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Abstract 
The molecular basis of cancer is not merely the consequence of structural and/or regulatory mutations in genes, but 

additionally to disruptions in networks of regulatory interactions existing among these genes and other components of the 

genome. Disruptions in network relationships may manifest as the loss, gain or reversal of functionally significant 

interactive gene relationships in cancer cells. In this study, we first employ an unsupervised (Pearson correlation) approach 

to quantitatively estimate the overall change in network relationships between precursor (control) ovarian surface 

epithelial cells and ovarian cancer epithelial cells. We find that ovarian cancer cells display a significant overall reduction 

in correlated gene network interactions relative to normal precursor cells reflective of an overall loss of regulatory control.  

We next focus on gene relationships that qualitatively change between normal and cancer samples. We find that biological 

processes significantly over represented among differentially expressed genes are substantially different from those 

associated with genes involved in qualitatively disrupted network interactions. Our findings provide novel insights into the 

processes underlying ovarian cancer and identify a potential new class of genes for targeted therapy.  
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1 Introduction 
It has become increasingly clear in recent years that the molecular basis of cancer and other complex human diseases is not 

merely attributable to structural and/or regulatory mutations in one or a few genes, but additionally to disruptions in 

networks of regulatory interactions existing among these and other components of the genome [1-4]. Although a 

determination of the myriad of potential genetic interactions that characterize human cells is only beginning to be 

established experimentally [2, 5], a number of computational approaches have recently been developed that can directly or 

indirectly infer interactive network relationships among genes in normal and cancer cells [6-9]. 

A standard input for gene regulatory network algorithms is gene expression (RNA-seq and/or microarray) datasets. 

Interactions (edges) between genes (nodes) can be inferred in an unsupervised fashion based upon consistent and highly 
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correlated changes (positive or negative) in the expression patterns that exist among genes in multiple biological  

samples [4, 10, 11]. In this study, we begin by employing such an unsupervised (Pearson correlation) approach to estimate 

overall gene network relationships between precursor (control) ovarian surface epithelial cells (OSE) [12] and serous 

papillary ovarian cancer epithelial cells (CEPI) isolated from human patient samples by laser capture microdissection 

(LCM) and analyzed by gene expression microarray (Affymetrix, U133 Plus 2) as previously described [13]. The results 

indicate that ovarian cancers display a significant overall reduction in correlated gene interactions relative to normal 

precursor cells.  

We next focus on gene interactions that display a qualitative change between normal and cancer cells. For example, 

instances where the expression levels of genes positively correlate in normal cells but negatively correlate in cancer cells 

or vice versa. Such reversal of regulatory relationships between genes has been experimentally shown to be of particular 

functional significance in cancer [5], but it is a phenomenon that has not been extensively examined on the computational 

level. Our results indicate that nearly 45,000 correlated gene pairs display qualitative changes in their relationships in our 

cancer samples.  Genes most frequently involved in these qualitative changes were found to be associated with biological 

processes distinct from those associated with genes most significantly differentially expressed in cancer. Collectively, our 

results indicate that the identification of genes involved in disrupted network interactions in ovarian and other cancers may 

not only provide new insights into processes underlying the disease but may also identify a new class of genes for targeted 

therapy.  

2 Methods  

2.1 Gene expression profiles 
Expression profiles were generated in our lab [14] on ten normal OSE and ten serous CEPI samples (GEO accession:  

GSE52037) and analyzed for changes in mRNA expression using the Affymetrix Gene Chip Operating System (GCOS 

HG-U133 Plus 2.0). CEL files generated by GCOS were converted to expression values using GCRMA normalization on 

the ArrayAnalysis.org [15] website, that also included quality control metrics and cluster dendrograms.  

Present/absent calls were generated from the MAS 5.0 statistical algorithm as implemented in Affymetrix Expression 

Console. Probe sets with > 60% present calls in either of the two groups (OSE and CEPI) were selected for further analysis. 

After log2 transformation, the signal values of those probe sets were submitted to Statistical Analysis of Microarrays 

(SAM) for multiple testing correction where a 5.5% FDR was applied resulting in 7,461 probe sets representing 5,910 

unique genes; annotations for probe sets were obtained from Affymetrix. Genes were further filtered for absolute fold 

change > 1.5 between normal and cancer samples, resulting in 5,144 differentially expressed (DE) genes. Further analysis 

of DE genes that were detected by exactly two probe sets revealed that ~2.5% of the probe sets reported contradictory 

results for a given gene; genes with contradictory probe sets were filtered out prior to network creation, leaving 5,070 DE 

genes. 

2.2 Correlation calculation 
Pearson correlations between DE genes were calculated using the Mathematica [16] correlation function. Since it is possible 

that the gene-to-gene correlation could be randomly generated, a significance test was conducted using expression signals 

from normal samples. For each Affymetrix probe set, expression signals from the ten normal samples were shuffled 

among those ten samples. That is, expression values were randomly reassigned to different samples, thus preserving the 

mean and standard deviation. By graphing the size of the largest connected subgraph for different values of “r” ranging 

from 0.70 to 0.99 (see Figure 1), it was found that networks of random signals could appear to be connected for values of 

r < 0.85. Thus, to minimize false positives, the absolute value of “r” was limited to values > 0.85. Baseline relationships 
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between pairs of DE genes were established by correlating the expression of 12.8 million pairs of genes across ten normal 

samples, and selecting pairs satisfying r > 0.85; df = 8, P < .0018. This resulted in a total of 682,194 highly correlated gene 

pairs in normal samples. Using this same method for cancer samples resulted in 193,276 highly correlated gene pairs. 

2.3 Gene ontology enrichment analysis  
Lists of 350 inconsistent (see results) and 350 highly DE genes were subjected to genome ontology enrichment analysis by 

using the Database for Annotation, Visualization and Integrated Discovery (DAVID) [17].  The lists were analyzed using 

Functional Annotation Clustering. Biological process terms having P < .05 were considered significant. 

2.4 Gene ontology selection 
Cell cycle genes (n = 577) (GO:0007049) and genes involved in the Regulation of Programmed Cell Death (n = 892) 

(GO: 0043067) were downloaded from QuickGO [18] after filtering for Taxon (human: 9606), Evidence (Manual all), GO 

Identifier (GO: 0007049 or GO: 0043067 and their descendants), and Aspect (Biological Process). These genes formed the 

basis for Figures 2A and 2B that were built using Cytoscape [19]. 

2.5 Graph construction and visualization 
Cytoscape [19] was used to visualize the correlation networks consisting of DE genes downloaded from QuickGO, by using 

a Prefuse Force Directed layout. The top six most highly correlated neighbors for each gene were connected to form a 

graph. Genes with only one neighbor are not shown. 

3 Results 

3.1 Ovarian cancer is associated with a significant quantitative 
reduction in gene network interactions relative to normal precursor 
cells 
We employed microarray gene expression analysis to compare differences in gene expression levels between precursor 

OSE cells and CEPI isolated from patient tissue samples by laser capture microdissection (LCM). Gene expression 

profiling identified 5,070 significantly differentially expressed genes (mRNAs) between the OSE and CEPI samples 

(Supplementary Table 1). Of these, 1,436 (28%) were significantly up regulated and 3,634 (72%) significantly down 

regulated in the cancer samples relative to normal controls. 

Baseline relationships (Pearson correlations) between the significantly differentiated genes (5,070) were established in the 

control samples (OSE) by comparing the expression levels of 12.8 million pairs of genes (5,070 × 5,069 / 2) across ten 

normal patient samples and selecting gene pairs displaying highly correlated (positive or negative) expression levels 

across samples. This resulted in a total of 682,194 (~5% of all possible pairings) significantly correlated pairs of 

differentially expressed genes in the normal samples (r > 0.85; P < .0018; Note: we determined that r < 0.85 can occur 

purely by chance, see Figure 1). Of these 682,194 correlated gene pairs, 567,886 were positively correlated with one 

another while 114,308 were negatively correlated. Conducting the same analysis across the ten cancer (CEPI) samples 

resulted in 193,276 highly correlated (164,283 positively correlated; 28,993 negatively correlated) gene pairs (r > 0.85,  

P < .0018).  

Only 35,000 of the 682,194 significantly correlated gene pairs observed in normal (~5%) were found to maintain the same 

high level of correlation between one another in cancer samples. Thus, consistent with previous studies, our results 

indicate that the transition from normal to cancer cells involves a substantial loss of regulatory controls [20-22]. 
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enriched collection of biological processes in this group of genes followed closely by functions associated with 
programmed cell death (see Table 1, Figure 2 panel A and panel B). 

Table 1. Genes involved in inconsistent gene pair interactions in ovarian cancer are most significantly functionally 
enriched for cell cycle and cell death related processes  

Term Gene Count % P-value 

GO:0000279 M phase 28 8.12 9.38E-10 

GO:0000280 nuclear division 21 6.09 3.15E-08 

GO:0007067 mitosis 21 6.09 3.15E-08 

GO:0022403 cell cycle phase 29 8.41 3.50E-08 

GO:0000087 M phase of mitotic cell cycle 21 6.09 4.28E-08 

GO:0007049 cell cycle 40 11.59 1.79E-07 

GO:0022402 cell cycle process 32 9.28 6.83E-07 

GO:0000278 mitotic cell cycle 25 7.25 7.66E-07 

GO:0051301 cell division 21 6.09 3.26E-06 

GO:0051276 chromosome organization 24 6.96 1.26E-04 

GO:0007059 chromosome segregation 9 2.61 2.64E-04 

GO:0000070 mitotic sister chromatid segregation 6 1.74 8.63E-04 

GO:0000819 sister chromatid segregation 6 1.74 9.80E-04 

GO:0051726 regulation of cell cycle 17 4.93 1.42E-03 

GO:0033554 cellular response to stress 24 6.96 1.51E-03 

GO:0006974 response to DNA damage stimulus 18 5.22 1.91E-03 

GO:0007093 mitotic cell cycle checkpoint 6 1.74 1.96E-03 

GO:0000075 cell cycle checkpoint 8 2.32 2.46E-03 

GO:0007346 regulation of mitotic cell cycle 10 2.90 4.53E-03 

GO:0010564 regulation of cell cycle process 8 2.32 9.63E-03 

GO:0006916 anti-apoptosis 11 3.19 1.06E-02 

GO:0007051 spindle organization 5 1.45 1.43E-02 

GO:0006260 DNA replication 10 2.90 1.50E-02 

GO:0006917 induction of apoptosis 14 4.06 1.59E-02 

GO:0012502 induction of programmed cell death 14 4.06 1.63E-02 

GO:0043068 positive regulation of programmed cell death 17 4.93 1.83E-02 

GO:0010942 positive regulation of cell death 17 4.93 1.92E-02 

GO:0007088 regulation of mitosis 5 1.45 2.79E-02 

GO:0043067 regulation of programmed cell death 26 7.54 3.02E-02 

GO:0010941 regulation of cell death 26 7.54 3.20E-02 

GO:0043065 positive regulation of apoptosis 16 4.64 3.42E-02 

GO:0006915 apoptosis 20 5.80 4.17E-02 

GO:0012501 programmed cell death 20 5.80 4.70E-02 

Note. As shown in Table 1, the 350 genes involved in the greatest number of inconsistent gene pair interactions were analyzed for biological process enrichment using  
DAVID [17]. Biological functions related to cell cycle (no fill) were found to be the most significantly enriched processes. Apoptosis and 11 other cell-death related functions 
(gray fill) were the second most enriched processes. 
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3.4 Genes associated with qualitatively disrupted network interactions 
in ovarian cancer identify a potential new class of candidates for 
targeted gene therapy 
One molecular standard commonly used to identify functionally significant alterations in cancer is changes in gene 
expression [13, 26, 27]. To determine the extent to which processes identified as significantly overrepresented among genes 
involved in disrupted network interactions (see above) were similar to or different from processes overrepresented in 
genes most significantly differentially expressed, we selected the 350 (out of 5,070) most significantly differentially 
expressed genes between our normal and cancer samples (Supplementary Table 3) and subjected them to the same gene 
ontology analysis. As shown in Table 2, the biological processes most significantly overrepresented among the top 350 
most significantly differentially expressed genes were substantially different from those most significantly over- 
represented among genes involved with inconsistent interactions. Indeed, of the 350 genes most significantly differentially 
expressed between our normal and cancer samples, only 22 overlapped with the 350 genes involved in the most frequently 
inconsistent interactions (Supplementary Table 4). These results suggest that the identification and characterization of 
genes involved in inconsistent gene interactions in ovarian and perhaps other cancers may constitute a source of 
functionally significant information unavailable through gene expression analyses alone. 

Table 2. Genes most significantly differentially expressed in ovarian cancer are most significantly functionally enriched 
for cell adhesion associated processes  

Term Gene Count % P-value 

GO:0007155 cell adhesion 36 10.50 9.25E-07 

GO:0022610 biological adhesion 36 10.50 9.60E-07 

GO:0048732 gland development 13 3.79 2.44E-05 

GO:0060429 epithelium development 15 4.37 1.22E-04 

GO:0006928 cell motion 24 7.00 1.24E-04 

GO:0043627 response to estrogen stimulus 10 2.92 3.49E-04 

GO:0030182 neuron differentiation 21 6.12 7.17E-04 

GO:0030855 epithelial cell differentiation 10 2.92 8.26E-04 

GO:0010033 response to organic substance 29 8.45 1.19E-03 

GO:0007411 axon guidance 9 2.62 1.41E-03 

GO:0048812 neuron projection morphogenesis 13 3.79 1.44E-03 

GO:0032989 cellular component morphogenesis 19 5.54 1.47E-03 

GO:0009611 response to wounding 23 6.71 1.49E-03 

GO:0009725 response to hormone stimulus 18 5.25 2.02E-03 

GO:0001655 urogenital system development 9 2.62 2.28E-03 

GO:0009719 response to endogenous stimulus 19 5.54 2.35E-03 

GO:0048545 response to steroid hormone stimulus 12 3.50 2.45E-03 

GO:0031175 neuron projection development 14 4.08 2.46E-03 

GO:0050878 regulation of body fluid levels 10 2.92 2.75E-03 

GO:0030204 chondroitin sulfate metabolic process 4 1.17 2.85E-03 

Note. As shown in Table 2, the 350 genes with the greatest fold change between normal and cancer samples (FC < -9.21 and 9.27 < FC) were analyzed for biological process 
enrichment using DAVID [17].  Cell adhesion and a variety of other biological processes were found to be the most significantly enriched. 
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3.5 Many of the genes associated with inconsistent interactions have 
been previously implicated in cancer 
We found that many of the genes involved in inconsistent interactions in ovarian cancer have been previously associated 
with cancer (see Table 3).  For example, CHEK1 (checkpoint kinase 1), a regulator of DNA damage-induced cell cycle 
(G2/M) arrest [28] and associated with 187 inconsistent interactions in our cancer samples, has been previously identified as 
a potential target for ovarian and other cancer therapy [29]. Likewise, MECOM (MDS1 and EVI1 complex locus) has been 
shown to be commonly amplified in OC and has also been identified as a potential target for gene therapy [30, 31]. 

A number of other genes involved in inconsistent interactions in our OC samples, although not yet implicated in ovarian 
cancer, have been identified as important contributors to other types of cancer. For example, the gene involved in the 
greatest number of inconsistent interactions in OC (650), VRK1 (vaccinia-related kinase-1), has been previously 
associated with cell cycle and cell death functions [32] and has recently been implicated in breast cancer [33]. Likewise, the 
TET1 (ten-eleven translocation 1) gene that we found to be involved in 574 inconsistent interactions in OC, has been 
recently identified as a tumor suppressor gene associated with breast and prostate cancer [34]. Another tumor suppressor 
gene, HELLS (helicase lymphoid-specific) found to be involved in 576 inconsistent interactions in OC has been previously 
associated with epigenetic deregulation leading to lung cancer onset and/or progression [35].  

A number of the genes involved in inconsistent interactions in our OC samples, although not yet explicitly implicated in 
any human cancer, are nevertheless known to be involved in important cellular functions and thus may represent a 
currently unrecognized class of cancer associated genes. For example, XPR1 (xenotropic and polytropic retrovirus 
receptor-1) is an atypical trans-membrane signaling receptor associated with G-protein coupled receptor activity [36]. 
Although XPR1 is currently functionally recognized as a receptor for xenotropic and polytropic retroviruses, this is clearly 
not its only cellular function. The fact that XPRI is associated with 645 inconsistent interactions in our ovarian cancer 
samples suggests that it may play a significant, albeit as-yet-unrecognized role in ovarian cancer onset and/or progression. 

Table 3. Examples of genes involved in inconsistent gene pair interactions identified in this study that have been 
previously associated with ovarian or other cancers (* Based on previous results, the gene has been identified as a drug 
target in the Cancer Resource [53]) 

Druggable* Gene symbol 
Fold change between control 
and OC samples 

Number of inconsistent 
interactions 

Cancer Type 

Yes VRK1 1.9 650 breast 

Yes XPR1 2.3 645 unknown 

Yes HELLS 2.2 576 NSCLC 

Yes TET1 1.6 574 prostate 

Yes CHEK1 4.0 187 ovarian 

Yes MECOM 18.6 20 ovarian 

Note. VRK1= vaccinia-related kinase-1; XPR1= xenotropic and polytropic retrovirus receptor-1; HELLS= helicase lymphoid -specific; TET1= ten-eleven translocation 1; 
CHEK1= checkpoint kinase 1; MECOM= MDS1 and EVI1 complex locus; NSCLC=non-small cell lung carcinoma. 

4 Discussion 
Modern high-throughput sequencing and gene expression technologies are providing unprecedented insights into 
molecular genetic processes disrupted in cancer [37] and have led to the possibility of a personalized, targeted gene 
approach to cancer therapy [38]. However, since not all variants detected by high-throughput technologies may be of 
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functional significance, high-throughput sequencing and gene expression data must be coupled with the capability to 
distinguish functionally important or “driver” variants from “passenger” variants of little on no relevance. A major barrier 
to the attainment of this goal is the fact that the eukaryotic genome is a highly integrated network [39-41]. As a consequence, 
the biological significance of a genetic variant in any particular cancer can reasonably be expected to depend, to a greater 
or lesser extent, upon the functional status of other genes with which it interacts. The growing realization of the potential 
importance of gene interactions in a variety of diseases [9, 39, 40], including cancer [5, 41] is spurring the development of new 
experimental and computational tools to identify and evaluate the significance of changes in gene network relationships in 
eukaryotic cells [14, 42-45]. 

Interactions between genes are typically computationally inferred in an unsupervised fashion based upon consistent and 
highly correlated changes (positive or negative) in the expression patterns between genes in multiple biological  
samples [46-48]. Although, such unsupervised approaches typically infer network relationships exclusively from minimally 
processed gene expression data, more supervised methods (e.g., Bayesian [49], partial correlation [47]) incorporate additional 
supplemental information, such as, current understanding of specific gene regulatory relationships. While supervised 
methods may have advantages when inferring network changes in previously established, well-defined pathways, they can 
be less effective in detecting previously unrecognized interactions and/or in detecting important yet previously undefined 
system-wide changes in network structure. For example, supervised algorithms using Bayesian networks typically operate 
on directed acyclic graphs that do not include loops in the network. Such procedures can result in the loss of biologically 
relevant data since feedback loops are widely recognized as biologically significant in eukaryotic cells in general [50] and 
specifically in cancer [51, 52]. 

In this study, we were interested in exploring the possible significance of changes in gene interactions in OC by comparing 
differences in correlated patterns of gene expression between precursor OSE cells and CEPI isolated from ten normal and 
ten cancer patient samples. Using an unsupervised computational approach (Pearson correlation), we first established 
evidence of a significant overall change in the number of gene-gene interactions in our cancer samples. These findings are 
consistent with earlier computational and experimental studies suggesting that cancers are generally associated with 
significant changes in regulatory control [20-22]. 

While whole transcriptome analyses can determine if significant changes in overall gene-gene interactions occur during 
cancer development, more focused studies are required to uncover specific subclasses of gene interactions that may be of 
functional importance. For example, in a recent study of transcription factor gene interactions, a number of significant 
changes were detected between control and OC samples analyzed [47].  In our study, we were interested in focusing on a 
different sub-class of altered interactions, i.e., those where the correlated relationship between gene pairs in normal cells is 
qualitatively reversed in cancer cells. The motivation for our analysis was the fact that recent molecular studies suggest 
that reversals in regulatory interactions may be of particular functional significance in cancer [23-25] and the fact that this 
sub-class of regulatory changes in cancer has not previously been extensively analyzed on the computational level. 

We found that nearly 45,000 gene pairs displayed a reversal in gene pair relationships in cancer (“inconsistent”). Although 
a number of genes previously identified as being involved in disrupted transcription factor-target gene interactions in OC 
were identified in our study as being significantly differentially expressed in OC (e.g., Sp3, NFKB1; Supplementary 
Table 1), none of these genes were among the genes most frequently involved in inconsistent gene pair relationships. This 
suggests that the majority of genes involved in qualitative reversals in interactive relationships in OC are not encoding 
transcription factors. Among the genes most frequently involved in a reversal in gene pair relationships in OC were several 
previously implicated in the development of other cancers (see Table 3). For example, the gene involved in the largest 
number (650) of reversed or inconsistent relationships, VRK1, is a member of the serine/threonine family of protein 
kinases and is a well-known “druggable” gene target [53].  
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Finally, in an effort to identify biological functions potentially disrupted by reversals in gene pair relationships in OC, we 
selected the 350 genes most frequently involved in inconsistent gene pair relationships and subjected them to gene 
ontology analysis. The results indicated a significant enrichment for genes involved in cell cycle regulation and cell death. 
For comparison, we conducted a similar analysis for the 350 genes most significantly differentially expressed in our cancer 
samples relative to controls. There was little overlap among biological processes most significantly over-represented in 
these two datasets indicating that the identification of genes involved in inconsistent gene pair interactions in cancer may 
represent a clinically significant class of genes that can go undetected in standard DNA sequence and gene expression 
analyses. Indeed, a number of these genes identified to be involved in inconsistent interactions in OC have been previously 
identified as being of functional significance in other cancers and may represent promising new candidates for targeted 
gene therapy in OC.  

5 Conclusions 
The long-term hope of converting cancer from a lethal to a manageable chronic disease rests not only upon the availability 
of technologies to accurately detect structural and expression genetic variants associated with individual tumors, but 
analytical methods that can reliably identify variants that may be causally responsible for the cancer phenotype in 
individual patients. Our results are consistent with previous gene network analyses indicating that the simple identification 
of genes mutated and/or differentially expressed in cancer tissues may not be sufficient to identify all genes of functional 
significance. The development and implementation of novel methods to identify genes involved in disrupted network 
interactions in cancer promises to provide important new insights into the processes underlying cancer and the potential 
identification of a new class of genes for targeted gene therapy.  
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