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Abstract 
Introduction: Bone mineral density (BMD) measured by dual energy x-ray absorptiometry (DXA) is the primary 
screening tool for diagnosis of osteopenia and osteoporosis. BMD alone does not provide information regarding the 
structural characteristics of bone and this limitation has been a driver for the development of techniques, including 
trabecular bone score (TBS) software, to assess bone microarchitecture. Precision error in DXA is important for accurately 
monitoring changes in BMD and it has been demonstrated that BMD precision error increases with increasing body mass 
index (BMI). Information on in vivo precision error for TBS is very limited. This study evaluated short-term precision 
error (STPE) of lumbar spine BMD & TBS measurement, and investigated the effect of obesity on DXA precision error. 

Method: DXA lumbar spine scans (L1-L4) were performed using GE Lunar Prodigy. STPE was measured in ninety-one 
women at a single visit by duplicating scans with repositioning in-between. Precision error was calculated as the 
percentage coefficient of variation. Participants were sub-divided into four groups based on BMI to assess the effect of 
obesity on STPE. 

Results: STPE is poorer for TBS than for BMD. STPE is adversely affected for both BMD and TBS measurements by 
increasing BMI but this effect is mitigated for TBS in the highest BMI category where use of the thick scanning mode 
improves signal to noise ratio. 

Conclusion: Results from serial BMD and TBS measurements should take account of differences in precision error in the 
two techniques and in different BMI categories. 
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1 Introduction 
Bone mineral density (BMD) measured by dual energy x-ray absorptiometry (DXA) is currently the primary screening 

tool for clinical diagnosis of osteopenia and osteoporosis on the basis of its relatively low cost, convenience for patients, 
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short scan times and minimal radiation dose [1]. DXA may be used to measure BMD at any skeletal site but it is typically 

used to measure posterior/anterior lumbar spine and the proximal femur region of interest (ROI) as these are the most 

clinically relevant in terms of fracture incidence and severity [2]. BMD does however have acknowledged limitations for 

fracture prediction as a large overlap in the BMD of patients who do or do not sustain fractures has been demonstrated [3]. 

Sornay-Rendu et al. [4] showed that 48% of women who sustained a fragility fracture had a baseline BMD in the osteopenic 

range and 8% were in the normal range. The mechanical efficiency of bone is not solely dependent on the quantity of 

accumulated material (bone mineral content) but also on the optimisation of the spatial distribution of that material [5]. The 

external and internal architectures of bones are both important factors in the distribution and transmission of loads, and 

have a significant effect on how fractures initiate and propagate throughout the material [6]. A combination of structural 

and densotomic indices potentially provide a more accurate assessment of bone quality and fragility that may improve 

sensitivity and/or specificity to identify individuals at heightened fracture risk [7]. 

Bone structural parameters are not currently assessed as part of routine clinical practice and although methodologies, such 

as high resolution quantitative computed tomography (QCT) and magnetic resonance imaging (MRI), have the capability 

to provide this information, their use is not practical in clinical situations. The known limitations of standard densitometry 

have been a driver for the development of techniques to assess bone microarchitecture. Boehm et al. [8] investigated the 

topological properties of bone mineral distribution patterns from images generated during conventional DXA hip scanning 

to test the ability of this method to discriminate between postmenopausal women with hip fracture and controls. In a study 

population of 100, of whom 50 were hip fracture patients, they found 71%-84% of patients were correctly identified  

by regional topological analysis compared to 58%-68% identified by BMD. Using a similar principle, based on two 

dimensional DXA image analysis, software has been developed to provide a trabecular bone score (TBS iNsight®, v1.8. 

Med-Imaps, France) for assessment of the lumbar spine ROI. 

TBS is a grey-level texture measurement that provides an assessment of bone quality using two-dimensional (2D) 

projection images derived from the same raw DXA data that provide the BMD measurement. It is based on the use of 

experimental variograms and is able to differentiate between two 3D micro-architectures that exhibit the same bone 

density but different trabecular characteristics [9, 10]. A number of studies have evaluated the use of TBS to predict 

osteoporotic fractures independently of BMD [11-14]. Hans et al. [14] demonstrated that TBS and BMD have equal 

discrimination to predict osteoporotic spine and hip fractures, and that this is improved by a combination of both. TBS 

potentially provides a technological development that could be readily incorporated into clinical routine to complement 

BMD information and enhance fracture prediction. 

Precision error (PE) in DXA is important for the accurate monitoring of longitudinal changes in BMD. DXA has stable 

calibration and high precision [2] but a number of issues should be considered when interpreting results from repeat scans. 

Variation in a participant’s positioning for repeat scans can cause measurement error and it is therefore desirable to use the 

same operator to avoid inter-operator differences in positioning technique. As biological changes in BMD are generally 

small relative to the error inherent in the test itself, interpretation of serial BMD tests depends on knowledge of the least 

significant change (LSC) in BMD that is beyond the range of error [15]. 

In clinical terms, true change is based on a LSC of 2.8%, generally assuming precision error of 1% [16]. Higher body mass 

index (BMI) has been demonstrated to contribute to increased DXA precision error that may be attributable to greater 

tissue inhomogeneity at the site of the lumbar spine and a reduction in signal to noise ratio in larger participants [17]. Whilst 

short-term precision has been reported for DXA BMD measurement [18, 22] information is very limited regarding in vivo 

short-term precision error (STPE) for TBS [19]. This study investigated the STPE of TBS and BMD and the effect of 

obesity on precision error. 
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2 Method 

2.1 Participants 
Data were analysed from ninety one participants (Group A) recruited for a precision study [18] in which female volunteers 
aged 18 years to 75 years were recruited from the general population. Participants were recruited by a poster and leaflet 
campaign and no exclusion criteria were applied other than contradictions for DXA scanning and the presence of metallic 
implants. Group A was sub-divided into four groups based on BMI: A.1: < 25 kg/m2 (n = 41), A.2: 25 kg/m2-29.9 kg/m2  
(n = 25), A.3: 30 kg/m2-35 kg/m2 (n = 15), and A.4: > 35 kg/m2 (n = 10), to assess the effect of obesity on STPE. The first 
three categories reflect the World Health Organisation (WHO) criteria for normal, overweight, and obese respectively; 
group A.4 was separately selected as this is above of the BMI range currently recommended for TBS analysis by its 
designers. 

Informed written consent was obtained for all participants and the study was approved by the Devon and Torbay Research 
Ethics Committee. 

2.2 Methods 
Before scanning, the participant’s height was measured (± 0.01 m) using a stadiometer (Holtain, Crymych, Dyfed, UK) 
and body weight measured (± 0.1 kg) using beam balance scales (Avery, Birmingham, UK). DXA lumbar spine scans 
(L1-L4) were performed using GE Lunar Prodigy (Bedford UK). Participants were scanned on a single visit and scans 
were duplicated with repositioning in-between i.e. dismounting the scanner and returning to the same position after 
walking briefly around the room. Standard or thick scan modes, based on participant’s BMI, were automatically selected 
by the scanner software. Twenty-nine successive L1-L4 measurements were performed on an aluminium spine phantom 
(GE Lunar) during the period of the study, (approximately once per week) to determine the coefficient of variation of the 
DXA equipment. 

2.3 Statistics 
BMI was calculated as weight (kg)/height (m2). GE Lunar Encore 2005 (v. 9.30.044) software was used to analyse the 
DXA raw data to obtain BMD measurements. TBS (TBS iNsight®) was applied retrospectively to the same raw data using 
identically defined ROIs to obtain trabecular bone scores. Abnormally different vertebrae were excluded from the analysis 
in accordance with The International Society for Clinical Densitometry (ISCD) recommendations [20]. Means and standard 
deviations were calculated (Microsoft Excel 97-2003) for participant characteristics and densitometry measurements. 
Means, adjusted for the effect of age as a covariate, were calculated by Univariate Analysis of Variance (PASW Statistics 
18). Pearsons correlations were calculated between BMI & BMD, BMI & TBS and BMD and TBS (PASW Statistics 18). 
PE was reported as the root mean square coefficient of variation (RMSCV%) between original and duplicate scans, 
calculated as the root mean square standard deviation (RMSSD) as a percentage of the mean BMD or TBS measurement. 
Significance of differences between the BMI sub-groups was calculated by independent t tests (PASW Statistics 18.). PE 
for the spine phantom was calculated as the percentage coefficient of variation (CV%) between twenty-nine sets of 
duplicate scans. 

3 Results 
Table 1 shows the participant characteristics and the lumbar spine BMD and TBS measurements for the various groups. 
The BMI sub-groups were well matched, with no significant differences for mean age, height, lumbar spine BMD and 
TBS except for group A.3 who were significantly older with lower mean TBS scores compared to the normal BMI group. 
As there is an age difference between the groups, the results have also been reported (see Table 1 – Table 3) as adjusted 
means to account for age as a covariate to the effects of BMI on either BMD or TBS scores. No significant effect was 
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found for age as a covariate in Groups A.3 and the difference between the means and adjusted means is minimal; it is 
inferred that the difference in the age of Group A.3 has minimal effect on the BMD and TBS values of this obese category. 

Table 1. Participant characteristics (scan 1) 

Group 
A A.1 A.2 A.3 A.4 

Whole group Optimum Overweight Obese > 35 kg/m2 

n 91 41 25 15 10 

Thick scan mode (% of group) 12.0 0.0 0.0 14.3 90.0 

Mean (SD) 

Age (years) 47.4 (13.2) 45.3 (14.2) 48.5 (14.2) 54.2 (8.1)† 42.7 (9.7) 

Height (m) 1.65 (0.07) 1.66 (0.06) 1.64 (0.07) 1.63 (0.08) 1.67 (0.07) 

BMI (kg/m2) 27.1 (6.0) 22.3 (1.8) 26.9 (1.2)† 31.6 (1.2)† 40.1 (3.0)† 

L1-L4 BMD (g/cm2)* 1.20 (0.14) 1.19 (0.15) 1.16 (0.15) 1.27 (0.13) 1.21 (0.13) 

Adjusted mean# L1-L4 BMD (g/cm2)* 1.20 (0.16) 1.19 (0.14) 1.16 (0.14) 1.28 (0.14) 1.20 (0.14) 

L1-L4 TBS* 1.37 (0.11) 1.39 (0.09) 1.39 (0.13) 1.31 (0.10)† 1.34 (0.12) 

Adjusted mean# L1-L4 TBS* 1.36 (0.11) 1.39 (0.09) 1.39 (0.10) 1.31 (0.10) 1.34 (0.10) 

* Vertebrae excluded per ISCD recommendations 
† Difference significant p ≥ .05 compared to Group A.1 
# Adjusted (univariate  analysis of variance) using age as a covariate 

Table 2. Correlations between variables at scan 1 (Group A, n = 91) 

 BMI BMD TBS 

Pearson Correlation 1 0.038 -0.242 

Sig. (2-tailed) 0.717 0.021 

Pearson Correlation 0.038 1 0.325 

Sig. (2-tailed) 0.717 0.002 

Pearson Correlation -0.2 0.325 1 

Sig. (2-tailed) 0.021 0.002 

Table 3. Precision results 

Group 
A A.1 A.2 A.3 A.4 

Whole group Optimum Overweight Obese > 35 kg/m2 

TBS RMSCV% 2.04 1.82 2.26 2.35 1.82 

TBS RMSSD 0.028 0.025 0.031 0.031 0.024 

BMD RMSCV%  1.26 1.07 1.34 1.25 1.68 

BMD RMSSD g/cm2 0.015 0.013 0.016 0.016 0.020 

Note. RMSCV% = Root mean square coefficient of variation %; RMSSD = Root mean square standard deviation 

4 Discussion 
The results demonstrate a weak to moderate correlation of BMD with BMI, which is in line with other published data [21]. 

Conversely, there is a negative effect of BMI on TBS, with a weak negative correlation of r = -0.242 found in this study. 

The relatively higher BMD (n.s) and lower TBS (p ≥ .05) demonstrated in Group A.3 compared to the optimum BMI 

group is likely therefore to be attributable to the effects of increased BMI rather than to the effects of age related 

degenerative bone changes. The Pearson correlation between BMD and TBS was low, r = 0.325 indicating that TBS is 

reflecting some bone quality properties not related to BMD, which is in accordance with previous studies [22]. 
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QA for the spine phantom confirmed equipment precision error of 0.33% for L1-L4 BMD, in line with the manufacturer’s 
tolerances and consistent with that generally expected for DXA scans. No spine phantom for TBS measurement was 
available for this study but ex vivo CV%, using 30 dry human vertebrae over three acquisitions per piece, has been 
reported from Medimaps’ internal company data as 0.73% to 1.33% in GE Lunar Prodigy [23]. As participants will not have 
sustained any real change in either BMD or TBS between duplicate scans, the STPE above the baseline level of equipment 
error is probably attributable to minor and unavoidable changes in participants’ positioning after removal and return to the 
scanner [18]. ISCD criteria for exclusion of abnormal vertebrae were applied in accordance with the TBS manufacturer’s 
recommendations to avoid confounding results caused by sclerotic bone pathology due to age-related degenerative 
changes. 

The results for the entire group of 91 participants (Group A), show STPE of 1.26% for BMD measurement. This is 
consistent with the 1.45% CV reported by Krueger et al. [24] for the L1-L4 ROI in a comparable precision study on GE 
Lunar Prodigy. The limited information on in vivo reproducibility available from Bousson et al. [19] demonstrated a 1.2% 
CV for BMD and 1.9% CV for TBS in 30 non-obese subjects (using the ISCD protocol) consistent with our results for 
BMD (1.26%) and the 2.04% TBS CV for the whole group of 91 participants (Group A). When Group A is split according 
to the BMI categories, the optimal weight group demonstrates the lowest BMD STPE and TBS STPE indicating minimal 
error, over and above the equipment error, resulting from positioning differences between scans. BMD STPE is poorer in 
the overweight and obese groups but considerably increased, although statistically non-significant, in the highest BMI 
category. Whilst PE is higher for TBS than for BMD in all BMI categories, the pattern of increasing TBS STPE is 
comparable to that of BMD STPE in the optimal and overweight/obese groups, but reduces to the level of the optimal 
group in the morbidly obese category. When PE is expressed as RMSSD, the same pattern is demonstrated as for 
RMSCV%. Improved PE for TBS in the highest BMI category may be attributable to the application of higher exposure 
factors by the automatically selected thick scan mode used in 90% of this group, resulting in an improved signal to noise 
ratio [18]. This reduction in TBS STPE in the > 35 kg/m2 group is not reflected in the results for BMD STPE despite both 
BMD & TBS being calculated from equivalent scan ROIs. This may be accounted for by the fact that BMD is calculated 
quantitatively from the differential attenuation of x-rays between bone and adjacent soft tissue. Knapp et al. [18] suggest 
that minor alterations in soft tissue distribution in the abdomen in fatter participants, upon repositioning, may cause 
changes in the soft tissue attenuation adjacent to bone in the lumbar spine ROI resulting in a small change in the BMD 
calculation. TBS, by contrast, is derived directly from the 2D bone image that would not be expected to be influenced by 
minimal soft tissue distributional changes and would be improved by increased exposure factors that would logically 
reduce precision error. 

As TBS is becoming more widely used in a range of studies monitoring changes over time or treatment responses in 
various pathologies, the higher precision error for TBS needs to be taken in account and caution applied in using an LSC of 
2.8%. This is particularly relevant when comparing groups with different pathologies where certain medical conditions are 
strongly associated with higher BMI [25]. 

The main limitation to this study was that it was conducted using a GE Lunar Prodigy scanner and the results may not be 
generalisable to other GE Lunar bone densitometers or to DXA scanners of alternative manufacture. Gluer et al. [26] 
recommend a sample size of thirty participants per group for calculation of the RMSCV% between two sets of 
measurements, but the group sizes for the obese and morbidly obese categories in this study were lower than required to 
meet this criterion. Lower sample size has potential for any outliers to distort the calculation of the CV; however the 
distributions for the raw TBS and BMD data were checked for groups A.3 and A.4 with no outliers found.  

5 Conclusion 
Although higher for TBS than BMD, an acceptable level of short-term PE is demonstrated in both measures that, for all 
BMI categories, remains below the 2.8% LSC used clinically. Nevertheless, where TBS is used to monitor changes over 
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time or treatment responses, the higher precision error for TBS needs to be taken into account and caution applied in using 
an LSC of 2.8%. STPE for both BMD and TBS are adversely affected by increasing BMI but, whilst TBS iNsight® is not 
recommended for use in patients exceeding a BMI of 35 kg/cm2, PE is mitigated in the highest BMI category where use of 
the thick scanning mode improves signal to noise ratio. The results suggest that caution should be used in interpreting 
serial measurements, of both BMD and TBS, in obese participants and that the thick scanning mode should be ideally used 
for all participants with a BMI exceeding 35 even if this is not automatically applied by the scanning program. Further 
work would be valuable to confirm BMD and TBS STPE in a larger cohort of obese and morbidly obese participants. 
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