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Abstract 

This report describes an innovative and evidence-based approach to implementing coding interviews as an 
examination format for non-professional programmers: namely, students in a Master of Biostatistics program taking 
a course in the language of SAS. In addition to its academic purpose, the coding interview examination also serves as 
practice for what our students will likely encounter when interviewing for jobs after graduation. We discuss our 
experience with coding interviews as an examination format in light of two questions: "Is it fair?" and "Is it 
practical?". We propose that the answer to both questions is "yes". A detailed description of the exam goals and 
structure is provided, along with sample questions, model answers, and a brief discussion of the rationale for each 
question. We also review student feedback from the course evaluation and summarize our conclusions related to 
fairness and practicality. 
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1. Introduction 

Our teaching context is a two-year Master of Biostatistics program focusing on the constructs of Analytical skills, 
Biological knowledge and Communication -- the "ABCs of biostatistics" (Neely et al., 2022; G. Samsa, 2021; G. P. 
Samsa, 2018; G. P. Samsa et al., 2018; Troy, Granek, et al., 2022). The first-year curriculum includes a two-course 
sequence on computer programming, whereby all students take an R course in the fall and either a Python or a SAS 
course in the spring (R: The R Project for Statistical Computing, n.d.; SAS: Analytics, Artificial Intelligence and Data 
Management, n.d.; Welcome to Python.Org, n.d.). These courses are organized around algorithms and data structures, 
the premise being that these constructs are fundamental to effective programming and will support life-long learning 
(P.J. Denning et al., 1989). For example, students who have mastered algorithms and data structures should be able to 
learn new languages and new applications of their current languages as needed. Moreover, mastery of algorithms and 
data structures is necessary to effectively utilize the vast amount of external information available to students via 
web searching, ChatGPT, etc. (Introducing ChatGPT, n.d.). For example, while ChatGPT can write program code 
based on a user’s request, it may not always be efficient or error-free, requiring programming knowledge to optimize 
or correct. 

Coding interviews are a standard part of the hiring process in software engineering and other related fields where 
computer programming is a core task, including biostatistics (McDowell, 2020; Nolan & Temple Lang, 2010; 
Pomann et al., 2020). Interviewers typically use coding interviews to assess candidate’s problem-solving ability and 
communication skills in addition to their technical knowledge (Ford et al., 2017). The typical format is that of a 
discussion in which the interviewer may ask the job candidate to use a whiteboard, online coding platform, or write 
something on paper in response to the interviewer’s questions (McDowell, 2020). Interviewers may or may not 
require job candidates to use specific programming languages and in some cases, candidates are invited to use the 
programming language of their choice or to simply describe algorithms in plain language (Ford et al., 2017). There is 
no standard set of questions that are asked during coding interviews but there are prototypical questions covering 
core topics that are commonly encountered in coding interviews, and there are well-known resources available to 
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help job seekers prepare for such interviews (McDowell, 2020). Thus, building practice with coding interviews into 
an instructional program can be beneficial for students as they graduate and begin a job search.  

However, coding interviews must be carefully conducted if they are to be effective for the interviewer and the 
interviewee. Behroozi, et al. (2019) proposed the following guidelines for conducting a coding interview: “1) Use 
rudimentary questions for screening [for example, prior to inviting candidates for an in-person interview]; 2) Share 
the interview description in advance; 3) Offer alternative interview formats; 4) Use a real problem [as the basis for 
the questions]; and 5) Solve problems as colleagues, not as examiners.”  

While the literature provides guidance on developing coding interviews for purposes of hiring employees, we are 
using the coding interview as an examination format in an academic setting and only secondarily as an aid for our 
students’ future job search. We have previously described our approach to using the coding interview as a final exam 
for the SAS programming course offered as part of our master’s program (G. P. Samsa, 2020). Since then we have 
accumulated additional experience using coding interviews as a final examination and discuss that experience here in 
light of recurring (and quite reasonable) questions from our faculty colleagues, especially: "Is it fair?" and "Is it 
practical?". 

To address concerns around fairness and practicality, we propose in this article methods for implementing coding 
interview exams that follow the guidelines recommend for hiring-focused coding interviews (Behroozi et al., 2019). 
Specifically, we discuss our experience with coding interviews as a final examination for our Master of Biostatistics 
students enrolled in the SAS programming course. This paper is organized to first outline the key elements of 
implementing an exam that utilizes a coding interview. We provide recommendations about how others can develop 
and implement similar evaluations and provide examples. Then we discuss guidelines for the student assessment and 
discuss the questions "Is it fair?" and "Is it practical?".   

 
2. Implementing Coding Interviews for Student Assessment 

A recurrent theme throughout this report is the importance of transparency.  One application of this principle is 
sharing with students our goals for the final examination, and also the rationale for those goals. These goals are 
informed with our experience in performing actual coding interviews as part of the hiring process, and address one of 
the key guidelines identified by Behroozi and colleagues (2019) by providing a description of the interview in 
advance. Additionally, to implement coding interviews we need to have a clear plan to help students prepare and a 
consistent structure for the exam we can follow. The following sections provide guidelines for defining goals, exam 
preparation, and exam structure.  

2.1 Defining Examination Goals  

We explain to students that an actual coding interview would try to discover (1) general facility with programming; 
and (2) SAS-specific skills. General facility with programming is a combination of effective computational thinking, 
skill in algorithms and data structures, and the use of literate and reproducible programming practices. 
Computational thinking refers to "the mental skills and practices for designing computations that get computers to do 
jobs for us, and for explaining and interpreting the world in terms of information processes" (Peter J. Denning & 
Tedre, 2022). As applied to programming, computational thinking involves abstracting a problem, representing that 
problem using data elements (i.e., data structures), organizing and processing those data elements in a systematic 
fashion (algorithms), and doing so using coding practices that are efficient, human-friendly and generate identical 
results over time (reproducibility) (P.J. Denning et al., 1989; Knuth, 1984). 

Although both SAS-specific skills and general programming knowledge are crucial, the latter is arguably more 
important in an academic setting as it enables lifelong learning and future success, e.g., as students are required to 
learn new languages in the future. In other words, general facility with programming provides the tools for rapidly 
learning new skills, thus providing value to an employer. Indeed, in many cases, if an applicant can demonstrate to us 
that they are a good programmer in general, we believe that many companies would be likely to hire them, with their 
SAS-specific knowledge being used to identify the type of projects for which they would be competent to contribute 
to on day one. 

We also share with students that, for many interviewers, knowledge of specific elements of SAS syntax isn't critically 
important. Instead, it serves as a surrogate for familiarity with the language and a check on resume assertions that the 
applicant knows SAS. An applicant who is a regular SAS user will have repetitively applied various elements of SAS 
syntax; these elements comprise building blocks of SAS programming that can be immediately recalled, and being 
able to do so is a reasonable focus of an interview. Students are encouraged to reply to questions about more arcane 
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elements of SAS syntax with an offer to demonstrate how they would search for an answer in real time (and thus 
verifying for the interviewer their ability to learn on the job).  Indeed, after the applicant gets a job, their current 
SAS-specific knowledge can be supplemented by web searching, ChatGPT, etc. In other words, if you know enough 
about how SAS is organized, you truly can teach yourself. 

2.2 Exam Preparation 

A crucial element of fairness is for students to have clear expectations of how the exam will proceed, how the exam 
will be graded, and how they can effectively prepare.  Some elements which contributed toward student preparation 
included: 

 Exam goals were described ahead of time (as discussed above) 

 A grading rubric was circulated 

 Classroom exercises provided practice in exam content (e.g., by explicit discussion of algorithms and data 
structures, by having students explain their code) 

 Students were encouraged to add copious comments to their assignment programs, and were allowed to 
bring these commented programs to the interview 

 Typical interview questions were circulated ahead of time 

 Students observed a practice interview, with another instructor playing the role of student, after which the 
two parties described their thought process in framing and answering the exam questions  

When queried after the conclusion of their interview, students consistently reported that the interview was essentially 
as they expected, and also that the sample interview questions were helpful. Asking students to add comments to 
their programs not only provided practice in an element of literate programming, but was intended to help them 
engage with the material in sufficient depth to attain mastery. Interestingly, some students reported using ChatGPT as 
part of their preparation. This typically worked well for taking model code provided by the instructor and explaining 
how the relevant SAS syntax operated (and, indeed, was far less cryptic than a typical computer manual), but didn't 
always work well when ChatGPT was asked to write a SAS program. 

2.3 Exam Structure 

All students were asked the same set of general questions. In our context, which is an educational setting rather than 
an actual job interview, we see this as addressing the first guideline offered by Behroozi, et al. (2019) to “use 
rudimentary questions for screening.” Whereas in a job interview these questions could be used, for example, in a 
phone screening to decide who meets minimum requirements for an in-person interview, in our case we use these 
questions to gauge students’ base level of knowledge and to select the next questions to ask.  

After asking all students the same set of initial questions, a sample of questions was chosen which required using 
SAS to complete a programming task that students are likely to encounter in a real-world setting (Behroozi et al., 
2019). Again, follow-up and clarifying questions depended on the students' initial responses. In this way, the 
interview becomes a simulated discussion among colleagues rather than a question-and-answer session (Behroozi et 
al., 2019). 

 
3. Example Questions, Answers and Commentary 

In this section we provide illustrative questions and answers, along with commentary on the rationale for each 
question. The back-and-forth (between interviewer and interviewee) around clarifying questions isn't illustrated. 
There isn't a single "right answer" to any of the questions but we include model answers that would illustrate 
competency. The model answers are accompanied by comments that explain the rationale for the question and why 
we think the model answer is appropriate. The questions are divided into two groups: 1) general questions about 
programming with SAS that do not require interpretation or writing of program code; and 2) detailed questions about 
SAS programming that required reading and interpreting or writing new program code.  

3.1 General Questions About SAS 

3.1.1 Question: What are some similarities and differences between SAS and R? 

Answer: R is an object-oriented functional language organized around lists whereas SAS is a procedurally-based 
language organized around data frames. R is open-source whereas SAS isn't, an implication of which is that it 
requires downloading packages that might or might not work as desired. R is more flexible than SAS. Work sessions 
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are different: R code is immediately executed whereas for SAS you write a block of code, mark it, and then execute 
it. Either language can be used to perform typical data management and statistical analysis tasks. 

Comment: Apart from its information value, this question also serves to differentiate between the perspectives of 
statistical users (e.g., "the two languages can perform similar functions such as data management and analysis") and 
those with formal computer science training (e.g., "R is an object-oriented functional language whereas SAS is a 
procedurally-based language"). 

3.1.2 Question: What are some techniques for performing literate and reproducible programming in SAS? 

Answer: Modularize the code, include human-friendly practices such as comments, white space and indentation, 
write code to be generalizable rather than task-specific, have a development and testing plan, use version control, 
when performing simulations, set a seed for the pseudorandom number generator. 

Comment: This question addresses general programming knowledge, and is absolutely critical to an actual coding 
interview. As a rule, we only hire applicants who can describe literate and reproducible programming practices. 

3.1.3 Question: What are some techniques for testing a SAS program? 

Answer: Perform unit testing by checking components of the program one at a time, trace the logic by printing 
intermediate files and by using PUT statements to print intermediate results of iterative calculations. 

Comment: This question also addresses an important element of general programming knowledge, that being the use 
of an explicit strategy for program development. 

3.2 Detailed Questions About the SAS Language 

3.2.1 Question 1: The following code illustrates the core logic of performing a patient-level simulation. What does it 
do? 

data test1; 

  call streaminit(1); 

  do i=1 to 10; 

    rand_unif=rand("uniform",0,1); 

    output; 

  end; 

run; 

 

proc print data=test1; 

run; 

Answer: The DATA statement creates a SAS dataset called TEST1.  The CALL statement sets the seed for the 
pseudorandom number generator, thus ensuring that the results will be reproducible. The DO loop creates 10 records. 
The RAND function creates uniform random variables on the interval from 0 to 1. The OUTPUT statement explicitly 
writes the record.  TEST1 will have 10 observations and 2 variables. The PRINT statement prints TEST1. 

Comment: As discussed subsequently, rather than asking the student to write code to perform a simulation, which is 
typically done in interviews, this question structure allows them to get off to a good start. The data structure is a 10x2 
array. The algorithm uses a DO loop to create simulated patients, and the call to the pseudorandom number generator 
produces the simulated data according to the desired specifications. The indentation is a literate programming 
practice. Because this is part of an examination, the literate programming practices of commenting program code and 
titling output are not illustrated. Setting a seed for the pseudorandom number supports reproducibility. 

3.2.2 Question: What happens if the OUTPUT statement is dropped from the code segment shown above?  

Answer: The DO loop will still be executed 10 times, but only the final record will be printed. 

Comment: This question evaluates general programming knowledge about how DO/FOR loops operate. If a student 
is stumped, they are encouraged to run the code without the OUTPUT statement and explain the results. 

3.2.3 Question: How would I simulate a standard normal random variable instead of a uniform random variable? 

Answer: Even though I haven't done so before, the answer ought to be to change "uniform" to "normal" in the RAND 
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function -- the precise syntax might not be precisely as assumed. 

Comment: This question evaluates understanding of the basic algorithm that underpins simulations. A correct answer 
requires understanding that the pseudorandom number is generated by the RAND function, and that the RAND 
function has options which can be used to specify the desired distribution. 

3.2.4 Question: Suppose that you wanted to prepare a randomization list for a randomized trial, with 40 patients, 
where patients are randomized to either Intervention or Control with a 1:1 ratio. For any particular list, you won't 
necessarily have exactly 20 patients in each group. How would you modify the basic simulation code? 

Answer: Change the index on the DO loop from 10 to 40. Use IF / THEN / ELSE logic to assign random numbers 
which fall between 0 and 0.50 to I and the rest to C. In other words, change the code to this: 

data test1; 

  call streaminit(1); 

  do i=1 to 10; 

    rand_unif=rand("uniform",0,1); 

 if (0 le rand_unif le 0.50) then group='I'; 

   else group='C'; 

 output; 

  end; 

run; 

proc print data=test1; 

run; 

Comment: This illustrates a generalizable programming technique, which is essentially independent of language.  In 
algorithmic form: simulate a uniform random variable and then use IF-THEN logic to assign patients to study group 
based on the value of that uniform random variable.  A more efficient solution, specific to this problem, is: 

data test1; 

  call streaminit(1); 

  do i=1 to 10; 

    group=rand("bernoulli",0.50); 

    output; 

  end; 

run; 

 

proc print data=test1; 

run; 

3.2.5 Question: An investigator is planning a trial comparing a new smoking cessation intervention with usual care. 
There will be 40 patients per group. The quit rate in the intervention group is 20% whereas the quit rate in the usual 
care group will be 10%. What is the estimated statistical power, based on 1,000 simulated replications of the study? 

Answer: From one of the assignments, I know that the general algorithm for using simulation to perform a power 
calculation is (1) form an outer DO loop covering the 1,000 replications of the study; (2) within an inner DO loop, 
simulate the data according to the specifications provided by the investigator (here, the result should be a dataset 
with 80,000 rows (i.e., 1000 iterations time 80 rows per iteration); (3) for each replication, perform a statistical test 
and output the p-value to a new dataset; (4) map that p-value to a new variable denoting the presence or absence of 
statistical significance; and (5) the estimated power is the proportion of replications with a statistically significant 
result. The important specifications are the 20% and 10% quit rates. I'll implement this by cutting and pasting the 
general DO loop into one DO loop per study group. The statistical test is a chi-square test, which should be 
performed by iteration. I need to use some form of OUTPUT statement to write p-values to a new SAS dataset. 
Instead of looking up the syntax, I just cut and pasted from one of the assignments -- it uses the Mantel-Haentzel 
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version of the chi-square test, which I assume is OK to do here. The resulting code turns out to be: 

 

data test1;  

  call streaminit(1); 

  do iteration=1 to 1000; 

    do i=1 to 40; 

      group='I'; 

      quit=rand("bernoulli",0.20); 

      output; 

    end; 

 

    do i=1 to 40; 

      group='C'; 

      quit=rand("bernoulli",0.10); 

      output; 

    end; 

  end; 

run; 

 

proc freq noprint data=test1; 

  by iteration; 

  tables group*quit / chisq; 

  output out=chisq mhchi; 

run; 

 

data chisq2; 

  set chisq; 

  if (p_mhchi<.05) then sig='yes'; 

  else sig='no '; 

run; 

 

proc freq data=chisq2; 

  tables sig; 

  title 'task 2'; 

  title2 'estimated power'; 

run; 

Comment: This question requires understanding a general simulation algorithm, which is essentially independent of 
programming language, then translating it into a data structure that works well in SAS, and then discovering the 
SAS-specific syntax (e.g., how to OUTPUT p-values from the FREQ procedure). Describing the algorithm 
demonstrates basic programming skills. If the student is unfamiliar with specific elements of syntax, they are asked 
to perform a web search and then demonstrate that they can effectively utilize its results. 
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3.2.6 Question: How could you make the DO statement more generalizable in the code segment above? 

Answer: Replace the hard-coded value of 40 with a variable such as GROUP_SIZE. 

Comment: This illustrates a general programming technique that contributes to literate programming, regardless of 
language. It also provides a hint for the next question. 

3.2.7 Question: With 40 per group the statistical power is unacceptably low. Suppose that the investigator asks you a 
slightly different question: namely, how many patients would be needed to achieve 80% power? How would you 
modify the previous code? Describing an algorithm is sufficient to answer the question. 

Answer: Replace 40 with GROUP_SIZE, add an outer loop that changes the value of GROUP_SIZE (e.g., DO 
GROUP_SIZE=40 to 200 by 10;), stop when the desired power is achieved. Indeed, a DO WHILE structure would 
be more efficient than a standard DO loop. 

Comment: This also translates general statistical knowledge into an algorithm, appropriate for SAS. 

3.2.8 Question: What does the following code do? Your answer should mention three of the four common ways to 
create a SAS dataset. 

data set1; 

  input id rec_no y; 

datalines; 

1 1 5 

1 2 6 

1 3 4 

1 4 8 

2 1 0 

2 2 2 

2 3 5 

2 4 6 

; 

run; 

 

proc print data=set1; 

run; 

 

data set2; 

  set set1; 

   if (y>5) then ind=1; 

    else ind=0; 

run; 

 

proc means noprint nway data=set2; 

  class id; 

  var ind; 

  output out=out1 

         mean=new_var; 

run; 
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proc print data=out1; 

run; 

Answer: The first DATA statement creates the SAS dataset called SET1 using raw data as input (i.e., method 1). The 
INPUT statement provides the input directions. The DATALINES statement tells SAS that the raw data follows. The 
RUN statement defines the end of this logical entity. SET1 should have 8 observations and 3 variables. 

The second DATA statement creates the SAS dataset called SET2 (the child) from the SAS dataset SET1 (the parent). 
It illustrates creating one or more child SAS datasets from one or parent SAS datasets (i.e., method 2). The IF / 
THEN statements create a new "indicator" variable denoting whether or not Y>5. SET2 should have 8 observations 
and 4 variables. 

The MEANS statement creates a new SAS dataset called OUT1 as the output from a SAS procedure (i.e., method 3). 
In this case, we define subgroup means, with the ID variable defining the subgroups. The calculations are applied to 
the variable IND, and the subgroup means are saved to the new dataset in a variable named NEW_VAR. The PRINT 
statements print the contents of the various SAS datasets. Although I'm not completely certain about this, OUT1 
should have one row per subgroup and include variables containing the subgroup name and the subgroup mean. 

Comment: This assesses the general programming construct of indicator variables.  These are, among others, an 
essential part of various counting algorithms. It also assesses familiarity with SAS, as inexperienced users are 
unlikely to have encountered creating SAS datasets as output from a SAS procedure. 

3.2.9 Question: How would you apply the same logic to creating a new SAS dataset containing the predicted values 
from a linear regression model? You should have encountered this in a first-year data analysis course. Describing an 
algorithm is sufficient for answering this question. 

Answer: Use the REG procedure to perform the regression. As part of that procedure, use the MODEL statement to 
define the predictor and outcome variables. This procedure ought to have an OUTPUT statement like that for PROC 
MEANS. Within that OUTPUT statement, there should be similar syntax that changes "MEAN = new variable 
name" into "PREDICTED VALUES = new variable name". The output dataset should have one row per observation 
in the original dataset and the variables listed here (among others). 

Comment: In practice, this is followed by questions about how this task is accomplished in R, with similarities and 
differences. 

 
4. Course Evaluation 

The student course evaluation included the following questions pertaining to their ability to learn SAS on their own 
(i.e., one of the core pedagogic constructs): "One of the premises behind the course design was that understanding 
the structure of SAS places you in position to effectively use help (e.g., online, via SAS's help function). (1) I can 
find and use help to learn additional SAS content; (2) I can design a SAS program; (3) If a program design has been 
prepared, I can write SAS code". The median response to each of these questions was "confident".  

Less formally, after each coding interview the student was asked a series of questions. Their primary method of 
preparation was reviewing programming assignments. Those who wrote their own code and added comments 
performed especially well, whereas those who took a more passive approach of starting with the instructor's code and 
asking ChatGPT how it works performed adequately but not as well. This is consistent with a basic principle of 
constructivism that deep learning requires active engagement with content (Biggs, 1996).   

Students consistently found the exam questions to be as expected, and cited the sample questions and illustrative 
interview as helpful. A few students had previous experience with coding interviews. Some of these reported that the 
final examination was quite similar to those, with the exception that starting with a "show and tell" about the basic 
algorithm was an improvement over what they had experienced elsewhere.  

 
5. Discussion of Fairness and Practicality 

When using coding interviews as an examination for non-professional programmers, we propose that an operational 
definition of a fair examination includes (1) it covers important content; (2) students can adequately prepare; (3) even 
if students aren't asked identical questions, the questions address similar content at a similar level of difficulty; and (4) 
adequate accommodations are made for diverse learning styles. Here, the exam content is derived from an explicit 
statement of its goals. Moreover, the format of a conversation, with the opportunity to both clarify and probe deeply, 
helps ensure that the content is "important". Our approach to helping students prepare is described above, and its 
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success was supported by student performance. By asking students questions of similar difficulty and nature, we can 
achieve the advantages of personalization while also addressing a common concern. 

Finally, we recognize that some students, whether with formal academic accommodations or not, find oral 
examinations to be difficult. Indeed, research has suggested that alternate formats for the coding interview should be 
available (Behroozi et al., 2019). One way that we addressed this issue was by allowing students to bring annotated 
SAS programs to the exam, so that immediate recall of facts became less critical. Students were encouraged to ask 
clarifying questions if needed. We were prepared to have students submit follow-up responses in writing, although it 
turned out that this wasn't needed. Coding interviews are often part of the process of job searching, and our hope was 
that good performance on a nonconfrontational interview would encourage students going forward. 

Another element of fairness is our desire to give those students who choose not to cheat the same opportunity to 
achieve an excellent grade as those who do (Troy, Neely, et al., 2022). The course grade is made up of two major 
components, the assignments and the exam. Students can achieve a B by successfully completing all of their 
programming assignments, recognizing that they might collaborate in doing so. Indeed, such collaboration is 
encouraged so long as they "own" the content by writing their own comments within the program code that explain, 
in their own words, what the code does. Receiving an A requires an excellent performance on the coding interview, 
for which we see no obvious way to cheat. Students are on a level playing field in that most of the questions can be 
anticipated. Follow-up questions easily distinguish deep from superficial knowledge. The only guarantee for 
receiving an excellent grade on the coding interview is to learn the material. 

In terms of practicality, with sufficient discipline a simulated coding interview can be completed in 30 minutes. In 
practice, ours ranged from 30-60 minutes, in part because of the desire to put students at ease and in part because this 
also became an opportunity to do a bit of teaching. This effort is comparable to the combination of (1) grading a 
traditional exam, so long as that examination is in a format other than true/false, multiple choice, or something else 
which sacrifices depth of assessment for ease of grading; and (2) the time and energy involved with addressing 
cheating. It is also consistent with what students will face as they sit for coding interviews as part of the job search 
process (McDowell, 2020). We also reduced interviewer burden by limiting the number of interviews per day. 
Students were encouraged to select an examination time that would not interfere with their other exams.  

The literature on coding interviews primarily focuses on professional programmers and software engineers, although 
its general principles and recommendations ought to apply to circumstances such as ours, where the typical job 
requirement is "excellent at statistics, programs well for an amateur, and can learn more about SAS programming as 
needed" (Behroozi et al., 2019; Ford et al., 2017). The increasing pedagogical focus on computing within our 
discipline is likely to make practice with coding interviews even more relevant in the future (Reinhart & Genovese, 
2021). For our audience, starting the task-oriented questions by asking the student to explain a code fragment 
illustrating a simple version of an algorithm appears to be a technical innovation, and one that was well received. 
Furthermore, we found this to be consistent with recommendations to start by assessing basic knowledge (Behroozi 
et al., 2019). 

 
6. Future Directions 

The most immediate practical impact of this research within our program is to support an ongoing effort to more 
closely align our evaluation methods with how students will use biostatistical skills during their careers. As another 
example of doing so, a course in survival analysis has as its final examination: 1) a comprehensive analysis of an 
actual dataset; 2) writing a statistical report in standard format; 3) creating a video explaining the results of the 
analysis to an investigator who is scientifically sophisticated but not statistically so; and 4) creating a video 
explaining key concepts from the class in plain English. This examination format not only covers both statistical 
content and the student's ability to communicate their understanding of that content, it creates a rich body of 
information which provides confidence that the resulting grade adequately approximates the student's skill set. As 
illustrated in Section 3 above, coding interviews are intended to generate a similarly rich student evaluation. 

Some future research questions include exploring the trade-offs among flexibility of content, accuracy of recording, 
and consistency of evaluation. For example, a traditional examination generates an archival record (e.g., which could 
accommodate assignment of grades by multiple instructors) and has students perform identical tasks but at the cost of 
the inability to query students in real time to further assess depth of understanding. A coding interview, on the other 
hand, has the benefits of real-time queries, albeit without an archival record (unless the interview is recorded) and 
with tasks that aren't identical (by design). Depending on the educational context, the fact that coding interviews 
have no obvious way to cheat can be a non-trivial consideration as well (Noorbehbahani et al., 2022). Indeed, 
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recommendations for limiting cheating include upgrading evaluation methods from multiple-choice questions to 
include open-ended questions focusing on problem-solving skills and critical thinking, and questions where students 
create their own examples (Skshidlevsky, n.d.). We recommend that any evaluation method that allows the student to 
work outside of class include an in-person follow-up where students explain their work and, thus, reduce the 
likelihood that their answers relied on input from someone else or from another source such as a generative artificial 
intelligence (Ellis & Slade, 2023; Troy, Neely, et al., 2022). 

 
7. Conclusion 

In summary, we believe that the examination format of a simulated coding interview is both fair and practical, allows 
for personalization, and provides a deeper assessment than more traditional formats. We postulate that potential 
concerns about practicality are mostly driven by difficulty in visualizing precisely how a coding interview can be 
operationalized. Our report aims to offer practical guidance for those interested in using this format. 
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