitation and corresponding face tracking

Figure 11. Hand motion imitation and corresponding hand extraction and hand state recognition

To evaluate the similarity, Mean Opinion Score (MOS)
method[12, 21] was applied. The volunteers were asked to
experience the imitation system freely and then finished the
questionnaire in which they were asked to access the similar-
ity ranging from 1 to 5, corresponding to terrible, bad, fair,
good, and excellent, respectively. The similarity index, de-
noted as IS, can be obtained by averaging the scores collected
from the volunteers, which can be expressed as:

(8)

where n is the number of the volunteers, and si denotes the
score of the ith volunteer. In this experiment, the similarity
index is 4.

According to the experimental results, the completion rates
are all more than 90%, which verifies the effectiveness of
the proposed UBRI system. There are some negative factors
affecting the completion rates. The joint limitations of Nao

reduce the quality of imitation, that is, it makes Nao fail
to imitate some human motions. For example, people can
clap their hands while Nao can not do that due to the joint
limits of Shoulder Roll. Besides, when raising arms forwards
horizontally, the hand, the elbow and the shoulder of one
side may overlap in the view of the Kinect, so the skeleton
data may be not stable and the calculated joint angles may
be not consistent with the actual human motion. As for the
head imitation, fast movements of the head sometimes will
make face tracking fail and as a result, Nao’s head will not
move.

Regarding to the imitation similarity, 80% of the full sim-
ilarity index value is a good performance, considering the
different sizes and configurations between the human and
the robot. As mentioned above, the incorrect imitation will
reduce the similarity during imitation. In addition, the simi-
larity can be also affected by the smoothness and responding
speed of Nao’s motions, because the humanoid robot can not
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generate motions as naturally as the human.

6. CONCLUSION
In this paper, a UBRI system is proposed and presented. To
realize upper body motion imitation on humanoid robots,
different methods are applied to three parts of the upper body
including the arms, the hands, and the head. Specifically, a
geometrical analytical method based on link vectors is de-
veloped and presented to map human arm motions to the
humanoid robot. It has an evidently lower computational

cost than the typical numerical inverse kinematic mapping
method. The head pose with joint angles of the human is
deduced by a face tracking algorithm and then applied to the
robot. To control the open-and-close motion of the robot’s
hands following the human, the human hand state is obtained
by utilizing the depth and skeleton information. At last, the
completion rate and similarity evaluation experiments are
conducted to verify the effectiveness of the proposed UBRI
system.
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