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ABSTRACT

Quantitative assessment of global and regional left ventricle function by means of myocardial strain estimation has been widely
discussed as promising clinical diagnostic markers of left ventricular malfunction. These markers are provided to the clinicians
without much feedback regarding their reliability, which may lead to erroneous diagnosis. Therefore, this study aims to classify
the calculated strain curves into reliable or artefactual ones, before their clinical adaptation.

A supervised machine learning approach is utilized for the classification process. A total of 6,552 strain curves were used, for
which a visual labeling protocol was defined and utilized by two experts.

An inter-observer labeling concordance of 93% was obtained, and a classification accuracy of 90% was achieved with a specificity
of 92% and sensitivity of 78%.

This classification tool may enhance the reliability of the estimations of global, transmural and regional strain curves, by
automatically classifying them into physiological or artefactual curves.

Key Words: Transmural strain imaging, Tracking quality, Time strain curves, Support vector machine, Supervised machine
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1. INTRODUCTION
Speckle tracking echocardiography (STE) is a non-invasive
technique for the assessment of left ventricle (LV) function,
which mainly provides global and regional time strain curves
(TSCs).[1] Amplitude and profile analysis of these TSCs,
such as global and segmental peak systolic strain, allow to
detect various malfunctions of the LV myocardium.[2–4] Cur-
rently, only peak systolic global strain is recommended as a
clinical measure by the ASE/EACI.[5] Unfortunately, there

are still some challenges that hinder the acceptance of the
STE as a clinical measure. One of the main challenges re-
lates to the semi-automatic estimation of the aforementioned
clinical parameters, which produces large inter-vendor vari-
ability of the strain estimates.[6] Once these challenges are
met and consequently the STE is clinically fully accepted as
part of the clinical guidelines for diagnosis and prognosis, it
will probably be widely used by cardiologists as it has been
recently used by researchers.
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As part of enhancing the clinical applicability of the STE as
a clinical measure, some efforts have been invested lately to
detect LV abnormality by considering the entire strain tempo-
ral behavior. Tabassian et al.[7, 8] have utilized the principal
component analysis as a statistical approach to classify the
temporal behavior of the TSCs through the whole cardiac
cycle. The rationale behind this approach is the fact that the
traditional clinical landmarks (or “techno-markers”, a term
used in Tabassian et al.[7, 8]) ignore the diastolic period of
the cardiac cycle and evaluate the myocardial function based
only on one time point. Detection results of myocardial ab-
normalities that were reported by Tabassian et al. have been
shown to outperform the traditional methods of categorizing
healthy and infarcted myocardial segments. A similar ap-
proach, reported by Clarysse et al.,[9] has utilized statistical
approaches to model the systolic phase of TSCs, extracted
from tagged MRI data, instead of using the traditional land-
marks.

Both approaches of myocardial strain markers and temporal
behavior, together or combined, may indeed provide credible
LV function analysis and diagnosis. However, erroneous
strain calculation can affect the accuracy and reliability of
these classification approaches due to inadequate segmenta-
tion, unreliable tracking or bad image quality, e.g. clutter,
noise or out of plane motion.

Many clinical and technical reports have studied the depen-
dence of strain and strain rate curves on image quality and the
tracking algorithm. In his paper,[10] Marwick has stated that
strain and strain rate that are measured using either Doppler
or STE are influenced by image quality and the measurement
quality of the velocity fields. These observations have been
backed by others, e.g.[11, 12] Trache et al.[12] have shown that
limited image quality has a significant impact on the agree-
ment between 3D and 2D numerical strain values, while
Hoit,[11] has reported that measurement of strain rate (and
strain) is influenced by image and signal quality, where a very
high image quality is required to produce reasonable strain
and strain rate results. In our previous publication,[13] we
have shown that a typical block matching tracking algorithm
that uses post tracking smoothness techniques to refine the
resultant strain fields, is sensitive to the characteristics and
amount of smoothing, as well as to the initial segmentation
of the myocardial tissue and to the noise level. Consequently,
any modification that is made to the post block-matching
smoothing techniques may cause the (expected) inter-vendor
strain differences.[6] We have utilized both software based
phantom simulations and clinical data to evaluate the sen-
sitivity of the calculated strain landmarks. All these works
emphasize the need for a reliable measure of tracking quality.

Many other works[2, 14–19] have related to tracking quality
indices that have been employed in order to decide whether
to include or exclude strain measurements. The commercial
vendors usually provide tracking quality indices that state a
scoring of “acceptable” or “non-acceptable” segmental strain
measurements, with the option of manual corrections. Gener-
ally, as mentioned by Mada et al.,[19] tracking quality indices
should indicate how well the motion of the endocardial and
epicardial borders is tracked. Any software that does not pro-
vide this step may not be reliable enough and should be used
in caution, as the expected strain values may be different. In
their paper, Perk et al.,[20] have listed criteria on which the
tracking quality index should be based in a STE commer-
cial software: (1) Adequate tracking is assumed when the
speckle coordinates return to baseline; (2) Significant differ-
ences of tissue velocities between adjacent speckles indicate
bad tracking quality, and (3) Equal strain values are expected
at the beginning and at the end of heart cycle, thus a large
drift indicates low tracking quality. These software based
tracking quality indices can be either rejected or accepted by
the user.

Unfortunately, these tracking quality indices are not al-
ways reliable, since the tracking algorithm may provide
“good” tracking results even if a non-tissue object is being
traced, consequently providing erroneous strain measure-
ments. These indices also do not consider temporal behav-
ior of each TSC (except for criteria (3) above). Additional
tracking quality approach is the trashogram,[21] which is
used to identify regions of high and low strain magnitude
based on the cross correlation calculated as part of the 2D
phase-sensitive speckle tracking. However, despite its sim-
plicity, trashogram may provide erroneous tracking quality
estimation, since high correlation maybe a result of integer
wavelength while low correlation may allow displacement
estimation.[22] To the best of our knowledge, there are no
other available physiology based criteria or physiology based-
tracking quality indices that may provide a direct indication
whether the strain measurements or TSCs are physiological
or not, i.e. clinically reliable or not. Moreover, there are no
tracking quality indices that provide layer specific tracking
evaluation, which allows the user to manually correct the
segmentation of a specific layer (i.e. the endocardial or the
epicardial layers) and/or training the software to optimize
the tracking based on these quality outcomes.

In this work, we propose a new reliability measure, based
on a supervised learning method, which allows to determine
the reliability of transmural and segmental TSCs. Since the
myocardium is roughly composed of 3 attached layers (en-
docardium, mid-wall and epicardium), it is logical to assume
high correlation between the TSCs of these layers. Thus
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high correlation between the endocardial and epicardial lay-
ers would indicate proper estimation of the physiological
function, as can be understood from these studies.[23–29] In
contrast, low correlation may indicate a severe LV regional

malfunction, or bad tracking and erroneous calculations due
to noise, clutter or out of plane motion, or due to incorrect
and imprecise segmentation.

Figure 1. Example 1 of pre-labeling analysis of time-strain curve. (A) Longitudinal time-strain curves at the 6 segments of
left ventricle myocardium, at the endocardial (upper row) and epicardial (bottom row) layers are shown. The cross-
correlation coefficient (CCC) between the time-strain curves at the two layers is provided as well. (B) Wavelet components
energy corresponding to the longitudinal time-strain curves at the 6 segments of left ventricle myocardium, at the
endocardial (upper row) and epicardial (bottom row) layers are shown here. Each plot is composed of the concatenated
wavelet components (left to right): Approximation at the 5th level and the Details at 5th to 1st levels.

2. MATERIALS AND METHODS

2.1 Data acquisition and preprocessing

A set of 546 echocardiograms of healthy subjects, without
any known disease, from two clinical sites: Kaplan hospital
in Rehovot, Israel and the University of Leipzig in Leipzig,
Germany, were used in this study. The study was approved
by the IRB of Kaplan Hospital, Rehovot, Israel, and the IRB
of the University of Leipzig, Leipzig, Germany. Accordingly,
all subjects have signed an informed consent before echocar-

diograms were acquired. The subjects’ ages were between
22-82, with an average measured heart rate of 65.98 ± 9.55
beats per minute.

All echocardiograms were acquired with VIVID7 ultrasound
machine (GE Vingmed Ultrasound AS, Horten, Norway) us-
ing a standard 2.5 MHz cardiac probe, according to the regu-
lar clinical protocol, including the 3 standard apical views.
All subjects had a heart rate in the range of 45-90 beats per
minute. Each echocardiogram was analyzed using an in-
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house speckle tracking algorithm, termed “K-SAD”.[30] The
myocardial walls of the LV were segmented into 6 segments
following the 18-segment model.[5] Longitudinal TSCs were
computed at each segment at both the endocardial and epicar-
dial layers. A total of 6,552 TSCs were obtained. Different
heart rates of the subjects yielded different number of sam-
ples in each TSC, hence, a linear interpolation was applied
on all TSCs to obtain equal number of samples. No further
processing was applied to the data.

2.2 Data labeling
Since the labelling of each TSC into physiological or arte-
factual pattern was a challenging task, a pilot study of visual
qualification of 30 clips composing 540 TSCs was performed.
Two experts have independently analyzed the local TSCs
patterns, both in time and frequency domains, and have visu-
alized the tracking points of the endocardial and epicardial
borders superimposed on the clips’ sequences in order to un-
derstand what features may provide good indicator to identify
artefactual and physiological TSCs.

Figure 2. Example 2 of pre-labeling analysis of time-strain curve. (A) Longitudinal time-strain curves at the 6 segments of
left ventricle myocardium, at the endocardial (upper row) and epicardial (bottom row) layers are shown. The cross-
correlation coefficient (CCC) between the time-strain curves at the two layers is provided as well. (B) Wavelet components
energy corresponding to the longitudinal time-strain curves at the 6 segments of left ventricle myocardium, at the
endocardial (upper row) and epicardial (bottom row) layers are shown here. Each plot is composed of the concatenated
wavelet components (left to right): Approximation at the 5th level and the Details at 5th to 1st levels.

Following this pilot study, which included physiological and
clinical qualification, a list of characteristic features was
defined. The two experts, in addition to their visual evalua-

tion, used these characteristic features to define the following
labeling protocol for the classification process.

First, the 1D cross correlation coefficient (CCC) was calcu-
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lated, between the Endocardial and Epicardial TSCs of the
same segment. CCC were used to provide an initial rough
prediction of whether one of the two TSCs of the same seg-
ment is artefactual. High CCC (empirically selected to be
above 0.95) indicated physiological patterns at both the en-
docardium and the epicardium, while low CCC (empirically
selected to be below 0.7) indicated that at least one of TSCs
is artefactual.

Additionally, in order to exploit both time and frequency
information “concealed” in each TSC, a multilevel 1D-
wavelet decomposition,[31] of each TSC was performed using
Daubechies wavelet function with two vanishing moments.
Shortly, multilevel 1D- wavelet decomposition employs high-
pass and low-pass filters to extract the Approximation and
Details coefficients which actually represent the high scale -
low frequency and low scale - high frequency components of
the original signal, respectively. The decomposition process
is repeated N times, where N is the number of decomposition

levels. At each level, the filtering process is followed by
down-sampling by two. The retrieved signals from all N
= 5 levels (A5, D5-D1) are concatenated into one wavelet
coefficient signal (WCS).

The experts performed a visual study of these WCSs, together
with the rough prediction of the CCC and the behavior of
the raw TSCs, to classify each TSC. The final labeling deci-
sion was visually performed by the experts, based on these
three components. No automatic algorithm was performed
on WCS or TSC to provide the labels. On the other hand, the
classification itself was performed based on the TSCs only.
In Figures 1 and 2, two examples are shown of a pre-labeling
analysis of TSCs. In Figures 1A and 2A, TSCs are plotted of
both the endocardium and the epicardium, at each segment.
Their corresponding WCSs are plotted in Figures 1B and 2B,
where the concatenated A5-D1 WCSs are shown from left to
the right on the x-axis, as explained in Figure 3.

Figure 3. 1D Wavelet components signal. Wavelet components resulted from the multi-level 1D wavelet decomposition
process are concatenated into one signal (from left to right): A5, D5, D4, D3, D2 and D1.

It can be seen, for example, that high CCC of 0.98-1 was
calculated for the left basal and mid wall segments as well as
for the right basal and mid segments (see Figure 1). This is
showing the physiological profile composed of contraction of
the tissue during systole (until reaching the maximum strain,
in healthy subjects, at end systole) followed by relaxation of
the tissue during diastole, ideally, back to its original length
at end diastole.

In contrast, while looking at the apical regions of the same
example (see Figure 1), one can notice a slight decrease in
the CCC, and more noisy TSCs. Both curves, of the endo-
cardium and epicardium, at the left apical segment, have two
peaks. The WCSs of the TSCs at the apical segments reveal
that additional energy is contained at the low Details (D3-
D1), when compared to the energies contained at the same
Details, at the basal and mid segments. The Details at these
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levels imply high frequencies and usually represent noise.
When examining the second example, presented in Figure
2, one can notice low values of CCC at the left wall (0.73,
0.83 and 0.85) and also at the right apical segment (0.48).
Since CCC was a good indicator only for the extreme cases
of very high or very low correlation while it was confusing
for most of the cases in between, the information revealed
from the TSC and WCS were more powerful for the visual
labeling process. In the same example, the TSC of the left
basal behaves quite differently from any expected physio-
logical profile, of either the endocardium or the epicardium.

Double positive peaks appear in the TSC of the endocardial
layer, of both apical regions. In addition, one can notice un-
typical profiles of the TSCs of the epicardium of the left mid,
apical and right apical segments. The visualization of the
WCSs’ energies added better insight, by noting the location
and intensity of the energy of each component. At the left
basal segment, the energy of the Approximation (A5) at the
endocardium is centered around zero, which is not the case
for physiological TSCs. At the epicardium, the energy is
centered around a positive energy, indicating expansion of
the tissue instead of contraction.

Table 1. Visual labeling protocol
 

 

 Physiology Non-physiology 
CCC 
 

> 0.95 < 0.70 

TSC 

Composed of left ventricle contraction phases: Contraction 
during systole, relaxation during diastole 

Appearance of several peaks 
Positive contraction during systole 

One negative peak 
Noisy 
Fluctuations around zero 

WCS 
A5 energy is centered at a negative value A5 and D5 have similar energies 
D5-D1 are centered at zero Energy of A5 is centered at zero 
Energy of D4 is significantly lower than D5 Noisy D3-D1 

Note. Table 1 presents the rules for physiological and non-physiological curves that were defined for the cross correlation coefficient (CCC), time strain curves (TSC) and 
wavelet components signals (WCS) based on the training set.   

Table 1 lists the different visual behavioral features that were
roughly utilized in the visual labeling process . The grading
protocol was performed as follows: physiological TSCs were
labeled by 1, while artefactual TSCs were labeled by 0. The
remaining TSCs, which the experts had difficulty in labeling,
were considered as “undetermined TSCs”, and were labeled
by either 2, for TSCs that were more likely to be physiologi-
cal than artefactual, or by 3 for TSCs that were more likely
artefactual than physiological (see Results sections).

2.3 Support vector machine
Support vector machine (SVM) is a statistical learning theory
approach, first introduced by Vapnik and Boser et al.,[32, 33]

and was successively developed by different researchers,
among them are Cristianini and Shawe-Taylor.[34] The ro-
bustness and high performance of the SVMs, regardless of
noise and complexity of the data, made them widely used in
multiple applications such as pattern recognition and super-
vised classification problems.[35–37]

For classification purposes, SVMs are trained to discriminate
between two or more classes, using a labeled data set: given a
training data set, SVM defines an optimal hyperplane for the
separation between different classes within the training set,
such that each sample in one class has the largest distance
(maximal margin) from other samples of different class. This

hyperplane is called the “maximal margin hyperplane” and
the training set used is called “support vectors”.

Since linear separation usually doesn’t fit the data sets that
need to be discriminated, a Kernel method based SVM is
utilized: Let D = {(xi, yi) | xi ∈ Rp, yi ∈ {0, 1}n

i=1} be a
training set of n sample vectors. xi is a p-dimensional vector
labeled by yi, which indicates the class it belongs to.

A general SVM classifier is obtained by solving the convex
Lagrange dual of the primal maximal margin, as follows:

f(x) =
∑n

i=1
αi · yi ·K(x, xi) + b (1)

where K(x, xi) is the kernel function, x is the data point
and αi are the Lagrange multipliers that define the combina-
tion of the support vectors. Usually, only a subset of αi are
of non-zero values, thus defining the supports vectors that
lie closest to the discrimination hyperplane. The two most
widely used kernels are the “polynomial kernels” and the
“Gaussian radial basis function kernels”. A Gaussian kernel
function is given as:

K(x, xi) = exp(−‖x− xi‖2

2σ2 ) (2)

where σ is the scaling factor of the radial Gaussian basis
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function, which defines the width (standard deviation) of the
Gaussian function. A Gaussian kernel that is computed with
support vectors is an exponentially decaying function in the
input feature space, while it decays uniformly in all directions
as one recedes from the feature space center. A Gaussian
based SVM classifier can be simply explained as a weighted
linear combination of the kernel function, computed between
a data point and each of the support vectors.

When noise is present, a simplified maximum margin algo-
rithm may fail due to overfitting, while attempting to find
an optimal discrimination that does not allow tolerance in
the training error. Consequently, a widely used modification
employs some regularity constraints, in order to trade some
training accuracy for a more powerful prediction. These
constraints are named the Karush-Kuhn-Tucker (KKT) con-
ditions after Harold W. Kuhn, Albert W. Tucker and William
Karush.[38, 39]

Implementation: For the classification of the TSCs, a set of
SVM functions were utilized for training and testing, which
are available as part of the Statistics and Machine Learning
ToolboxTM (MATLAB R2015b, The Mathworks Inc. Natick,
MA, 2015). A Gaussian kernel, RBF, was used as a kernel
function, with a scaling factor σ of different values, for the
purpose of performance and sensitivity testing. A Sequen-
tial Minimal Optimization based method was used as well,
with the default KKT value, for defining the discriminative
hyperplane.

2.4 Classification
As part of the classification process, the interpolated and la-
beled TSCs were divided into training and test sets (to include
70% and 30%, respectively, of the TSCs). The kernel-based
SVM was trained using the labeled training set, to provide
a set of representative vectors and define a hyperplane for
the classification. The SVMTRAIN MATLAB function was
used for that. Then, the trained classifier was verified us-
ing the test set and the SVMCLASSIFY MATLAB function.
Both SVMTRAIN and SVMCLASSIFY MATLAB functions
were available using MATLAB R2015b (The Mathworks Inc.
Natick, MA, 2015). The classification process, including
the training stage, was performed three times independently,
using different, but overlapping data sets:

Data set 1: Only TSCs that were successfully labeled by 1 or
0 were included, while all undetermined TSCs (labeled by 2
or 3) were excluded.

Data set 2: All TSCs were included, while the undetermined
TSCs (labeled by 2 or 3) were all roughly considered as
artefactual TSCs, and labeled by 0.

Data set 3: All TSCs were included, while the undetermined

TSCs that were “more likely to be physiologic” were rela-
beled by 1 (physiology), while those that were “more likely
to be artefactual” were relabeled by 0 (artefactual).

The accuracy, sensitivity and specificity of the classification
were calculated for the test set of each data set. The accuracy
is calculated as:

TP + TN

TP + TP + TN + FN
(3)

where TP is “true positive” which indicates the number of
physiological TSCs that were classified as physiological, TN
is “true negative” which indicates the number of artefactual
TSCs that were classified as artefactual, FP is “false positive”
which indicates the number of artefactual TSCs that were
classified as physiological and FN is “false negative” which
indicates the number of physiological TSCs that were clas-
sified as artefactual. Consequently, the sensitivity measures
the proportion of physiological TSCs that were correctly clas-
sified as such, i.e. TP

(TP+FN) and the specificity measures the
proportion of artefactual TSCs that were correctly classified
as such, i.e. TN

(TN+FP) .

The classification results were then used to determine the
tracking quality of each segment along the myocardium, and
to indicate the reliability of each TSC prior to the clinical
diagnosis. In addition, since the classification was dependent
on the scaling factor σ, of the Gaussian kernel based SVM,
the accuracy has been evaluated also as a function of σ, for
each data set.

Table 2. Groups of TSCs
 

 

 #Total #Training set #Test set 

Data set 1 5715 
4000 1715 
3690 310 1405 310 
‘1’ ‘0’ ‘1’ ‘0’ 

Data set 2 6552 
4586 1966 
3857 729 1238 728 
‘1’ ‘0’ ‘1’ ‘0’ 

Data set 3 6552 
4586 1966 
4164 422 1545 421 
‘1’ ‘0’ ‘1’ ‘0’ 

Note. Table 2 summarizes the number of time strain curves used for the training and  
test sets, in the three data sets: Data set 1, Data set 2 and Data set 3. 

3. RESULTS

3.1 Time-strain curve labeling
Out of all the 6,552 TSCs, 837 TSCs were found to be chal-
lenging during the labeling process, and were labeled as the
undetermined group. Among them, 614 TSCs were labeled
by “2” (more likely to be physiological) and 223 TSCs were
labeled by “3” (more likely to be artefactual). The number
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of TSCs that were used for training and testing, following
the three data sets defined above, are listed in Table 2. The
classification concordance between the two experts was 93%.
The rest 7% were labeled as “more likely to be artefactual”
(i.e. “3”).

It is interesting to note that out of all TSCs that were labeled
as artefactual curves, 57.74% were measured at the subepicar-

dial layer, and 42.26% were measured at the subendocardial
layer. Out of all segments that were labeled as artefactual
(“0”) or “more likely to be artefactual” (“3”), 66.31% were
measured at the apical segments, while only 10.56% and
23.13% of these were measured at the mid-wall and basal
segments, respectively. Additionally, 52.81% of all TSCs
that were labeled as undetermined (with “2” or “3”), were
measured at the epicardial layer.

Figure 4. TSC classification accuracies. (A) TSC classification accuracies as a function of the scaling factor, σ, of the
Gaussian kernel used in the SVM classifier for Data set 1,2 and 3. (B) TSC classification accuracies as a function of the
scaling factor, σ, of the Gaussian kernel used in the SVM classifier for Data set 1 only (a zoomed graph).

Table 3. The classification results and confusion matrix
 

 

A. Classification results 

 Accuracy Sensitivity Specificity 
Data set 1 90% 92% 78% 
Data set 2 80% 84% 73% 
Data set 3 85% 90% 85% 

B. Confusion matrix 

Prediction\ true label Physiologic curve Artefactual curve 

Data set 1 

Physiologic curve 1327 (≅ 94.4%) 78 

Artefactual curve 85 225 (≅ 73%) 

Data set 2 

Physiologic curve 1076 (≅ 87%) 162 

Artefactual curve 234 494 (≅ 68%) 

Data set 3 

Physiologic curve 1394 (≅ 90%) 151 

Artefactual curve 154 267 (≅ 63%) 

Note. Table 3 (A) presents the classification accuracy, sensitivity and specificity yielded by the three data sets, while (B) presents the confusion matrix for both the physiologic 
and artefactual curves, per each data set. 
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3.2 Classification accuracy
3.2.1 Sensitivity to scaling factor, σ:
The classification accuracy reached its maximal value, for
each one of the data sets, when σ was in the range of [4-5],
as depicted in Figure 4A and Figure 4B. For all data sets,
lower values of σ provided lower accuracies, while higher
values of σ showed a decrease in the accuracy rate.

Data set 1, which did not include the undetermined traces,
have yielded the highest accuracies for all values of σ, in
comparison to data set 2 and 3. Classification accuracies for
all values of σ were the lowest (see Figure 4A).

3.2.2 Accuracy, sensitivity and specificity analysis
Using the scaling factors σ1 = 4, σ2 = 5 and σ3 = 4, the best
classification accuracy rates were obtained for Data set 1,
2 and 3, respectively. The highest accuracy rate, 90%, was
achieved for Data set 1 with sensitivity of 92% and speci-
ficity of 78%. Data set 3 yielded an accuracy of 85% with
sensitivity of 90% and specificity of 85%, while data set 2
yielded an accuracy of 80% with sensitivity and specificity
rates of 84% and 73%, respectively. The results are reported
in Table 3A. In addition, confusion matric per each data set
is presented in Table 3B.

4. DISCUSSION
The highest classification accuracy has been provided by
data set 1, as expected, where all undetermined TSCs were
excluded. The inclusion of these curves makes the train-
ing more challenging, and thus may affect the classification
process.

The case of considering all undetermined TSCs as artefactual
curves, as in data set 2, may be acceptable for clinical ap-
plications, since it is advisable to reject such curves instead
of taking the risk of providing an erroneous clinical classi-
fication (thus decision). However, for the training stage, it
obviously increases the classification accuracies that might
be caused by incorrect labeling. Equivalently, splitting the
undetermined TSCs into “more likely to be physiologic” and
“more likely to be artefactual”, was sufficient to decrease the
number of incorrect labeling and increase the classification
accuracies.

Sensitivity was found to be higher for data set 1, as expected.
The specificity was found to be slightly higher for data set
3 than data set 1, due to the variability in the artefactual
TSCs. As explained earlier, a physiological normal curve
has a unique behavior, while artefactual curves may obtain
many different temporal behaviors. Since “specificity” mea-
sures the proportion of the artefactual TSCs that were cor-
rectly identified as artefactual, the additional curves that were
added to the artefactual training set of TSCs have expanded

the ability to represent more options of artefactual behavior,
allowing better identification of such cases. The Confusion
matrix results show that the accuracy for the physiological
curves was better than that of the artefactual curves. This
could be explained by the heterogeneity of the artefactual
curves. There is no recurrent pattern or behavior among
the artefactual curves, which may lead to confusion in the
classification itself. Another potential explanation to these
results is the unequal ratio between the two classes among
the training and test stages. Unequal ratios is one of the limi-
tations in this study, since it may lead to biased results. One
way of targeting these issues is by enlarging the artefactual
data set. Despite this limitation, the results are satisfying
with more than 70% of accuracy for the artefactual curves
and more than 94% of accuracy for the physiological curves.

Finally, one may notice that the results of the visual labelling
revealed that most measurements of low tracking quality
were obtained at the apical regions. This is due to inaccurate
detection of the myocardial borders, near field noise, off-axis
acquisitions and out-of-plane motion. These constraints, ei-
ther all of them together, or apart, may severely influence the
strain calculations.

We believe that the approaches presented by Tabassian et
al.[7, 8] and Clarysse et al.[9] are promising, as they provide
more reliable TSC analysis and clinical diagnosis than the
traditional approaches, which are extensively used by most
technical papers analyzing performance comparison stud-
ies[2, 40–43] as well as by many clinical studies.[44–46] Yet, we
also believe that a reliability determination of these results
prior to any clinical diagnosis is essential.

Since the emergence of strain-based techniques for the as-
sessment of LV function and until recently, only landmarks
of “one time point” strain (or strain rate) have been measured
and commonly used by many of the commercial software
products for LV functional analysis. These commercial soft-
ware packages are based on different techniques such as
Speckle tracking, cine MRI deformable registration and MR
feature tracking. Performance evaluation of these software
packages is based mainly on the “one time point” global and
segmental strain values, e.g.[40, 42, 43] Similarly, multicenter
studies, such as Marwick et al.,[2] and meta-analysis reports,
such as,[41, 46] which usually influence the clinical guidelines
and define the normal and abnormal ranges of parameters,
as well as clinical decisions, are also based on these “one
time point” landmarks. In addition, many other clinical pub-
lications,[44, 45] have investigated the potential of using such
clinical strain landmarks, in addition to or instead of the con-
ventional clinical parameters (such as ejection fraction, end
systolic and end diastolic left ventricle areas/volumes, etc.).
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Therefore, whether the whole TSCs or only “one time point”
landmarks are used for the clinical diagnosis, it is crucial
to perform a reliability determination of the obtained TSCs
in order to exclude artefactual results and provide a more
accurate and reliable clinical diagnosis. Finally, an extension
to this promising technique to detect artefactual patterns in
pathological TSCs will indeed push the STE approach for-
ward toward its full acceptance in the daily clinical protocols.

We have utilized for the classification process the non-linear
SVM algorithm, which is implemented in MATLAB as part
of the machine learning toolbox. One could consider for this
classification alternative supervised classifiers (e.g. those oth-
ers available in the MATLAB toolbox), such as K-Nearest
Neighbor (KNN) or Discriminant Analysis (DA). However,
one must be aware that although KNN is also a non-linear
classifier, it needs to be carefully tuned by choosing an ap-
propriate K value and distance metric. If DA is considered,
one should use non-linear versions of it, e.g. using a kernel,
as for the SVM. More advanced deep learning techniques
could also be applied, such as neural network. For the current
feasibility study, the SVM was chosen since it is well known
as a robust classifier.[35–37, 47]

In this work, we have utilized only our in-house K-SAD
STE algorithm, since it was shown to be more accurate than
the most popular commercial product.[30] This limitation is
not significant since the main attempt here was to demon-
strate the reliability of the SVM classification on some STE
algorithm. In addition, we have analyzed normal subjects
only, thus the classification into physiological and artefactual
curves is relatively simple. This is, however, a mandatory
first step, by itself important, before relating TSCs detected
as artefactual to local or global pathology or abnormality. It
is hypothesized that for the clinical pathologies that cause
global deterioration of the LV function, e.g. cardiotoxic-
ity due to chemotherapy treatment, the damage at the early
stages would cause global impairment of the endocardial
layer.[48] Under such conditions, the cross correlation be-
tween TSCs at the different myocardial layers should remain
high, since only the amplitude may decrease, while the TSC
profile would not change. This may be true also for my-
ocardial remodeling caused by aortic stenosis, or increased
afterload. As for other pathological cases, such as transmural
myocardial infarction (MI), which affects essentially the full
thickness of the wall but is localized to one or two segments,
the cross correlation may be decreased, as the patterns of
both layers may be distorted/defaced, e.g. significant changes
of the time to post systolic shortening.[49] This is one of the
major limitations of the proposed method, since in some

cases, a combination of bad image quality and a localized
myocardial pathology may be challenging. Extending and
generalizing the method presented here would require signif-
icant efforts, so that it would be able to determine whether
a given TSC pattern is abnormal or artefactual. Yet, the
current version of the method allows one to examine the reli-
ability of the results, and underline those segments that are
problematic – either artefactual or pathological, allowing the
clinician to make the final decision. Also, the current version
of the method provides a feedback to the tracking algorithm,
whether to perform another iteration so as to produce more
accurate results.

5. CONCLUSIONS
In this work, we have shown that for those several cases,
when the transmural and segmental TSCs may be clinically
unreliable, due to inadequate myocardial segmentation or
deficient tracking performance, it is essential to automati-
cally detect and classify the artefactual TSCs before clinical
analysis, thus potentially reducing erroneous diagnosis. Su-
pervised learning based SVM model was employed here for
the classification task. The results indicate that most of the
artefactual TSCs were calculated at the epicardium, which
apparently emphasizes the challenges of epicardial segmen-
tation. Artefactual or unreliable results may severely affect
the whole analysis process, regardless of whether the cal-
culations are of transmural or non-transmural, segmental or
global strains. Once a TSC, calculated at a specific segment
and/or myocardial layer, is detected and classified as an arte-
factual, it may be used for modifying and re-performing the
whole calculation process: modifying the segmentation or
tracking calculations, and/or selecting a new clip or part of a
clip with reduced presence of clutter, noise or out-of-plane
motion. Consequently, the strain analysis may be repeated or
rejected at the specific segment or layer. It is also perceived
that with the recently developed ultrasound systems that fea-
ture novel beamforming techniques with better spatial resolu-
tion and less clutter noise, specifically at the apical regions, it
will be hopefully possible to increase the performance of the
tracking algorithms. This will allow acquisition of a much
larger percentage of physiological TSCs, and significantly
smaller percentage of artefactual TSCs.
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