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Abstract 
Background: Aerobic fatigue from running may contribute to altered kinematics and as a result the possibility of injury 
exists. The purpose of this study was to examine the effects of aerobic fatigue on jump shot kinematics in team handball 
players.  

Methods: Ten male team handball players (23.60 ± 3.06 years; 184.68 ± 8.78 cm; 84.76 ± 9.23 kg) volunteered. An 
electromagnetic tracking system was used to examine the kinematics of the jump shot prior to and following aerobic 
fatigue. The fatiguing protocol consisted of running to exhaustion at a speed that corresponded with 80% of their heart rate 
maximum.  

Results: Significant pelvis and trunk kinematic differences were observed following the aerobic fatigue protocol. For both 
the trunk (F6, 54 = 5.10; P < .01; power = 0.99) and pelvis (F3, 27 = 14.47; P < .01; power = 1.00) a three-way interaction of 
event x time x direction was observed. At foot contact, significant differences were observed for pelvis lateral flexion, 
pelvis rotation, and trunk flexion. The pelvis was positioned with greater lateral flexion to the contralateral side (-1.25° ± 
3.41° to -3.39° ± 4.14°) and increased contralateral pelvis rotation was observed (-43.07° ± 12.92° to -50.79° ± 12.26°). 
Pelvis lateral flexion towards the contralateral side was also significantly greater at ball release following fatigue (-21.90° 
± 5.99° to -25.55° ± 7.79°). Trunk rotation significantly increased from -6.80° ± 10.07° to -12.55° ± 10.97° at maximum 
external rotation following fatigue.  

Conclusion: Altered mechanics were observed at the pelvis and trunk and these alterations may contribute to injury in 
team handball players as a player reaches fatigue. 
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1 Introduction 
Fatigue is a complex and multi-faceted physiological response that is difficult to quantify [1].  Irrespective of the difficulty 
of quantifying fatigue, fatigue has been widely studied in the literature. The term fatigue has been defined as any reduction 
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in maximal force generating capacity, irrespective of the force required for a specified task [1-8]. Force production, 
movement coordination, motor control precision, muscle reaction times and proprioception have all been reported to be 
negatively affected by fatigue [1-3]. These factors that are altered can be considered decrements in performance that may 
also contribute to the risk of injury through the inability to attenuate force and stabilize a joint [1, 9]. While the effects of 
fatigue have been widely examined in the literature, data are lacking on the sport of team handball. With the paucity of 
available research regarding fatigue in team handball, it is difficult to understand not only the biomechanical alterations 
but also the injury patterns associated with fatigue in this high demanding sport.  

The sport of team handball is unique in that it requires a combination of dynamic movements throughout the course of a 
game. These movements include running, jumping, landing, throwing, catching, and cutting maneuvers. The mechanisms 
causing these movements to be altered once a player reaches fatigue have yet to be examined, however, the effects of 
fatigue on both static and dynamic activities, focusing primarily on the lower extremity, have been extensively examined 
in other sports [2, 3, 10-16]. While little research has aimed to examine kinematic differences in upper extremity movement 
patterns following fatigue, the literature available on the lower extremity has identified potential flawed mechanics that 
increase the risk of injury [2, 3, 10-16]. For instance, movements that involve sudden change of direction, landing from a jump, 
and rapid stops are all non-contact mechanisms of injury that are greatly affected by lower extremity kinematics. Because 
these movements have previously been identified as common injury mechanisms great effort has been taken to understand 
how lower extremity kinematics are affected by fatigue, yet the application of the same methodology to the upper 
extremity has gone mostly unconsidered. Based on the results of these previous studies of lower extremity dominant sports, 
it is evident that kinematic alterations occur following fatigue. Thus it is speculated that kinematic alterations during upper 
extremity dynamic movements, such as throwing, may place a joint in a compromised position that increases the risk of 
injury.  

The sport of team handball consists of two, 30-minute half’s of play in which players must run the length of the court 
repeatedly. Because of the demands of continued running throughout the course of competition it is important to examine 
the effects of the aerobic fatigue on shooting mechanics. Aerobic fatigue from running may contribute to altered upper 
extremity kinematics and as a result of these altered kinematics the possibility of injury exists. Therefore, the purpose of 
this study was to examine the effects of aerobic fatigue on jump shot kinematics in team handball players. There are little 
data available examining the effects of fatigue on upper extremity movement patterns, thus the results of this study attempt 
to fill the research void on the role of fatigue on throwing mechanics. Gaining an understanding on how the aerobic 
demands of running effect jump shot mechanics will allow for the development of improved training protocols for team 
handball players. It was hypothesized that kinematic differences at the pelvis, trunk, shoulder and elbow during the jump 
shot would be present following aerobic fatigue. 

2 Methods 

2.1 Participants 
A power analysis was performed for this study and in order to have a power of 0.80 and effect size F of 0.50 at α = 0.05 
only 10 participants were needed. Pilot data were used to select the effect size F for the power analysis (unpublished data). 
Ten male team handball players (23.60 ± 3.06 years; 184.68 ± 8.78 cm; 84.76 ± 9.23 kg) volunteered to participate in this 
study. The University’s Institutional Review Board approved all testing protocols. Prior to data collection all testing 
procedures were explained to each participant and informed consent was obtained. 

2.2 Procedures 
The MotionMonitorTM (Innovative Sports Training, Chicago, IL) synced with an electromagnetic tracking system (Track 
Star, Ascension Technologies Inc., Burlington, VT) was used to collect data. The electromagnetic tracking system has 
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and position were transformed to locally based coordinate systems for each of the respective body segments. Two points 
described the longitudinal axis of each segment and the third point defined the plane of the segment [26]. The second axis 
was perpendicular to the plane and the third axis was defined as perpendicular to the first and second axes. The world axis 
was defined as the y-axis in the vertical direction, horizontal and to the right of y was the x-axis, and posterior was the 
z-axis [21, 23, 24 30, 31]. Euler angle decomposition sequences were used to describe both the position and orientation of the 
body segments [21, 23, 24 30, 31] (see Table 2).  

Table 1. Description of the trunk and upper extremity bony landmarks palpated and digitized to create a skeletal model of 
each participant 

Bony Landmarks Digitized Bony Processes  

Trunk  

     Seventh Cervical Vertebra [C7] C7 spinous process 

     Thoracic Vertebra 12 [T12] T12 spinous process 

     Eighth Thoracic Vertebra [T8] T8 spinous process 

     Suprasternal Notch Most cranial aspect of sternum 

     Xiphoid Process Most distal aspect of sternum 

Humerus  

     Medial Epicondyle Medial aspect of humeral epicondyle 

     Lateral Epicondyle Lateral aspect of humeral epicondyle 

 Forearm  

     Radial Styloid Process Lateral aspect of radial styloid 

     Ulnar Styloid Process Medial aspect of ulnar styloid 

Table 2. Angle orientation decomposition sequences 

Segment Axis of Rotation Angle 

Trunk   

     Rotation 1 Z Flexion[-]/Extension[+] 

     Rotation 2 X* Left Lateral Tilt[-]/Right Lateral Tilt[+] 

     Rotation 3 Y# Right Rotation[+]/Left Rotation[-] 

Shoulder   

     Rotation 1 Y Humeral Plane of Elevation [0=Abduction; 90=Flexion] 

     Rotation 2 X* Humeral Elevation 

     Rotation 3 Y# Shoulder Internal Rotation[+]/Shoulder External Rotation[-] 

Elbow   

     Rotation 1 Z Flexion[+]/Hyperextension[-] 

     Rotation 2 X* Carrying Angle 

     Rotation 3 Y# Pronation[+]/Supination[-] 

Note. * and # represent previously rotated axes due to the rotation of the local coordinate system resulting in all axes within that system being rotated. Rotation about X axis also 
results in rotation of both Y and Z axes resulting in a new system of X*, Y*, Z*. Subsequent rotation are then about those axes. 

2.3 Throwing protocol 
Following digitization, participants were allotted an unlimited time to warm-up and become familiar with the testing 

protocols. Once each participant deemed himself ready, the testing protocols began. Participants performed five maximal 

effort jump shots, from a distance of 8 m, using an International Handball Federation (IHF) size 3 team handball [32-34]. In 
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(P = .022) at foot contact to -16.16° ± 8.84° compared to -13.83° ± 8.95°. The increase in trunk flexion differs from what 
has been reported in baseball pitchers as they approach fatigue in a simulated game. Escamilla et al. [42] observed a 
decrease in trunk flexion at ball release 34° ± 12° to 29° ± 11° in collegiate pitchers. It has previously been reported in 
baseball pitching that as trunk flexion increases, ball velocity also increases and as trunk flexion decreases, ball velocity 
also tends to decrease [43]. This trend does not seem to be the case in the team handball jump shot because ball velocity 
decreased even though there was an increase in trunk flexion in the current study. In addition to the increase is trunk 
flexion, the trunk had less lateral flexion at maximum external rotation following aerobic fatigue. These results indicate 
that the trunk was in a more neutral, upright position during the throw following fatigue. This decrease in trunk lateral 
flexion may have occurred as the participants attempted to maintain their center of gravity between the base of support. 
Following the completion of the aerobic fatigue protocol trunk rotation significantly increased (P = .03) from -6.80° ± 
10.07° to -12.55° ± 10.97° at maximum external rotation indicating that the participants were rotated more to the 
non-throwing side, towards the target, once they were fatigued. Similar results were observed at the pelvis where increased 
rotation was also observed (-43.07° ± 12.92° to -50.79° ± 12.26°). The pelvis was positioned with greater lateral flexion to 
the non-throwing side following aerobic fatigue (-1.25° ± 3.41° to -3.39° ± 4.14°; P = .044) at foot contact. Pelvis lateral 
flexion towards the non-throwing side was also significantly greater (P = .024) at ball release following aerobic fatigue 
(-21.90° ± 5.99° to -25.55° ± 7.79°). It is evident that pelvis and trunk kinematics during the jump shot are altered by the 
examined aerobic fatiguing protocol however the role that these alterations play in performance and injury are not well 
understood. These alterations in trunk and pelvis kinematics may lead to decreased proximal stability and energy transfer 
to the upper extremity. 

Although valuable data were obtained from this study it is important to note that limitations do exist. This study was 
performed in a controlled laboratory setting rather than a competition setting. Performing this study in a laboratory 
environment makes it difficult to determine if the results are indicative of a competitive setting. The participants did not 
have to take into account the actions of the defense and the goalie in the laboratory and these external factors could have 
significant influence on jump shot mechanics. A benefit of being in a controlled laboratory setting is that kinematic 
measures could easily be obtained and more accurate data could be collected compared to a competitive setting. Another 
limitation of this study was the variability in playing experience (1-8 years) of the participants that volunteered. Because of 
the variability in team handball playing experience it is possible that the observed differences following fatigue cannot be 
generalized to more experienced players. Regardless of the limitations that exist, this study is novel because it is the first 
study to examine the effects of fatigue on throwing performance in any sport. All of the previous studies in baseball 
players have implemented simulated games however fatigue indices were not tracked and the pitchers only threw a 
predetermined number of pitches [40, 42]. Therefore the comparison of these results to that of the current study should be 
interpreted with caution as only the current study truly examined fatigue.  

Future research should aim to develop an aerobic fatiguing protocol that more closely mimics the competitive demands of 
team handball in effort to better determine kinematic changes that may occur as a result of fatigue. A protocol that utilizes 
a combination of sprinting, change-of direction, lateral movements, and jogging may have a different effect on jump shot 
kinematics than the current protocol. Future research should also aim to examine injury prevalence and kinematics in a 
large sample of experienced team handball players to establish if relationships between throwing kinematics and injury 
exist. If relationships between these variables do in fact exist then further examining the effects of fatigue can have 
important implications on the development and implementation of injury prevention protocols in team handball players. 
Future research should also include the examination of muscle activation and firing patterns during the jump shot to better 
understand the role of fatigue. 

5 Conclusions 
The pelvis was positioned with greater lateral flexion to the contralateral side and increased contralateral pelvis rotation 
was observed. Pelvis lateral flexion towards the contralateral side was also significantly greater at ball release following 
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fatigue and trunk rotation significantly increased at maximum external rotation. The differences that were observed 
following aerobic fatigue occurred predominately at the pelvis and trunk segments. Due to altered mechanics being 
observed following fatigue it may be necessary to focus training and rehabilitation on strengthening the stabilizing 
musculature of these segments in effort to prevent kinematics alteration from occurring.  
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