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Abstract 
Background: The clinical approval of speckle tracking echocardiography (STE) as an accepted measure of myocardial 
strain and of LV function is hindered by the discordance of the results among the vendors. Since echocardiography images 
are noisy, the measured displacements are smoothed or regularized, an operation affecting the strain results. We introduce 
an “Error-dependent weighted speckle tracking” (EWST) algorithm that allows sensitivity analysis to the different 
operations affecting noise and accuracy. The aim here was to study whether by modifying the properties of the post 
block-matching weighted smoothing in the EWST algorithm it was possible to assess the expected inter-vendor strain 
differences.  

Methods and results: Forty-eight echocardiographic clips generated by a software-based phantom were used as “gold 
standard” for validation of the EWST algorithm. Also, a cohort of 435 normal subjects and a cohort of 47 patients, 
scanned/re- scanned at 2 frame-rates (~70; ~35), were studied using the EWST. The results were compared to those 
produced by a commercial product of a leading manufacturer (STELV).  Peak global longitudinal strains [PRLS, (%)] and 
peak regional longitudinal strains [PRLS, (%)] were calculated and compared. Sensitivity to the region (ROI) 
determination was tested by shifting the apical endocardial boundary. The differences between the measured PGLS and 
the ground truth produced by the software-based phantom (average ± standard deviation) were 0.4% ± 0.6% and 1.0% ± 
0.7% for the EWST and STELV, respectively. Normal values were calculated for 435 subjects: -18.82% ± 2.45%, -20.2% ± 
5.6%, -19.62% ± 3.62%, 18.77% ± 4.31% by the EWST, and -21.24% ± 2.91%, -26.5% ± 5.0%, -21.1% ± 3.7%, -18.0% ± 
3.9%, by the STELV, respectively, for the PGLS, the peak longitudinal apical, mid-ventricle and basal regions, 
respectively. A low bias, but significant, was found between PGLS, when calculated for the cohort of 47 patients 
scanned/re-scanned at 2 frame-rates: -0.80% ± 2.61% and -1.66% ± 2.66% for the EWST and STELV, respectively. When 
the apex location (and thus the ROI) was shifted, the bias (mm) (average ± standard deviation) relative to the default 
position was:  0.82 ± 1.04; 0.61 ± 0.72; -1.06 ± 0.75; and -1.87 ± 0.72, for displacement of 5 cm, 2.5 cm, -2.5 cm, and -5 
cm, respectively, for the STELV. The EWST proved similarly sensitive to the shifting of the apex location. 
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Conclusions: STE is sensitive to the characteristics and amount of smoothing, as well as to the ROI positioning. 
Modification of the smoothing can produce different stain results, and different distribution of the regional strains.  Thus it 
is preferable to use automatic determination of the ROI and methods that employ minimal smoothing or regularization. 
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1 Introduction 
Two-dimensional (2-D) speckle tracking echocardiography (STE) software is nowadays offered by most vendors of 
echocardiography systems. The issue of inter-vendor variability raised the concern of many [1-3], and caused the creation of 
the EACVI-ASE-Industry Strain Standardization Initiative [4]. The primary source of discordance in the strain measure- 
ments among the vendors has been identified as the different post-processing algorithms, which smooth the raw displace- 
ment measurements that are based on speckle tracking [5]. The different smoothing/processing approaches applied to the 
measurements, based on speckle tracking, may also explain the different myocardial strain values obtained by three- 
dimensional versus two-dimensional speckle-tracking echocardiography systems [6]. The EACVI-ASE-Industry Strain 
Standardization Initiative produced some positive results, as one major vendor modified the post-processing software so 
that the STE results are of higher concordance with the other major vendor [7].  

Table 1. Acronyms and definitions 
STE  Speckle tracking echocardiography 

SAD Sum of absolute differences 

PGLS Peak global longitudinal strain 

PRLS Peak regional longitudinal strain 

HFR High frame rate (scans of around 70 frames per second) 

LFR Low frame rate (re-scans at about half the HFR) 

ROI Region of interest 

ROS Region of search 

LV Left ventricle 

2CH 2 chambers long axis cross-section 

4CH 4 chambers long axis cross-section 

APLAX Apical long axis cross-section 

TP Tracking point 

knot Center of mass 

TQ Tracking quality 

LUI Local uniformity index 

EWST Error-dependent weighted speckle tracking algorithm 

EWST w/10 Error-dependent weighted speckle tracking algorithm, with weights divided by 10  

STELV  Speckle tracking software, by a leading vendor 

SD Standard deviation 

basal region Includes the 6 basal segments (anterior, anteroseptal, inferoseptal, inferior, inferolateral, anterolateral) 

mid region Includes the 6 mid segments (anterior, anteroseptal, inferoseptal, inferior, inferolateral, anterolateral) 

apex region Includes the 5 apex segments (anterior, septal, inferior, lateral, apex) 

STE is based on tracking speckle patterns in conventional B-mode images, which is now feasible using readily available 
computational resources. Yet, in spite of its popularity, attested by thousands of clinical echocardiographic studies [8-13] 
over the last 10 years, translating STE into the daily clinical routine is far more challenging in both the single and 
multi-vendor clinical environments. Thus, though the Strain Standardization Initiative reduced significantly the 
inter-vendor variability of the strain measurements, a consequent study [14] concludes that current vendor independent STE 
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Speckle tracking is mostly performed by block-matching [19-22], where the displacement of a material point is estimated by 
searching for the “best match” between a block in the source frame and a block in the target frame. The center of the block 
in the source frame is usually defined as a “tracking point” (TP) [23]. The displacement search is usually limited to a region 
of search (ROS) around the TP, based on an estimation of the maximal tissue velocities.  

Blocks are optimally matched when the cross correlation between the intensities of the respective pixels within the blocks 
is maximized. Since cross-correlation is relatively computationally intensive, an essentially equivalent criterion is 
commonly utilized - of minimizing the sum of absolute differences (SAD) between the pixels in the two images. Since to 
a certain degree speckle decorrelation noise is always present, the displacement that minimizes the SAD does not always 
yield the true displacement. Therefore, block matching based on speckle tracking always requires good image quality, as 
well as a certain minimal number of frames per heart cycle, so that noise level will be at a reasonably small level. It is also 
intuitively evident that speckle decorrelation noise will increase as the search region increases. 

In order to allow reasonably accurate block matching, and thus reliable strain measurements, a second stage is commonly 
performed, following the block matching - smoothing, or regularization of the results [24, 25]. The two stage approach 
employed by most commercial vendors, although inaccurate in principle from a theoretical perspective, is reasonable in 
cases with sufficiently low speckle decorrelation noise, namely: high frame rates, small regions of search and very good 
image quality.  In these cases the number of outlying displacements is relatively small so that they could be practically 
eliminated using an appropriately weighted smoothing system, and also yield reasonably accurate strain values. Such 
smoothing, though, affects the overall results, modifying the results even in areas where there are no outliers. We 
hypothesize that the commercially available algorithms use some tradeoff between weighting and smoothing. The 
resulting strain values, therefore, most probably depend also on the details of the “weighted smoothing”, in addition to the 
dependencies on image quality, speckle decorrelation noise and the specific scanning parameters. 

In order to study and better understand the accuracy and sensitivity of the strain measurements to various controlling 
parameters-which are proprietary information of the vendors, we developed a fully “open” generic algorithm and compare 
here its tracking and strain results in a software-based phantom and in a large cohort, to those obtained with the algorithm 
of a leading vendor (referred as STELV). The comparison between the two algorithms is done as function of the model’s 
weighting/smoothing parameter (termed N below), under the hypothesis that the various algorithms could be mimicked by 
properly varying one parameter (or for an extreme case - maybe two parameters) in our generic algorithm. 

2 Generic open STE algorithm 
An error-dependent weighted speckle tracking (EWST) algorithm has been developed as an open, generic algorithm, for 
the purpose of roughly assessing the differences in strain values resulting from using commercial codes. Here, the 
comparison is performed versus one vendor, one of the leading vendors which established this measure. It is hypothesized 
that the proprietary commercial codes mainly differ in the amount and the characteristics of the post block-matching 
weighted smoothing. It is thus suggested that changing the amount of smoothing/weighting, by modifying the parameter N 
(see below) in the EWST algorithm in various situations, may help assess the expected inter-vendor strain differences.  

The EWST algorithm is primarily based on the method previously reported [23, 26, 27]. The algorithm contains a single 
smoothing/weighting function, with one parameter N, which controls the amount of spatial smoothing.  Briefly, the image 
is first segmented into two parts, separating the imaged left ventricular myocardial zone from the rest of the image. This 
defines a ROI, which is then being tracked from frame to frame. This process should be, and is automatic, in order to 
obtain reproducible strain results. In many echocardiographic clips, though, the apical region is rather noisy, which makes 
it difficult to view and detect the apical subendocardial boundary. This is usually caused by clutter noise, as well as the 
existence of trabeculae. As the separation of the usually higher strain trabecular zone from the lower strain compact 
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muscular zone [28] is essential for accurate muscular strain estimation, the wall thickness at the apex was set in the EWST 
algorithm as half the septal wall thickness, determined by the thickness at the mid inferoseptal segment. 

Three chains of points, knots [23], are defined within the ROI, one imposed along the inner (subendocardial) boundary of 
the myocardium, one along the outer (subepicardial) boundary, and one along the line in between (mid wall).  The 3 chains 
of knots are assumed to be along 3 smooth curves and are further assumed to mark the same physical points at all frames.  
This last assumption is also dependent on the assumption of negligible out-of-plane motion, which may not hold well at the 
apical and basal areas, due to the LV rotation.  Each knot is then surrounded by a set of TPs, each representing a tracking 
block, which is a square area of the image. The knot-TP structure is depicted in Figure 1. As mentioned above, the 
displacement of each TP from one frame to the next is computed using a minimum SAD algorithm, searched within a 
region of search (ROS), which is, of course, within the ROI (see Figure 1). 

Weighted smoothing:  Following the description in our previous publication [26], the displacement at each knot is computed 
by a 2 stage weighted smoothing scheme. First, the displacement field of the TP is smoothed using a weighted bilinear 
approximation. In the second stage, the displacements of all the knots, along the 3 chains are smoothed, using a smoothing 
spline, as detailed elsewhere [23]. The open-source STE algorithm proposed here allows the operator, differently from 
previously reported algorithms, a control of the degree of the smoothing of the spline by defining a weighting-parameter N, 
which will effectively increase the amount of smoothing for noisy data. The weighting scheme is probably one of the more 
important details in the speckle tracking algorithm and is proprietary to all commercial vendors.  Therefore, in order to be 
able to explore the dependence of the strain values on the details of the weighting scheme, an open generic STE algorithm 
has been developed as part of the present study.  We will show below that strain values in general, and their distribution in 
the LV in particular, may be tailored using this scheme by varying the value of a single parameter. The strain distribution 
along the left ventricle (LV) can be either made to resemble the distribution obtained by cMRI [29], as well as that of the 
pioneering works of the T. Arts group [30, 31], both claiming that the longitudinal strain is evenly distributed along the entire 
LV, or those obtained by the commercial vendors STE algorithms. 

The weights of the TPs in the EWST algorithm are defined by their estimated relative displacement error σ. The 
displacement error is calculated as the normalized difference between the measured displacements, which is obtained by 
minimizing the SAD corresponding to the TP, and the “ground truth” displacement. Since the latter is unknown, it is 
estimated using the displacements within a defined neighborhood. The weights at each (i, j)th TP are then calculated as the 

inverse function of the resulted displacement error ,
,

 . A high value of the parameter k would mean lower 

weightings to “outliers” (noise).  Higher N would result in higher “spline smoothing” at the knots.  In the present study we 

constricted ourselves to the choices k = 1, N = 1 and k = 1, N = 10. Thus, 2 sets of weights ,
,

  (referred to 

below as EWST) and ,
,

  (referred to below as EWST w/10) have been studied. These parameters can be set 

by the operator prior to the analysis, thus controlling the smoothing degree. 

3 Methods 

3.1 Phantom validation 
To validate 2-D motion tracking and test the limits of the EWST algorithm, a software-based phantom (custom-built by the 
lab of Prof. Jan D’hooge, from KU Leuven University Medical Center) generated four sets of apical 2-D sequences, 
including 4 levels of de-correlation noise. This data set was recommended by the EACVI and ASE to the commercial 
vendors as the “gold-standard” to be used in their efforts to standardize deformation imaging [32]. A total of 48 clips have 
been generated, modeling the shape of the LV myocardial cross-section, simulating the following conditions: 
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1) Four different clinical cases:  

Healthy myocardium - heart rate 73 bpm, frame rate 62 fps; 

Dilated Cardiomyopathy (DCM) - heart rate 83 bpm, frame rate 62 fps; 

Stress - heart rate 158 bpm, frame rate 84 fps; 

Left Ventricular Hypertrophy (LVH) - heart rate 73 bpm, frame rate 62 fps; 

2) Four noise levels (0%, 20%, 40% and 60%) 

3) Three variations of de-correlation noise 

Apical B-Mode image sequences (mimicking 2CH view) were used for validation and evaluation of the speckle tracking 
algorithms (EWST and STELV). In order to evaluate the noise-dependency and the accuracy of each software package, the 
maximal global strain values were computed and compared to the ground truth values provided by the software-based 
phantom. 

3.2 Clinical data acquisition 
Scanning was performed with either GE VIVID 7 or VIVIDq, with the standard 2.5 MHz cardiac probe. The study was 
approved by the IRB of Kaplan Hospital, Rehovot, Israel, and the IRB of the University of Leipzig, Leipzig, Germany. 
The patient records/information in each case was anonymized and de-identified prior to analysis. 

Two groups of subjects have been scanned (see Table 2). 

Table 2. The number and percent of clips included in each group of subjects 

 Group 1 (435 subjects)  Group 2 (47 subjects) 

 
Total of 
1,305 clips 

Percent  
Global (total of 
135 clips) 

Basal LV level (out 
of total of 270 
regions) 

Mid LV level 
(out of total of 
270 regions) 

Apical LV level 
(out of total of 
270 regions) 

EWST 1,283 98.31% 135 229 260 251 

EWST 
w/10 

1,292 99.00% 135 246 265 255 

STELV 1,290 98.85% 134 243 268 264 

Note. Number and percent of clips included in the analysis of Group 1 (435 normal subjects), and the number of regions included in the analysis of Group 2 (clips 

that were acquired at both high frame-rate and low frame-rate). The acquisition included the 3 apical long axis views for each of the three different algorithms 
(EWST, EWST w/10 and STELV). 

Group 1: 435 normal subjects (172 males, age 55 ± 12 years, mean BSA 1.85 ± 0.37), without any known cardiac disease, 
were scanned according to the regular clinical protocol, including the 3 standard apical views. 

The data (a total of 1,305 clips - 2CH, 4CH and APLX views) was analyzed by the EWST algorithm, as well as by the 
STELV algorithm, and the EWST w/10 variant. The following values were calculated: 

1) Peak global longitudinal strains [PGLS (%)], calculated as the average of strain in all 18  segments; 

2) Peak regional longitudinal strains [PRLS (%)], for 3 regions - calculated as the average of strains in all the respective 
segments in the 3 apical views: basal region - includes the 6 basal segments; mid-ventricle region - includes the 6 mid 
segments; apex region - includes the 6 apical segments. 
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Table 3. Comparison of bias and standard deviation between the PGLS (%) and PRLS (%) values 

   Algorithms being compared Bias SD (±) 

Global STELV-EWST  -2.66* 1.60 

  STELV-EWST w/10 0.20 1.34 

Base STELV-EWST  0.80* 2.61 

  STELV-EWST w/10 -0.32* 1.95 

Mid-ventricle STELV-EWST  -1.53* 2.40 

  STELV-EWST w/10 0.04 1.71 

Apex STELV-EWST  -6.33* 4.76 

  STELV-EWST w/10 -2.91* 5.87 

Note. Comparison of bias and standard deviation between the PGLS (%) and PRLS (%) values obtained by the different algorithms-STELV, EWST, and EWST 

w/10 in the cohort of 435 normal subjects. P-values of two-tailed paired T-Test are also presented (*Significance P < .01). Significant differences were found in all 
regions between EWST vs. STELV, and between STELV and EWST w/10 only at the basal and apical regions. 

4.3 Speckle tracking accuracy versus noise (Group 2) 
Of group 2, two sets of 135 clips, one measured at HFR and the other at LFR (out of 141 each), were analyzed. 6 clips were 
excluded due to poor image quality. In addition, segments with bad tracking quality were excluded as detailed in Table 2 
below.   

The biases in PGLS and in PRLS between the two sets of HFR and LFR clips, for the 3 variants EWST, EWST w/10, and 
STELV), are listed in Table 4. Interestingly, PGLS values for HFR clips are consistently higher (more negative) than those 
for LFR clips by all 3 algorithms. The PGLS is also significantly different when comparing the HFR and LFR clips for all 
3 software versions (P << .01). The standard deviation (SD) of all variants was about 4.15% on average. 

Table 4.  Comparison of bias and standard deviation PGLS (%) and PRLS (%), between the two sets of high frame-rate 
and low frame-rate clips 

  EWST   EWST w/10  STELV 

  mean SD P-value  mean SD P-value  mean SD P-value 

Global -0.80% 2.61% << .001* -0.74% 3.07% .0057* -1.66% 2.66% <<  .001* 

Base -0.28% 4.42% .347 -0.57% 3.72% .080 -1.46% 4.28% << .001* 

Mid-ventricle -0.31% 3.99% .194 -0.63% 3.80% .003* -2.07% 3.88% << .001* 

Apex -0.94% 5.94% <. 010* -0.74% 5.70% .037 -1.39% 5.54% << .001* 

Note. Comparison of bias and standard deviation between the two sets of high frame-rate and low frame-rate clips, in terms of PGLS (%) and PRLS(%), for each of 

the 3 algorithm (the EWST with 2 variants, and the STELV). P-values of two-tailed paired t-Test are also presented (*Significance P < .01). 

4.4 Speckle tracking sensitivity to the ROI position 
Data from 20 subjects was analyzed. The general trend for all 3 algorithms was increased strain values (strains became 
more negative), once the ROI was shifted from that determined automatically. 

The PGLS values are significantly different among all comparisons (P < .01), except for at the 2 uppermost positions 
d+2.5 and d+5 (mm) (P = .402). The averaged bias [d- (d+ displacement)] and standard deviation relative to the default 
position d were:  d+5 vs. d: 0.82±1.04; d+2.5 vs. d: 0.61 ± 0.72; d-2.5 vs. d: -1.06 ± 0.75; d-5 vs. d:  -1.87 ± 0.72. The PGLS 
decreases for positions above the default and increases for shifts to the other direction. These results are provided for the 
STELV, but were very similar for the EWST and EWST w/10 algorithms. 
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5 Discussions 
We have introduced a new “open” generic STE algorithm, EWST, following the hypothesis that variations in one of its 
parameters that control the amount of spatial smoothing would roughly represent the different STE packages by the 
various vendors. 

The EWST algorithm was first validated by applying it to the software-based phantom generated in the lab of Prof. Jan 
D’hooge, from K.U. Leuven University Medical Center. The average and standard deviation of the differences between 
the PGLS as measured by EWST algorithm and the ground truth, generated by the software-based phantom, were found 
superior to those of a leading industry vendor (STELV). 

Our results indicate that reproducibility of regional or even global longitudinal strain is challenging even with the same 
scanner and the same STE software. The high sensitivity of the strain results to the ROI position, especially in the apical 
region, seems to require exceptionally high image quality. This very often presents a challenge, as a result of near field 
clutter.  This high sensitivity to the position of the subendocardial apical point may be attributed to the high concentration 
of trabeculae at this area [28]. This highly complex apical structure may be observed with cMRI (see Figure 3), and may 
now also be observed when employing recently introduced premium ultrasound scanners.  We have also shown that strain 
results depend on acquisition parameters such as frame rate to heart rate ratios, and that these dependences are algorithm 
specific. It is perhaps not surprising that these dependences are most predominant in the apical regions. Although the 
STELV and the 2 EWST versions were in reasonable agreements with the “ground truth” global strain values of the Leuven 
model, there were differences between the two algorithms when the global and regional strains of 435 normal subjects 
were compared. STELV correlated better with EWST w/10, in which the spatial smoothing is significantly increased 
relative to that in the EWST. Since the same scans and the same ROI have been used for all 3 algorithm versions, we could 
separate the effects of changes in the algorithm from the effects of the changes in the ROI or in the scanning parameters. 
We hypothesize that the EACVI-ASE-Industry Strain Standardization Initiative, i.e. decreasing the discordance among the 
vendors, can be simulated by our changing the parameter N of our EWST generic algorithm.   

Yet, the algorithm that uses minimal smoothing, the EWST, produces results less affected by mathematical processing, 
thus is assumed to be more accurate. It should be noted that although we can bring the EWST algorithm to a high level of 
agreement with e.g. the STELV, this does not mean that either of them yields the “true” strain values. In fact, the strain 
values and their regional distribution as calculated by the EWST are regionally more uniform and closer to those by  
cMRI [29]. 

To the best of our knowledge, we are the first to study the consistent error, which is a direct result of the fact that block 
matching and smoothing are separated into two consecutive stages. We found by comparing global and regional strain 
values for clips scanned at different “frame rate to heart rate” ratios that for these types of algorithms, both global and 
regional strain values depend upon “frame rate to heart rate” ratios and that the dependences seem to be algorithm specific.  

We have further shown that these kinds of algorithms yield neither the “true” values of global strain, nor the correct 
distribution of the regional strains along the left ventricle. In fact, higher smoothing (larger values of N in our EWST 
model) results in higher (more negative) global strain values and higher regional strain non-uniformities (higher ratios of 
apical to basal strains). Thus, smoothing should be kept minimum, similar to the EWST with N = 1. 

6 Conclusions 
Strain values depend to various degrees on specific scan parameters, such as frame rate or line density even for the same 
scanner and STE software package, affecting accuracy and reproducibility. Strain values depend on image segmentation, 
mainly in the trabeculae-rich apical sub-endocardial regions. We are thus unsure as to the extent to which scans with 
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qualities that are inferior to those offered by the state of the art premium scanners, can be used for studying strains in a 
clinical setting. 

Based on the limited comparison made here, between the EWST and a commercial product, one may conclude that first 
generation STE software packages that are separated into 2 consecutive stages (tracking then smoothing), as the one used 
here for the comparison, would suffer from inaccuracies and some uncertainties. Their results would depend on the degree 
of smoothing. One may also conclude that inter-vendor variability could be minimized by adjusting the smoothing 
parameters, based on sufficiently large patient cohorts. Future STE software should treat outliers (noise) differently, by 
eliminating them instead of smoothing them together with the uncorrupted data.   
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