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The article is intended to propose the new technique for analysis and visualization of vectorcardiograms based on the 3D phase

diagrams. The regular Frank 3D lead system was considered as the signal source to construct 3D vector space. The three cardio

signals from the lead system, representing the currents in the body, and the three integrated in time signals, representing the
corresponding charge flows, were used to form 3D phase diagram. This diagram is considered as a new compact description of
the dipole object properties in the 3D space, combining simultaneously information about the charge movements and the changes

in values and orientation of the current. The regular properties, like the angular momentum of the charge flow and the dipole

strength vectors and their covariance can be evaluated from the real vectorcardiogram. Based on the set of vectorcardiograms for
8 healthy controls and 7 myocardial infarction patients the 3D phase diagrams and their statistical parameters are evaluated and
discussed. An example is given of the technique implementation for the comparison of the 3D phase diagrams in a control and a

myocardial infarction patient.

Key Words: Phase diagram, Energy, Angular moment, Covariance, Rotation

1. INTRODUCTION

The electrocardiogram (ECG) as the resulting electrical activ-
ity of the myocardial cells and anisotropic fiber conductivity
can be described in ways, which differ with their complexity
and accuracy. The most advanced models, which are based
on the electrodynamics of the myocardial activity in the
electrically non-homogeneous torso compartments!' 3! and
its finite element replacements,*! give the detailed evoked
electrical activity in the torso. However, they still suffer
from the lack of the detailed description about the nonlin-
ear mechanisms underlying the myocardial cell excitation
and its propagation along the myocardium, which are the
subjects of the more general approach based on the active
tissues.’~71 The simplified models, using the dipole repre-
sentation of the potential driven currents in the homogeneous
body tissues,'®! are also able to explain the detailed varia-

tions in ECG and are given preference in the cardiography
due to their simplicity and clarity. More complicated mod-
els require a very intensive numerical processing support.
When planning to visualize the propagation process on the
computer screen, we need to consider the relatively simple
model of the electrical activity in the myocardium. That’s
why we shall limit ourselves with the dipole model generated
data, obtained from the orthogonal Frank lead system.[!%!!]
Instead of increasing the number of leads to get more in-
formation about the heart electrical activity we shall try to
extract more information from the Frank lead system. This
way we hope to have more simplified clinical implementa-
tion of the new technique, which will give more detailed
information with the same number of leads. The fact, that
the Frank lead system gives already a vector in 3D space,
which can be directly plotted on the screen, was used to
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make 3D presentation of the vectorcardiograms (VCG) and
to discuss their spatial properties.!!! As the VCG represents
in some way the dynamical process of the excitation propa-
gation along the myocardial cells, we extend the simple 3D
VCG graph by its phase diagram, which also should have a
3D shape. The implementation of the 3D phase diagram tech-
nique to physiological data and its statistical evaluation was
presented in the preliminary study of the gait.['?! This paper
will provide a more detailed mathematical description of this
technique and an illustration based on the real experimental
data for the vectorcardiography. Beside the electrical activity
of myocardial tissue the heart has also mechanical properties
like the blood flow velocities in the different heart chambers,
which can change with time along with VCG and can be
measured independently. We hypothesized that, when con-
sidering more complex system combining the propagation
of the electrical activity in the myocardium and the blood
flow in the heart chambers, we need more then 3D space in
the phase diagram representation of the dynamical properties
for the whole complex system. So in reality for the detailed
analysis of the complex heart dynamical system we need to
use a phase diagram for more than 3D space.

2. METHODS

2.1 The VCG preprocessing

The raw Frank leads ECG recordings were taken from the
Physiobank resource!'3! for 8 healthy controls and 7 pa-
tients with diagnosis of the infarct myocardium (MI pa-
tients). Many recordings though had a low frequency base-
line drift. So first we removed the drift from recordings apply-
ing the low pass Butterworth filter with the cutoff frequency
0.5 Hz, and subtracting then the filtered signal from the origi-
nal recordings. We made the segmentation in every recording
selecting the beginning of ECG signal at 300 ms before the R
spike. Hence, the duration of ECG signals was assumed to be
within the two beginning markers. All selected ECG signals
were synchronized then!'*! in such way that they were fitted
to each other by scaling them in amplitude and scaling and
shifting in time. The synchronized pattern of all ECG signals
in the particular trial was considered as the ECG signal for
further processing. The basic concept of the dipole evoked
potential in the conducted media was used to explain the
generation of the ECG potential:®!

D
dro-r

4(r)
(D

where vector r (with components x, y, z) points to the ob-
servation point, r = ||r||, D (with components D, D,, D.)
denotes the dipole strength vector, o is the conductivity of

2

the tissues, and ¢(r) is the evoked potential at the observa-
tion point. As we know that every projection in the Frank
lead system consist of two separate points, we can represent
the ECG potential in the every projection as the difference
of potentials (1):

D r r
Ve =¢(rk1)_¢(rk2):%' r—lgl—;—;
k1 k2

@

where ry; and rgo are two points on the axis, indicated with
index k = 1,2,3 corresponding to one of axes in the Frank lead
system, 71 and 72 are distances 751 = ||rg1 || s Tr2 = ||TR2],
and Vj, is the ECG potential measured between these two
points.

Following the traditional considerations!®! we can rewrite
equation (2) in the more concise form:

V.=w,D
3)
where wj, = 1 ( &L — %2 ) is the scaling vector, which
dmo \ ryy k2

is depending only on the geometrical characteristic of the
lead system and the conductivity. Now we make an associa-
tion of the Frank lead system x, y, z with the indexed system
k = 1,2,3 and we assume that the scaling vectors wy are
aligned with the 3 orthogonal axes of the Frank lead system.
Hence, the reconstruction of the dipole vector D is the in-
verse problem of Eq.(3), unless the scaling vectors wy, are
known. Having the exact solution for D as a trajectory in
time, we can implement all developed further methods for
analysis and diagnostics. However, the problem is that the
scaling factors wy, are unknown and we can formulate only
the approximate estimation of them based on the conven-
tional setup of the Frank lead system. As we concern further
more about reasonable diagnostic procedure, we need only
the scaled copy of D, so we expect that the possible small
deviations of such approximation from the real position of
vector D and the weights w, will not affect seriously the
diagnostic results. The main problem is to make the same
scaling factors in all lead axes to ensure the similarity in
orientation between scaled and real dipole vector D. First
we assume that the conductivity o is the same in the space
surrounding the dipole. Assuming the traditional orientation
of axes x,y, z (« is in the frontal plane, directed to the left
shoulder, y is in the frontal plane, directed to bottom, z is in
the horizontal plane, directed backward), we make additional
assumptions to equalize scaling in axes. We assume that the
origin of the frame of reference is in the middle point of the
dipole, then the observation points on every axis are in the
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opposite direction and equally moved from the frame origin
r;1 = —r;9, the distances of the observation points from
the frame origin are approximately equal for x and y axes:
r11 = 791 = d, whereas this distance for z axis is smaller
and we assume it to be r3; = 0.75d. The made assumptions
correspond approximately the real lead system and let us
discuss the real dipole strength vector properties with the
same uncertainty when comparing healthy controls and MI
patients.

Using these simplifications we get the scaling vectors wy, in
the form: wj, = ae;, for k = 1,2 and w;, = 2.25aey, for k =
3, where ey, are the unit vectors in x, y, 2z frame of reference,
a= ﬁ is the unified scaling factor. We consider ECG po-
tentials V; as the components of the ECG vector V given in
the orthogonal frame of reference and we can rewrite Eq.(3)
as:

V=a-M-D )
where M is the diagonal matrix with the main diagonal:
{1,1,2.25}. Denoting U = M ! - 'V, we have the new pre-
sentation of the ECG potential with uniformly scaled dipole
strength vector: U = a - D.

We can call the vector U as the corrected ECG recording vec-
tor (units: V), which is similar to the scaled dipole strength
vector D (units: A*m) and, because of the constant conduc-
tivity, can be also considered as the scaled current evoked by
the dipole strength vector. Within made suppositions both
vectors U and D keep the same orientation in space and
differ only in the magnitude and units. We also define the
scaled charge flow Q as the time integral of the corrected
ECG vector: Q = fg Udt, which is the scaled from the real
charge flow with the same scaling factor a. Both uniformly
scaled vectors U and Q will be further referred as the scaled
dipole strength vector and the scaled charge flow vector.

2.2 The n dimensional phase diagram

The phase space trajectory is a most general way to represent
all dynamic properties of a given dynamic system.">! How-
ever, the graphic presentations of space trajectories for high
n dimension systems can be highly confusing. For n = 1 the
simplest way to display the phase trajectory is to build the
phase diagram, which is usually associated with Lissajou’s
figure.['®! In spite of that the phase diagrams are widely used
to visualize the internal relationship between dynamical sys-
tem compartments in biomedical studies,'”! this technique
cannot be easily extended for the higher dimension spaces.
Even though the visual presentation of the phase diagrams
is supposed to be limited to 2 or 3 dimensional spaces, we
shall describe their properties for n dimensional space, be-
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cause the numerical values can be investigated independent
of their visual representation or the visual representation can
be taken selectively from the set of all available coordinates.
Along with VCG dynamics trajectories we consider some
integral characteristics like the kinetic and potential energy
distribution between coordinates, and the charge flow trajec-
tory parameters like the angular moment, and covariation
between projections of the dipole strength vector. When
deriving the properties of n dimensional phase diagram and
trajectory parameters we will keep the traditional terminol-
ogy using coordinates and velocities and referring them later
in the VCG interpretation as the charge flows and the dipole
strength vectors.

Firstly, we introduce the complex vector space 2 = E,, X F,
with column vectors w = {qj, + ipy }7_,, where i = /—1.
Similar to the phase space trajectories, any phase diagram
of a dynamic system can be represented as the vector w(t)
composed with g; and pj, being the generalized coordinates
and their velocities. We consider only periodic phase trajec-
tories related to the stable dynamic system, depending on
time ¢ € [0, 7], where T is the recurrent time of the phase
trajectory and the observation time. We suppose also that all
components of vector w(t) are belonging to Hilbert space
w(t) € L2(0,T). We now define the phase diagram as the
vector field A, which contains the manifold K, composed
of coordinates q = {qx}}_, and velocities p = {px}7_;
derived at every point gy, at the time ¢. Vector p is tangent to
the trajectory drawn by vector q in time. Therefore, in the
graphic displays for even low dimensions of n (for example
2 or 3) both the trajectory fragment and the velocity vector
locally coincide. Now, let us consider the specific circular
vector transformation in £,,. This can be achieved by multi-
plying the coordinate vector with the transformation matrix

A:

0 0 * * —]
10**
A=[0 1 = * 0
ko ok ok ok
0 * * 1 0

&)

The matrix can be considered as a rotation for even n|A| = 1,
and as a reflection for odd n|A| = —1. Next, we transform
circularly m times the velocity vector p using matrix A, such
that the new velocity vector v is v = A”'p. m is called the
order of transformation, so that A™ = H;nzl A (we assume
also that AY is the identity matrix).
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Property 1 of matrix A: For any vector p € E,,, A"p = —p.

Proof: Consider m sequential transformations of vector p
by matrix A: v = A™p. It is sufficient to consider only
m € [1,n]. Matrix A shifts circularly projections of vec-
tor p to the next axis assigning the very first projection the
negative sign. After m transformations we have:

Vi = Dk—m When k > m, vy = —Pryn—m When k < m.
So for m = n we get immediately v, = —pg.

Property 2 of matrix A: For any vector p € E,, matrix G =
A™2 (for even n) and matrix G = (A(~1/2 1 A(n+1)/2)
(for odd n) transforms the vector p to the orthogonal vector
V.

Proof: For the even n we have for m = n/2 : vx = pi_y /2
when k > n/2 and vy = —pj,/2 When k < n/2. Evalu-
ating the scalar product v/ - p = ZZ:TL/QH Ph—n/2 " Pk —
ZZL 21 Dk+n,2 * Pk We see that both sums contain the same
products and hence v’ - p = 0 what proves the orthogonal-
ity for the even n. For the odd n we consider the sum of
transformation by two matrixes with m1 = (n + 1)/2 and
m2 = (n — 1)/2. After transformations with m1,m2 we
have two output vectors: the first vy = pj_(n41).2 When
k> (n+1)/2and v, = Dkt (n+1)/2 when k < (n+1)/2
and the second: wy = pj—(—1).2 When k > (n —1)/2 and
Wk = —Prt(n—1)/2 When k& < (n — 1)/2. Evaluating the

scalar product p'(V+w) = 37111y 041 Pe(Pr—(nt1)/2+

n—1)/2
Ph—(n—1)/2) — 2;1 / Pk (Ph—(n+1)/2 T Ph—(n—1)/2) We

see that sums contain again the same products, what results
in p’ - (v + w) = 0 and the orthogonality for the odd n.

Implementing twice Property 1 to vector p we get A2"p = p.
For Property 2 we can make additional remarks that for
even n matrix G is the rotation matrix and, hence, preserves
the norm of the vector p. For odd n matrix G is the anti-
symmetric matrix and to keep the norm of the vector p
unchanged we need an additional scaling, so, in condition
||Gp|| > 0, the new orthogonal vector v can be expressed
as v = ”g—gu |lpl|. Using Property 2 to make the orthog-
onal velocity vector we get the new phase diagram vector
u = {q + tvi }}'_,, where the velocity vector does not coin-
cide with the tangent velocity of the trajectory and hence will
be visually distinguishable from the trajectory itself. The
additional rotation of the vector velocity was intuitively used
in one dimensional phase diagram (Lissajou’s figures), where
the one dimensional space is embedded in the two dimen-
sional space and the symbol i = \/—1 is associated with
the velocity rotation by 90 deg. We extended this idea to
the n dimensions and for even n the matrix G is the exact
replacement of the symbol i = 1/—1 in the formulation of
the high order spaces. For the odd n, similar to Lissajou’s

4

way, we can extend the space dimension by one, making the
new space, which has only rotation matrixes. However, for
simplicity of explanation of the charge flow parameters in
the available data set in the scope of this article we’d remain
in the 3D space. Among those parameters we consider the
angular momentum and the covariance, which are described
below for the n dimensional space.

2.3 Circular covariance

Let p and v are the velocities of the trajectory given by co-
ordinates q = {¢x }7_,. The covariance (the outer product)
between vectors p and v is described by a covariance matrix
R = {rji}7_, 4. where rj, = £ [ p; - vpdt and T is
the observation time. Usually, when dealing with dynamic
systems we don’t consider the pure statistical sense of the
covariance, but rather the alignment between projections in
the movement. High values of the covariance are associated
then with high aligned projections. In contrast, low values of
covariance will refer to the high orthogonality or discordance
between the projections.

We need a particular form of matrix R containing depen-
dence on the transformation matrix A, so we start with the
following definition:

L{p(amp)
R, =—|p-4"p) dr
Tlp p ©

where ()’ is the transposition operator, and R,, is the circular
covariance matrix for the original and m - times transformed
vectors.

We define the m order circular covariance C,,, from the ma-
trix R,, as:

1% ) 1z o 1z
C, :Tr(Rm):zJ.(A’”p) -a’quj'(A p)pdt =?J.||p||2 -Cos(am)dl
0 0 0

@)

where T'r(R,,) is the trace of matrix R,,, L is the length of
the trajectory, dq is the element of the trajectory given by
vector q(t), o, is the angle between vectors p and A™p,
« € [0, 7]. We can say also that C,, is the mean circulation
of the vector A™p over the trajectory q(t). As the order m is
the incrementing step when circularly incrementing indices
inside interval [1, n], it represents the neighborhood distance
between coordinates when calculating the covariance. We
can represent the covariance C,:
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1¢p-4"p 1t
8, == [ di=—[ Cos(a,, )dt

s o] Ty (8)
In the case of no rotation by matrix A, then (m=0), v =p
and the value C is the mean total kinetic energy along the
trajectory q(t) related to the doubled unit mass. Almost
the same way can be used to define the covariation and its
parameters for the trajectory q(t).

2.4 Angular momentum

We consider the movement of every point in the trajectory as
consisting of two parts. The first one relates to the angular
momentum of the point relative the frame of reference. The
second one, the radial trajectory movement is directed along
the coordinate vector of the point. We start to derive the an-
gular momentum from the outer product B of the coordinate
vector q and velocity vector p taken from every time point
of the movement trajectory: B = q - p’. The trace of matrix
B contains the scalar product of q and p, which is the part
of the radial trajectory movement, whereas all non diagonal
elements relate to the angular momentum. We can say that
the angular momentum is distributed over n(n — 1) elements
of matrix B excluding the main diagonal, which belongs to
the radial movement. Subtracting from p its part, which is
aligned with q, we get vector c:

j— ! -2
¢=p-q-(q"-p)-[q ©
which is orthogonal to q. Matrix M = q - ¢’ has its trace
equal zero and contains now only the angular momentum
distribution. The real magnitude g of the angular momentum
M is given by the Frobenius norm of matrix M : g = || M||
and is equal to the product g = ||q|| ||c||-

In the 3D space, we have the representation of angular mo-
mentum in the vector form g = q X p like the particular
cross product of vectors q and p along the trajectory and its
matrix distribution M has exactly 3 values, which can be
associated with projections of g on z, y, z axes.

2.5 Total energy distribution along the trajectory in the
coordinate space

We will consider the Sobolev norms!!®! for the vectors w and
. T ! xr ¥ ) * 3
as: 2 = dt , Where is the con-
uas: [Wlly, 2 (fo ww  Whete w
jugate vector of w. We will also consider the scalar product
of two vectors as

Published by Sciedu Press

1t . 15 1k
VY =—|wu di=—|q' (4"qQ)dt+—|p' (A"p)dt =11 _+D
: T!Wﬂ qu( @ Tlp( ) WD,
(10)

where [ ], . is the mean circular coordinate covariance distri-
bution. ®,, is the mean circular velocity covariance distri-
bution along the number of coordinates. In absence of any
rotation by matrix A(m = 0) we have:

=11, +®,

0.1)

1 2
W, = —|[w| w2
0 T” ” i an

where [, and ¢ are now the total mean potential and ki-
netic energies along the trajectory given by q(t), with ¢
being the Soblolev norm divided by time 7.
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Figure 1. Corrected ECG in projections on x (solid), y
(dashed), z (dotted) axes. Panel a — the healthy control,
Panel b — the MI patient
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3. IMPLEMENTATION AND RESULTS

The experimental data, related to 8 healthy controls and 7
MI patients, classified as infarct myocardium patients, were
taken from the Physiobank resource.'3! The preprocessed
VCG signals were integrated in time to get the charge flows,
which were considered as the new space coordinates. All
data processing was performed using Matlab and R (for sta-
tistical evaluation). As the real VCG data was available in
digitized sequences of the length NV related to the finite di-
mension space l3(N), all projection norms were replaced
by the root mean square (RMS) calculated in the finite di-
mension space. For every healthy control and MI patients
RMS, dipole strength, charge flows, angular momentum, and
covariance were evaluated. For particular healthy control
(file: cont117_s0292Ire.xyz in the Physiobank resource) and
the MI patient (file: patl1_s0039Ire.xyz in the Physiobank
resource) we show the full graphical representation of data.
The preprocessed VCG recordings for the healthy control

and the MI patient are presented on the Figure 1 (panel a

and b correspondingly). The corresponding regular phase

diagrams separately for every lead projections are given in

the Figure 2 (panel a and b). Using developed 3D phase

diagram approach the same set of regular phase diagrams

can be represented as one 3D plot, which is presented in the

Figure 3 (panel a and b).

Table 1. RMS, means for the scaled dipole strengths (mV)
D, D, @, D,
Group mean and std for controls
Mean 0.26728* 0.22558* 0.1210 0.0584 0.07238* 0.0418* -0.0086
std  0.061965 0.05071 0.06169 0.01757 0.03252...0.02573 0.01809
Group mean and std for MI-patients
Mean 0.16646* 0.11663* 0.0923 0.0660 0.01689* -0.0048* 0.0042
std  0.04177 0.02137 0.05086 0.01153 0.02493 0.03562 0.01808

0x 0z M, My, My,

Table 2. RMS, means for the scaled charge flow (mV s)
l_IO HOX oy l_IOZ m
Group mean and std for controls
Mean 0.05304* 0.0444* 0.0249 0.0096 0.0354* 0.0201* -0.0033
std 0.0301 0.02551 0.017710.00948 0.0212 0.0144 0.0101
Group mean and std for Ml-patients
Mean 0.02222* 0.0142* 0.0118 0.0090 0.0069* -0.0019* 0.0025
std 0.01404 0.0108 0.01171 0.00529 0.01238 0.0127  0.0078

I1 cX mcy mCZ

All 3D plots can be considered as an embedding of a 6D
space into a 3D space, containing 3 charge flow coordinates
and 3 dipole strength variables. The difference compared to
3 conventional plots, is that each frame axis has now a dou-
ble sense representing the coordinate and the dipole strength.
To be able to see in the same time all details for two differ-
ent vector entirety we had to scale down the dipole strength
by the specific factor, which is kept constant between pic-

6

tures to compare. Using the conventional technique, the
phase diagram can relate only to one axis. However, as seen
in Figure 2(a) and Figure 2(b), this procedure makes the
3D phase shape fragmented, and removes visible time in-
terrelations between coordinates. In contrast the 3D phase
diagram, keeps all coordinates and velocities in the scope of
the same object. Tables 1, 2 provide the statistical analysis of
RMS: ®¢, ®q,, gy, Py, and means: mgy, May, Mq. for the
scaled dipole strength as well as RMS: [ ], [T+ [ 1o, [o.
and means: M.y, Mey, M. for the scaled charge flow.
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—
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Figure 2. Regular phase diagrams separately drawn for x
(solid), y (dashed), z (dotted) axes. The horizontal axis —
scaled charge flow (mV s), the vertical axis — scaled dipole
strength (mV). Panel a — the healthy control, Panel b — the
MI patient

We normalize also charge flows and dipole strengths vectors
before calculating the angular momentum, dividing them
by the corresponding RMS. Table 3 contains the results
of the statistical analysis of RMS: I';,T'y,I', and means:
Mgz, Mays Ma. for the normalized angular momentum.
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Table 3. RMS and means for the normalized angular
momentum of the scaled charge flow trajectory (unitless)

1—‘x Fy T max may m az

z

Group mean and std for controls

Mean 0.23569 0.43892 0.38558 0.09907 -0.1702* 0.14834
std  0.07315 0.09419 0.0923 0.0491 0.02798 0.04733
Group mean and std for MI-patients

Mean 0.35841 0.49756 0.47566 0.08860 -0.0963* 0.11348
std  0.15135 0.24007 0.12883 0.11555 0.048  0.09088

z scaled charge flow (mV s)

oV )
¥ caled charg® flow {
y ¢

z scaled charge flow (mV s)

Figure 3. 3D phase diagram in X, y, z scaled charge flow
frame of reference. The reducing scaling factor for the
dipole strength vector is 0.01 (s). Panel a — the healthy
control, Panel b — the MI patient

A stronger step to avoid any influences of the energies and
amplitudes on interaction between projections of dipole
strength and charge flow is to consider only the time de-
pendence in projections. So we replaced all projections by
their sign values in time.

17 ,
R, :?jsign(p-(G-p))dr
L (12)

1
R, =

= f sign(q-(G-q))dt

(13)
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The covariance distributions over coordinates x, y, z taken as
the main diagonals from the covariance matrixes I?,, and I2,
between original and G matrix transformed vectors were sta-
tistically compared for healthy controls and the MI patients.
The result is presented in the Table 4.

Table 4. Covariance between signed values of the regular
and G transformed scaled dipole strength and scaled charge
flow vectors (unitless)
Scaled dipole strength Scaled charge flow
X y z X y z
Group mean and std for controls
Mean -0.34791 0.558048* -0.50751* -0.54853 0.65293* -0.08761
std  0.49465 0.23467 0.19921 0.47869 0.29878 0.62353
Group mean and std for MI-patients
Mean -0.03121 0.10201* -0.10314* -0.41803 -0.02116* 0.28309
std  0.36066 0.32313 0.20181 0.56023 0.33674  0.691

The statistical analysis in all tables was performed using
two tails regular T-test for those samples, where the sam-
ples successfully passed the Shapiro-Weil test for normal-
ity. For those samples, where the normality test failed, the
Kolmogorov-Smirnov test was used. The parameters, which
are denpted by the asterisks, are shown to be statistically
different with the probability of error less than 0.05. The
mean Sobolev norms W for the healthy controls 0.273291
(£0.065165) and for MI patients 0.168286 (4-0.042491) are
found to be statistically different.

4. DISCUSSION

The mean values, RMS and energies are integral characteris-
tics and are capable of describing all local changes, which
can be seen only when watching the trajectories in time.
However, the conventional way to analyze and make the
conclusions in diagnostics is to consider the regular ECG
visually. The proposed technique contributes to the con-
ventional consideration an additional information channel
containing the charge flow. This new feature allows visualiz-
ing the the combined information about the charge flow and
the electrical current related to the dipole strength vector on
the same picture. The information about ECG shape is still
present in the combined picture and can be seen as a part of
the common process of the electrical current propagation in
the body. To see the particular shape details, the combined
3D object can also be rotated in the 3D view on the computer
screen using the regular software. The analysis does not
necessarily implicate the statistics. The essential part of any
analysis of ECG and VCG is to find the associations between
the particular shape of the raw recordings and the physical
properties of the electrical current propagation in the my-
ocardium. To facilitate this process it is highly desirable to
visualize raw recordings in such way that almost all physical
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properties were visible in the same graphical object. After
having been successfully recognized such properties may be
considered as the variables for the subsequent statistical anal-
ysis, which will make a selection of the reliable parameters
suitable for diagnostics. In the present work we proposed for
the analysis two basic physical properties for the analysis:
rotation of the scaled charge trajectory and the alignment
between projections of the scaled dipole strength current vec-
tor, which are associated correspondingly with the angular
moment and the covariance considered both as parameters of
VCG. The statistical comparison between healthy controls
and MI patients, made on the small groups of the healthy
controls and MI patients confirms the efficiency of the param-
eters to distinguish between the groups. The more essential
data bases are needed to complete this study. Considering
the particular statistical results we see that the energy related
parameters (Sobolev norm, RMS for the charge flow, and
dipole strengths) are higher in healthy controls. The more
essential energy is concentrated in x axis (horizontal axis in
the frontal plane). As we can see in the Tables 1 and 2 the
healthy controls have energetically stronger dipole strength
and charge flow vectors. Because of the energy dominance
of healthy controls over the MI patients we expect to get also
the essential difference in the angular momentum and the
covariance between groups of controls and MI patients. This
could attenuate others differences between groups if avail-
able. That’s why we consider also the normalized charge
flows and dipole strengths vectors before calculating the an-
gular momentum. As we can see in the statistical comparison
between control and MI patient groups given in the Table 3
the difference still exists in the mean values for the vertical
coordinate. Taking into account the fact that RMS values for
this axis are not shown to be statistically different, we can
conclude that the vertical projection of the angular momen-
tum in MI patients is changing its sign more frequently. For

the diagnostic purposes we are more concerned about param-
eters of VCG, which are not depending on its energy and
amplitude, as they can be easily modified by some external
inputs, like the electrode contacts or gains of preamplifiers.
So we consider also a specific transformation, which intends
to make its result independent of the input amplitude and
is defined like the signs of projection values in the scaled
dipole strength and the scaled charge flow vectors. The co-
variance between signed values (see Eqs.12 and 13) reflects
only changes in time. Nevertheless, the covariance, as seen
in the Table 4, demonstrates an essential difference between
groups of controls and MI patients. The fact that the sig-
nificantly different covariances are less in MI patients is
the evidence that the projections in the scaled charge flow
and scaled dipole strength vectors are not aligned and have
increased discordance between them.

5. CONCLUSION

The 3D phase diagram technique is an efficient way for the
visualization and analysis of the myocardial electrical ac-
tivity of the heart in 3D space. It allows embedding of the
charge flow trajectories and dipole strengths currents in the
same 3D space to build a unique object representing dynam-
ical properties of the considered model of the myocardial
electrical activity in its entirety. The normalized angular
momentum and the dipole strength covariance parameters de-
rived from the space trajectory are complementary to the 3D
phase diagram and help to differentiate the electrical activity
of the heart between the groups of subjects. The statistical
and visual estimation of the 3D phase diagrams exhibits in
the fully disclosed way the discordance in alignment between
the projections in the scaled charge flow and scaled dipole
strength vectors. The proposed phase diagram technique may
be used as an effective tool for the visualization and analysis
of trajectories in different space dimensions.
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