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ABSTRACT

In recent years, advances in human robot interaction (HRI) has shown massive potential for universal control of robots. Among
them, electromyography (EMG) signals generated by motions of muscles have been identified as an important and useful source.
Powered by recently emerged machine learning algorithms, real-time classification has been proved applicable to control robots.
However, collecting EMG signals with minimum number of electrodes for real-time classification and robotic control is still
a challenge. In this paper, we demonstrate that twenty five robotic commands in a robotic arm can be controlled in real time
by using the EMG signals collected from only two pairs of active surface electrodes on each forearm of human subjects. To
achieve this task, a variety of tested ML models for this classification were tested. Among them, the Gaussian Naïve Bayes
(GNB) achieved an accuracy of >96%. This unprecedented level of classification accuracy of the EMG signals collected from the
least number of active electrodes suggest that by combination of optimized electrode configuration and a suitable ML model, the
capability of robotic control can be maximized.
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1. INTRODUCTION

Electromyography (EMG) signals are generated by the mus-
cle motions and controlled by the nervous system. Recently,
research of using EMG signals as a control source for robots
has emerged due to a variety of potential applications. They
can be used to control prosthetic devices, such as lower body
prosthetics[1, 2] and upper body prosthetics[3–5] for amputees
and partially paralyzed individuals, as the signals can di-
rectly reflect the users’ motion intention. Incorporation of
EMG signals in the control loop for electric wheelchairs

manipulation enhances the capability and intelligence of
the wheelchairs.[6, 7] Researchers have also explored using
EMG signals to control exoskeletons.[8–10] Control of robots
through EMG signals in a factory setting can also greatly
increase the adaptability of the robots, thus promoting the
productivity.

The research of using EMG signals to control robots leads to
an important paradigm of human-robot interaction (HRI) (see
Figure 1). A HRI system via EMG starts from collection of
EMG from human’s muscles. The accuracy and consistency
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Figure 1. General overview of human robot interaction via EMG

of the EMG signals are largely influenced by the testing sub-
jects, testing sites, and skin surface geometries. Increasing
the number of electrodes used for testing may mitigate such
an issue, but it inevitable increases the complexity of signal
processing, thus imposing delay to the system control. After
the signal collection, the signal preprocessing is needed to
extract the feature sets from the EMG signals for later model-
ing or classification, which can discriminate the feature sets
for different types of motions. Recently emerged data driven
approaches enabled by machine learning (ML) models have
leveraged existing large datasets to overcome issues of the
physical-based modeling. They can establish the reliable pre-
dictive models for the classification of EMG signals. With
interpretation of the intention from the human by the ML
models, the control signals are inputted to robots to perform
desired actions. Nevertheless, control of these devices via
EMG remains incomplete and needs much improvement.

In this paper, we demonstrate the versatility of using min-
imized number of surface electrodes for collecting EMG
signals, which can be classified and predicted by multiple
real-time classifiers for controlling a robotic arm. The contri-
bution of this work includes: (1) only two surface electrodes
were employed (on each forearm) to reliably collect EMG
signals that show ten classes of the hand motions; (2) two ML
classifiers can real-time differentiate between the motions
of the right-hand versus left-hand; (3) the Gaussian Naïve
Bayes (GNB) classifier excels with only limited amounts of
training data, and (4) combining both the ML classifiers into
one output allows up to twenty five robotic commands from
the five hand motions on each arm.

2. RELATED WORK
EMG signals have been extensively studied and used in both
the academic and industrial fields. The first commercially
available EMG system was launched in 1950.[11] Since then,
a variety types of systems have been introduced. EMG sig-
nals can be categorized into two main forms, the discrete-
action EMG signals and the steady-state action EMG signals.
The discrete motion EMG signals are generated by perform-
ing the quick actions to create the EMG waves, which is then
analyzed and used to determine the motions. These waves
are bell-shaped and analyzed in their entirety to determine
the motion. In contrast the steady state EMG signals are gen-
erated by maintaining constant force during motions. The
amplitudes of the steady state EMG signal are then used to
determine the motions. The steady state EMG signals are
more of a continuous waveform.

2.1 Discrete-action EMG Signals: Measurement and
Classification

There has been much research in the discrete-action EMG
signals. Young et. al. classified four types of discrete mo-
tions.[12] Their motions included hand open/closed and wrist
extension/flexion. They were able to accurately classify three
out of these four motions. To achieve the function, their sys-
tem used six pairs of active electrodes for non-amputees and
eight pairs of active electrodes for the amputees. Huang
et. al used the EMG signals in union with ultrasounds to
classify fourteen discrete finger motions.[13] They used eight
active EMG electrodes on one forearm. The classifier clas-
sified the EMG signals with an accuracy of >90% and the
ultrasound signals with an accuracy of >95%. Krasoulis and
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Nazarpour used sixteen active electrodes to classify six finger
motions on the participants.[14] The participants were tran-
sracial amputees and were asked to perform imaginary finger
movement using a prosthetic hand. The model achieved ac-
curacies ranging from 74% to 82%. Lu et. al used seven
surface electrodes to classify six EMG motions for individ-
uals with spinal cord injuries.[15] The EMG signals from
these motions were used to control a hand exoskeleton to
help move the fingers of the participants. They achieved an
average accuracy of 70%. Martinez et. al tried to classify
six types of hand motions. Their system used two Delsys
EMG sensor bars on one arm (2 channels). The best classifier
reached an accuracy of 93% on these six hand motions.[16]

2.2 Steady State EMG Signals
The steady state (SS) EMG signals have also been researched
extensively. Crawford et. al developed a model for real-time
classification of eight static hand motions using seven active
electrodes on three subjects.[17] The model achieved classi-
fication accuracy in between 92% and 98%. Momen et. al
allowed eight test participants to choose their own motions
for classification of four-to-nine motions.[18] On average, the
participants were able to classify four motions at an accuracy
of 80% or more. The EMG signals were collected from four
active electrodes on the right arms. Their research showed
that it was particularly important to choose motions with the
EMG signals which can be differentiated by a ML algorithm.
Lucas et. al used the SS EMG signals to control an exoskele-
ton to have the pinching motion of the index fingers and
thumbs.[19] Their system was only able to correctly detect
the pinching motion in 67% of the tests. Matsubara et. al
used four active electrodes to collect the EMG signals of five
hand motions, which were then classified to control a robotic
hand.[20] The model achieved an accuracy of only 70%.

While much research has been focused on the EMG signal
collection and their real-time classification, the problem with
the current research, however, is that the accurate signal col-
lection requires a considerable number of active electrodes.
For a practical application, collection of EMG signals for
accurate classification from a minimized electrode is much
needed to efficiently control robots. This current research is
to tackle this issue. Herein, we demonstrate that with only
two active electrodes on each forearm, five distinct hand mo-
tions on each arm can be classified by the sophisticated ML
models. This ratio of number of hand motions to the num-
ber of the active electrodes is a considerable improvement
over the previous reported systems. Furthermore, we show
that the system allows for the real-time classification and
motion control of a robotic hand from these EMG signals.
Additionally, we show that a combination of two classifiers

with a single output allows for combination control, greatly
increasing the number of available commands from minimal
electrodes.

3. EXPERIMENTAL DETAILS

3.1 System Design
The individual began by performing one of the predetermined
hand motions. The EMG signal was then generated from the
forearm and recorded by surface electrodes which were con-
nected to the Keithley DAQ6510. The waveform signal was
recorded at a rate of 100 datapoints per second for 2 seconds
using LabView. The waveform was then filtered and normal-
ized to a value between 0 and 4. This saved data was then
sent to a Python script to train and test the Gaussian Naïve
Bayes (GNB) classifier. The trained GNB classifier was then
saved to another Python script. Then in real-time, new data
was sent to the trained GNB python script for predicting
the motions. Then the corresponding signal was sent to the
raspberry pi 3b to control the robotic arm in real-time. This
flow of the EMG signal is shown in Figure 4a and illustrated
in detail as follows.

To make the EMG signal applicable, the signal collection
and processing in an efficient manner is critical, usually fol-
lowing the four steps. First, a raw EMG signal is recorded
as a differential signal (the difference in voltage between
the two surface electrodes) and then amplified. Second, the
signal passes through a band pass filter to remove the low
and high frequencies. Third, the signal is converted from
analog to digital and then passes through a digital high-pass
filter to further remove noise interference. Fourth, the signal
is rectified and passes through a digital low-pass filter. The
signal is again rectified by taking the absolute value of the
signal. This rectified signal then passes through an additional
digital low-pass filter. The additional digital low-pass filter
can be applied in many ways such as taking the mean value
or using a Butterworth filter.[21]

3.2 Electrode Placement
Our choice for electrode placement was determined through
testing multiple locations on the arm with multiple motions.
We tested the forearm, bicep, and triceps. We determined
that the forearm was the best fitted for recording the motions
of the hand. While the forearm is not solely responsible for
controlling the hand, it provides the highest degree of free-
dom for the hand motions. This allows the GNB classifier
to accurately determine the different motions. The motions
that were chosen for our experiment are as follows: wrist
flexion, wrist extension, wrist adduction, fist, and no motion
for both hands. These motions were chosen because they pro-
duce EMG signals that are easily differentiated by the GNB
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classifier. These motions allow us to have eight movement
commands and two stop commands. Each motion produces a
different amplitude ranging from the lowest being no motion
and the highest being wrist adduction. The amplitude is the
important feature that was used by the GNB classifier to de-
termine what motion is being performed. The GNB classifier
will be explained in detail in the next section.

3.3 Data Collection
We collected data from 10 participants over the course of two
session. We recorded each trial at a rate of 100 datapoints per
second over the course of 2 seconds. We conducted 100 trials
for each hand motion resulting in a total of 1,000 trials. We
then used the training data from all motions to train our GNB
classifier. Figure 2 shows the overall process of the data
collection, preprocessing, and modeling training and testing
based on the processed EMG signals. Our system’s perfor-
mance depends on multiple factors: (1) choosing appropriate
motions that produce EMG signals that can be differentiated,
(2) performing the motions in the same way every time (same
distance of motion, same force applied, etc.).

3.4 Gaussian Naïve Bayes Classification
The GNB classifier is built off Bayes theorem. Bayes theo-
rem is a mathematical model used to describe the probability
that an event will occur given a set of data. The formula for
the theorem is as follows:

PA|B =
PB|A ∗ PA

PB
(1)

where PA|B is the posterior probability of class A given the
predictor B, PB|A is the probability of predictor B given
class A, PA is the prior probability of class A, and PB is
the prior probability of the predictor. Once the posterior
probability is calculated for different classes, the class with

the highest probability is selected. Training is fast because
only the probability of each class and the probability of each
class given different predictors are calculated.

For classification, if the number of trials in each class in the
training data, then the probability of each class is equal. The
GNB classifier is an extension of Naïve Bayes. For the GNB
the Gaussian (or normal distribution) is used to estimate the
distribution of the data. This is an easy estimation to make
because to accomplish this, only the mean and standard devi-
ation needs to be estimated from the training data. Prediction
of new x values is calculated using the Gaussian probability
density function (PDF). When making the prediction, the
new x value, mean, and standard deviation are plugged into
the Gaussian PDF which returns the probability that the new
x value is for the given class. The equation for the Gaussian
PDF is as follows:

PDF(x,mean,sd) = 1√
2 ∗ PI ∗ sd

∗ e−
x−mean2

2∗sd2 (2)

where sd is the standard deviation, PI is the numerical con-
stant, x is the input value for the input variable, and e is the
Euler’s number.

We chose to use two GNB classifiers in real-time for two
reasons. First, the right and left arm produce almost identical
EMG signals for the same motions. This is due to the sym-
metry of the human body. Using two classifiers in real-time
allows us to differentiate between the right and left fist, right
and left wrist flexion, and so on. If there were only one clas-
sifier, there would be much misclassification for the same
motions. Second, having two classifiers in real-time also
eliminates cross talk interference between channels. This
way, the right arm is independent of the left arm and vice
versa. This allows only five motions to be chosen but allows
the five motions to be ten motions in total in the classifier.

Figure 2. Overall process of data collection, preprocessing, and machine learning classification
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4. RESULTS AND DISCUSSION
4.1 Classification of Hand Motions from EMG Signals

by Machine Learning Algorithms
We used the recorded data to train the GNB classifier. To do
that, we performed five split k-fold cross validation. Figure
3 shows the training and testing accuracy of the model with
the highest accuracy for each classifier that we tried on the
right and left arms, respectively. Among the tested eight
ML models, the GNB classifier achieves the highest testing
accuracy of >96% on both the right and left arms. Although
some other models show a higher training accuracy, the GNB
model has the highest testing accuracy without overfitting.
The overfitting occurs when using the Random Forest, XG-
Boost, and Adaboost models, which is normally caused by

a lack of data. The GNB classifier does not show overfit-
ting because the GNB classifier excels with small amount
of training data. This is one of the reasons we chose to use
the GNB classifier. Since we did not have an abundance
of training data, the GNB worked perfectly. As shown in
Figure 3c,d among the tested ten participants, we achieved a
testing accuracy of >81% on the right arms and we achieved
a testing accuracy of >86% on the left arms except for Par-
ticipant 6 and Participant 9 because some of their motions
generated similar EMG waves. Averagely, we were able to
obtain an accuracy of 92.9% for the testing data and 90.8%
for the training data on the right arms as well as 89.7% for
the training data and 87.2% for the testing data on the left
arms.

Figure 3. Training and testing accuracy of each classifier from data collected from right arms (a) and left arms (b). The
classifiers from left to right are as follows: decision tree (DT), K-nearest neighbor (KNN), logistic regression (Log), random
forest (RF), support vector machine (SVM), XGBoost (XGB), AdaBoost (ADA), and Gaussian Naïve Bayes (GNB).
Training and testing accuracy of GNB classifier from data collected from right arms (c) and left arms (d) of each participant.
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Figure 4. (a) Flow of EMG signal from participant to robotic arm. (b) Hand motions used and the corresponding motion of
the robotic arm

4.2 Real-time Control of a Robotic Arm by EMG Sig-
nals

The Dorna robotic arm consists of four axes and a gripper.
Axis one moves the robotic arm right and left and is con-
trolled by the right wrist flexion (for right) and the left wrist
flexion (for left), respectively. Axis two moves the robotic
arm up and down and is controlled by the right wrist flex-
ion and the left wrist flexion (for down), and by the right
hand fist and the left hand fist (for up), respectively. Axis
three also moves up and down and is controlled by the right
wrist adduction (for up) and the left wrist adduction (for
down), respectively. Axis four rotates the robotic gripper
clockwise (the right hand first and the left wrist flexion) and
counterclockwise (the right wrist flexion and the left hand
fist), respectively. Finally, axis five controls the gripper by
opening and closing and is controlled by the right hand fist
(to open the claw) and the left hand fist (to close the claw), re-
spectively. These motions controlled by the EMG signals are
shown in the supplementary video. To test the performance
of our system, we used the GNB classifiers in real-time and
attempted to perform tasks with the robotic arm. Please
note that during the online experiments, the increase of the

number of channels for recording data in real-time caused a
second delay between the time the participants performed the
motions, and the robotic arm performed the corresponding
actions. To mitigate the problem, we first had the participants
perform single action. We found that the participants were
able to accurately perform eight out of the ten commands
every time. An in-depth explanation of the problem and the
solutions to the problem are explained as follows.

During the online portion of the experiment, the participants
were able to accurately predict four out of five motions on
both arms every time. The wrist extension motion that was
more difficult to predict as it produced EMG signals with
a low signal-to-noise ratio. Further the robotic arm caused
noise interference, making the baseline signal higher and
therefore, eliminating the range of the wrist extension mo-
tion. But we found a solution that greatly increased the
level of accuracy that we could obtain. Our solution was to
combine both predicted motions into one string which was
sent to the robotic arm. The combination of hand motions
was performed in the following ways. First, the participants
performed hand motions with both the right and left hands,
respectively; Second, each EMG signal was sent to a sepa-
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rate GNB classifier which predicted the hand motion being
performed. As each predicted motion was programmed to
a 5-to-7-character string (e.g., right fist and left wrist flex-
ion was termed as RF_LWF), this string was then sent to
the robotic arm to perform a corresponding motion. This
allowed us to perform combinations of the four motions that
were easily predicted. Using combinations, we now have a
total of sixteen commands that can control the motions of
the robot using only two pairs of active surface electrodes.
Some combinations were not used to control the robotic arm.
This was only due to the limited number of motions the
robotic arm was capable of performing. During the course
of recording training data, we also discovered that the size
of the participants’ arms also impacted the quality of the
collected EMG signals. A larger area produced the better
EMG signals. Nevertheless, these participants, were still
able to easily record the tested motions.

Another issue we observed during the online experiments
was the delay in the signal recording and processing. The
data acquisition unit was about one to two seconds behind
the participants. This caused the classifier to miss the ideal
window of the EMG signals for proper classification. In-
creasing the speed of data recording would mitigate the issue.
However, during the robotic control this would not have been
an issue. The robotic arm would perform the first action it
received after the stop command. The robotic arm would per-
form this action no matter what other actions it received until
receiving the stop command. Once it received the stop com-
mand, it would stop and not move until it received another
command.

The robotic arm in our experiment can perform 12 separate
motions. However, these are the rigid motions that moved
in one plane at a time. Recently, researchers have explored
complex mathematical modeling to increase the efficiency of
robotic manipulators.[22–25] These models allow the robotic

arms to follow complex motion paths. Currently, these mod-
els do not allow for real-time human intervention. Thus, we
envision that integrating the EMG control with the complex
mathematical modeling could allow for complex robotic mo-
tions under intervention of human. This integration would
further increase the productivity of HRI in various applica-
tion settings.

5. CONCLUSION AND FUTURE WORK

We have shown that by combining the multiple EMG signals
from minimal number of surface electrodes, we can maxi-
mize the amount of motions that can be accurately classified
with ML models. We can accurately perform sixteen robotic
commands using only four active electrodes (two channels).
We presented an in-depth explanation of the GNB classifier
and explained the necessity of having motions that produce
the differentiable EMG signals. The highest classification
accuracy of >96% was obtained from the GNB classifier.
Finally, we demonstrated that EMG signal could be used to
real-time control a robotic arm.

In future, multiple biological signals can be extremely infor-
mative on the state and wellness of an individual. Informa-
tion such as blood oxygen saturation, respiratory rate, heart
rate, blood pressure, and temperature can determine if an
individual is healthy or at risk of a health complication. Cre-
ating a system that can record and understand these signals
would be beneficial to older adults or adults with certain
health conditions. In order to understand these signals for
classification, a robust ML model would need to be devel-
oped. These human-in-loop control algorithms would lead
to collaborative robots that work side by side with humans.
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