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Abstract 
RNA-Seq is a recently developed technology for transcriptome profiling. Numerous advantages of RNA-Seq suggest that 
it will be the platform of choice for genome-wide expression studies. RNA-Seq generates large volumes of data which 
require statistical methods for data processing and accurate inference. This article reviews the RNA-Seq technologies 
followed by a detailed discussion of current statistical methods for normalization and differential expression analysis. 
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1 Transcriptome profiling 
Over 99.9% of genome sequences are the same in all humans [1, 2], yet individuals show great distinction from each other.  
In a multicellular organism nearly all cells contain the same genome, but they develop into different tissues. A major 
source for many of these variations is the different gene expression patterns [3]. In control of gene expression, the 
transcriptome is the complete set of ribonucleic acid (RNA) transcripts, including messenger RNA (mRNA), ribosomal 
RNA (rRNA),  transfer RNA (tRNA),  and other non-coding RNA in a given cell type.  It is the connection between genes 
and phenotype. The constitution of the transcriptome for an organism varies at different developmental stages or under 
different physiological conditions. As a quantitatively cataloged transcriptome provides us information on the underlying 
genetic mechanisms, the transcriptome is studied in relation to many diseases, e.g., cancers. One of the main goals in a 
cancer transcriptome study is quantifying the changes in expression levels of all the transcripts in tumor cells. In this 
manuscript, we discuss the cutting edge methods for quantifying the transcriptome and how the resulting data is used to 
determine significantly differentially expressed transcripts. 

2 Microarrays 
Microarrays have been the primary technology for quantitative transcriptome analysis since the mid-1990s [4], and they 
have discovered many results in cancer research [5-8]. Although expression studies by microarrays have been very 
successful in the last decade, there are at least three intrinsic limitations to this hybridization-based technology. First, the 



www.sciedu.ca/jst                                                                                                    Journal of Solid Tumors, October 2012, Vol. 2, No. 5 

                                ISSN 1925-4067   E-ISSN 1925-4075 34

background noise in microarrays is large due to cross-hybridization of closely related genes. Second, the microarray signal 
often reaches a limit of detection or saturation, therefore microarrays have a limited dynamic range (a few hundredfold) [9]. 
Third, microarray analysis requires prior knowledge on the genome sequence and thus is not suitable for non-model 
organisms. In part these limitations lead researchers to develop sequence based technologies. 

3 Sequence based approaches 
Sequence-based approaches were developed initially from Sanger sequencing [10, 11]. The original protocol was low 
throughput and not quantitative. Many technical improvements since the initial days have led to numerous 
accomplishments, including the Human Genome Project [12]. Quantitative methods were developed based on the use of 
tagged sequences, including SAGE (serial analysis of gene expression) [13], CAGE (cap analysis of gene expression) [14] 
and MPSS (massively parallel signature sequencing) [15]. These methods do not require prior sequence annotation and can 
directly determine cDNA sequences. However, only a portion of the transcriptome can be analyzed. The low coverage of 
these technologies showed a need for sequencing with higher throughput. 

4 RNA-Seq 
With the development of high throughput deoxyribonucleic acid (DNA) sequencing technologies, the next generation 
sequencing technologies (NGS) allow researchers to read huge volumes of sequences quickly. RNA sequencing 
(RNA-Seq) is a revolutionary tool for transcriptome analysis based on NGS. From an application’s standpoint, RNA-Seq 
has been applied to a number of transcriptome expression analyses in cancer research, see Table 1. This recent popularity 
in cancer research has resulted in several high-throughput sequencing platforms commercially available for RNA-Seq, 
including Illumina/Solexa, Roche/454, Applied Biosystems/SOLiD, Pacific Biosciences’ RS, Helicos Biosciences’ 
Heliscope and Ion Torrent’s Proton [16]. These platforms support massively parallel sequencing and therefore have 
improved efficiency. For example, the latest Illumina HiSeq 2500 system can output 120 gigabases (Gb) in a rapid run of 
27 hours and up to 600Gb in a high output run of 11 days. The following subsections provide details on sample preparation 
and a summary of the advantages and challenges for RNA-Seq data. 

Table 1. A list of recent applications of RNA-Seq in cancer research 

Cancer type Platform Reference 

granulosa-cell tumor Illumina GAII [32] 
chronic myelogenous leukemia and prostate cancer Illumina GA and 454 FLX [33] 
brain cancer Illumina GA [34] 
prostate cancer Illumina GAII [29] 
oral squamous cell carcinomas SOLiD [35] 
prostate cancer Illumina GA [36] 
devil facial tumor 454 [28] 

 

4.1 Preparation, sequencing and alignment 
In general, to prepare a complementary DNA (cDNA) library for RNA sequencing, mRNAs are extracted from tissues and 
randomly sheared into short strands. These fragmented mRNAs are reverse transcribed to cDNAs using random primers. 
Then adapters are added and ligated to cDNAs on one or both ends for sequencing purposes. The ligated cDNAs usually 
undergo electrophoresis so that cDNAs with certain length are selected and then followed by polymerase chain reaction 
(PCR) amplification to obtain a cDNA library. 

The sequences of the ligated ends on cDNAs are read by a high-throughput sequencing instrument. Sequencing is done in 
a massively parallel fashion and a huge amount (many millions to billions) of short reads is obtained. The raw data file 
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contains the sequence of all the reads and their corresponding quality scores indicating the confidence of the read at every 
base. Using alignment software, these reads are mapped to a reference genome or assembled de novo without the 
reference. Alignment takes into account factors likes reads with exon junctions or polyA ends, reads that can be matched to 
multiple locations, and single nucleotide polymorphisms (SNPs). There are many alignment programs available, such as 
MAQ [17], Bowtie [18], BWA [19], ELAND (by Illumina), SOAP2 [20], SHRiMP [21] and many more. In these alignment 
programs, certain mismatches are allowed for polymorphisms and sequencing errors. During alignment, raw 
measurements of transcripts are summarized from the mapped reads. Although it is beyond the scope of this review, 
summarization is an important step as there are many different ways to map the reads and summarize the counts. After 
summarization, the output data contains the transcript IDs and the corresponding number of reads. 

4.2 Advantages and challenges 
RNA-Seq has three major advantages over hybridization-based technologies such as microarrays. First, the assembly of 
short reads in RNA-Seq does not rely on known genome sequences which make it applicable to organisms with unknown 
sequences. Second, RNA-Seq has a very low background noise, a very large dynamic range (over 10000-fold), and is 
highly precise and reproducible [9, 22, 23]. For these reasons, expression levels determined by RNA-Seq are seen as more 
accurate than microarray expression levels [9]. Third, since RNA- Seq provides detailed sequence information of the 
transcriptome, it can be used to detect allele specific expressions [24, 25], alternate splicing [23, 26, 27], gene fusions [28-30], and 
novel promoters [31]. 

Cost is currently the major disadvantage of RNA-Seq. The instrument and labeling kits are very expensive compared to 

microarray chips and images. However, RNA-Seq is expected to replace microarrays in various applications as the cost 

decreases. RNA-Seq also brings new challenges in expression analysis. Statistical methods developed for microarrays 

cannot be directly applied to RNA-Seq data due to the intrinsic differences between the technologies such as sequencing 

depth. In RNA-Seq, sequencing depth measures how many times a sample is sequenced on average [37]. The sequencing 

depth reflects the total number of reads from a sample. A RNA-Seq sample is often sequenced in several parallel lanes and 

lanes within the same run using the same RNA sample often have different depths [22]. Since the observed number of reads 

is proportional to depth, summarized counts of transcripts should to be normalized with regard to depth before statistical 

analysis of differential expression (DE). Another issue is the different type of measurements between gene expression 

microarrays and RNA-Seq technology. In microarrays, fluorescence intensity is a surrogate of transcript level [4]. Thus 

most methods for microarrays use continuous distributions (e.g. log-normal) to model microarray data [37]. In RNA-Seq, 

however, raw measurements of expression are given by the numbers of reads, which are non-negative integers. The 

methods based on continuous distribution assumptions are not appropriate for RNA-Seq, especially for low expression 

genes. Several R packages have been developed for statistical testing for DE using RNA-Seq data [38]. Those include 

edgeR [39], DESeq [40], DEGSeq [41], baySeq [42], BBSeq [43], TSMP [44], NBPSeq [45] and PoissonSeq [46]. Additionally, 

databases like SEQC (SEquencing Quality Control) have been established to assess the performance of the NGS 

technologies. SEQC, also known as MAQC-III (the third phase of the MAQC project), is a follow up from the MAQC and 

MAQC-II projects [47, 48]. It aims at assessing the technical reproducibility of NGS technologies such as RNA-Seq by 

generating benchmark datasets with known reference samples. The following sections detail the methods used to model, 

normalize and determine differential expression in RNA-Seq technologies. 

5 Statistical models for RNA-Seq data 
In general for RNA-Seq technology, the input data for statistical analysis is a matrix Y ൌ ሾݕ௜௝ሿ where ݆݅ݕ denotes the 

number of reads of transcript i in sample j.  Let ݆݊ be the total number of reads in sample j, i.e. the sum of column 

j,		݆݊ ൌ ∑ ൌ1݆݅݊݅ݕ . For a robust statistical test for DE genes, a distribution must be specified for the number of reads ݕ௜௝. 
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5.2 Negative binomial 
The negative binomial model;	ݕ௜௝~NBሺߤ௜௝, ߮௜ሻ, with the mean parameter ݆݅ߤ  and the dispersion parameter  φ୧  is an 

extension of the Poisson model where the variance is larger than the mean. It is more appropriate to model count data with 
overdispersion. The negative binomial model is also known as the gamma-Poisson model, since it can be derived from the 

Poisson model by assuming the Poisson mean  ݆݅ߣ follows a Gamma distribution,	ߣ௜௝~Г൫ߤ௜௝,  ௜௝ is theߤ ௜௝߮௜൯, whereߤ

Gamma mean and ߤ௜௝߮௜ is the variance.  The ratio of variance to mean in the negative binomial model is	߮௜ ൅ 1, thus the 

Poisson model is a special case of negative binomial when ߮݅ ൌ 0. The negative binomial model is the most common 

model in DE testing for overdispersed RNA-Seq data and is implemented in the R packages edgeR [39], DESeq [40], 
NBPSeq [45] and baySeq [42]. 

5.3 Beta binomial 
The beta binomial model is an extension from the binomial model.  Similar to the negative binomial, it can also explain the 

overdispersion in biological replicates by allowing the relative abundance of the ith transcript 	݌௜	to vary according to a 

beta binomial distribution. It can be derived from the binomial model by assuming ݅݌	 follows a beta 

distribution,	݌௜~ܽݐ݁ܤሺߙଵ௜, |௜௝ݕ	,is beta binomial	given total count ݆݊ ݆݅ݕ ଶ௜ሻ. Thus in this framework, the conditional probability of read countߙ ௝݊~ܽݐ݁ܤሺߙଵ௜,  ଶ௜ሻ. As the total count of reads is large, the beta binomial behaves similarly to theߙ

negative binomial model. The beta binomial model is implemented in the R package BBSeq [43]. 

5.4 Power transformation 
Although the negative binomial model is most commonly used, it does not have maximum likelihood solutions with closed 

forms and the estimation of the dispersion parameter ߮௜  requires biological replicates which may not be available for 

experiments with quantitative outcomes, e.g., survival. Li et al. take a different approach by seeking a power 

transformation of the over-dispersed data [46]. They first select a conservative set S of transcripts, where all the transcripts 

in S are believed to be not differentially expressed. Define ܱ ൌ ∑ ሼܨܱܩ௜ െ ሺm െ 1ሻሽ௜∈ௌ , where  ܨܱܩ௜  is the goodness of fit 

test statistic for transcript i based on the Poisson model, and ݉ െ 1	is the expected value for GOF୧ based on m samples. 

(The selection of S and goodness-of-fit statistic will be discussed in the next section.) Thus O can be interpreted as the 

overall dispersion over the Poisson model; 	O ൎ 0 if the transformed data follows the Poisson distribution. The goal is to 

obtain θ so that 	O ൎ 0 for the power transformed data ݆݅ݕ 									ሱሮ ߠ݆݅ݕ . In fact, the requirement that θ is the same for all 

transcripts is too restrictive, so the data is divided into multiple groups with θ estimated for each group. Their power 

transformation approach is implemented in the R package PoissonSeq [46]. In addition to modeling the read count data, 

researchers must normalize the RNA-Seq data to account for systematic variation. 

6 Normalization of RNA-Seq data: a matter of depth 
In most statistical packages for DE analysis, the parameter of interest is the true expression level ݅ݍ	for transcript i in the 

sample. For each transcript i, the goal is often to test whether ݅ݍ	is different in treatment group 1 versus 2,  0ܪ: 1݅ݍ ൌ   2݅ݍ

vs. 1ܪ: 1݅ݍ ് 2݅ݍ  . We can specify a relationship f between ݅ݍ  and the mean parameter ݆݅ߤ in the model such that ݆݅ߤ ൌ ݂ሺ݆݀,  is modeled as in previous sections. The sequencing	݆݅ߤ ሻ, where ݆݀ is the sequencing depth for sample j and݅ݍ

depth ݆݀	measures the number of sequenced transcripts in sample j. A simple relationship is ݆݅ߤ ൌ ݆݅ߤ as in [40], or ݅ݍ݆݀ ൌ ݅ݍ݆݁݀  as in [50]. 
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The raw measure of expression for transcript i in sample j is the number of reads ݆݅ݕ. However, ݆݅ݕ	is biased towards longer 

transcripts because they generate more short reads given the same expression level [51]. However, length is not as critical 
since the effect of length is negated when testing the same transcript. Previous studies have shown that normalization with 
regard to sequencing depth is an essential step for accurate comparison of mean transcript expression level across  
samples [39, 40, 50, 52]. 

It should be pointed out that the choice of normalization is not independent of the model specified for DE testing. For 
example, quantile normalization produces non-integer counts, making count-based models such as Poisson or negative 

binomial distributions inappropriate. Instead, using estimated depth ො݆݀  as a scaling factor for each sample is preferred such 

that the integer counts are preserved. 

An intuitive method for normalization uses the total count of reads in each sample as scaling factor. Another common 

method uses RPKM (reads per kilobase per million mapped) as the scaling factor to adjust for both total count and 

transcript length [23]. These methods, however, can lead to biased results because they are overly simplistic in certain 

situations. As an example, the total count can be heavily affected by a small proportion of highly expressed genes [46, 50]. 

For example, suppose there are two samples with 100 transcripts.  In the control sample, all 100 transcripts have 10 reads. 

In the treatment sample, 90 transcripts remain the same with 10 reads each, while the other 10 are up-regulated and have 50 

reads. The treatment sample has a total count 1.4 times as many as the control if both are sequenced at the same depth. If 

scaled by the total count, 90% of the transcripts will appear to be down-regulated in treatment group although they are not 

differentially expressed. For this reason, the following more robust methods have been proposed to estimate sequencing 

depth. 

6.1 Trimmed mean of M values 
Robinson and Oshlack propose a trimmed mean of M values (TMM) as a scaling normalization approach [49]. Under the 

assumption that the majority of genes are not DE, the TMM method equates the overall expression levels of genes between 

samples. The relationship function f they specify  is ݆݅ߤ ൌ ݆ݏ݆݅ݍ ݆݊, where the mean parameter ݆݅ߤ is the expected value of  ݆݅ݍ ,݆݅ݕ	is the true expression level of transcript i  in sample,  ݆݊ is the total number of reads in sample j, and size factor ݆ݏ ൌ ∑ ݆݅݅ݍ 	is the expected number of total transcripts in sample j. Since ݆ݏ	is unknown, they proposed to estimate the 

relative ratio of two samples j and j’ by ݂݆݆′ ൌ ݆ݏ ⁄′݆ݏ  via a trimmed mean of log ratios. Define the log-fold change as ݅ܯ ൌ 2݃݋݈ ݆݅ݕ ′݆݅ݕ⁄݆݊ ݆݊′⁄ 	and the absolute expression level for absolute expression level ݅ܣ ൌ 12 ݆݆݊݅ݕ2ሺ݃݋݈ ′݆݊′݆݅ݕ ሻ for nj ് 0. The M 

value can be explained as the difference of proportion for observed counts on log2 scale, while the A value is the average. 

Assuming most of the genes are not differentially expressed, ݂݆݆′ can be estimated from the weighted trimmed mean of M 

values.  The value of f is a scaling factor for normalization. 

6.2 Median ratio of counts 
Anders and Huber propose a similar approach to TMM in [40]. If a transcript is not differentially expressed in sample j and 

j’, the ratio of expected counts ݆ܻ݅ܧ ⁄′݆ܻ݅ܧ  is equal to the ratio of depths ݀ ݆݀′⁄ . They propose using the median ratio of 

observed counts to estimate the relative depth [40]. They use the estimator,  መ݀௝ ൌ ݉݁݀݅ܽ݊௜ ௬೔ೕሺ∏ ௬೔ೕ೘ೕసభ ሻభ/೘                                                                     (1) 
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where the denominator is the geometric mean for transcript  i in all samples. Thus the scaling factor is computed as the 
median of the ratio between sample j and the overall mean. 

6.3 Upper-quartile normalization 
Inspired by the normalization procedure of microarray data, Bullard et al. propose to match all the samples to a reference 
by using the quantiles of the distribution [50]. A simple way to match the quantiles is to scale the counts by the median. 
However, due to the frequent existence of zero and low count transcripts, Bullard et al. propose to only use the 
upper-quartile of counts for non-zero transcripts. The normalized counts are then rounded to integers to preserve the count 
nature of the data. They compare the upper- quartile approach to two other normalization approaches, (1) “RPKM” and (2) 
counts of “housekeeping” transcripts using qRT-PCR as the golden standard. They found their approach yields better 
concordance with qRT-PCR and that it significantly reduces the bias, thus improving sensitivity. 

6.4 Goodness of fit approach 
Li et al. propose a goodness of fit approach adapted from the total count estimation [46]. Without losing generality, let ∑ ݆݆݀݉ൌ1 ൌ 1, where ݆݀	is the relative depth for sample j and m is the number of samples. Total count normalization gives 

an estimator ො݆݀ ൌ ∑ ∑ܵ∍݆݅݅ݕ ܵ∍݅.݅ݕ , where ݅ݕ. ൌ ∑ ܵ∍݆݅݅ݕ 	and S is the full set of genes. A better approach is to use a set S containing 

only non-differentially expressed genes. Thus they employ a Poisson goodness-of-fit test statistic ݆ܨܱܩ ൌ∑ ሺ݆݅ݕെො݆݀݅ݕ.ሻ2ො݆݀݅ݕ.݆݉ൌ1 	to obtain an optimized set S. Genes with GOF values in the ሺ߳, 1 െ ߳ሻ quantile are chosen into set S. A 

conservative value for ߳	is 0.25. Updated S gives an updated ො݆݀, which in turn  is used to update S. This recursive algorithm 

converges quickly to give the final estimates for ݆݀ and S. After modeling the read counts and normalizing the data, it is 

common to test for differential expression of transcripts between two conditions. 

7 Testing for differential expression 
Commonly we are interested in testing whether the expression level of a transcript is the same between treatments. For a 

comparison of two treatments A and B, the hypothesis is  0ܪ: ܣ݅ݍ ൌ :1ܪ .vs  ܤ݅ݍ ܣ݅ݍ ്  denote theܤ݅ݍ and ܣ݅ݍ where ܤ݅ݍ

amount of transcript i in treatments A and B, respectively. Given the specified model and scaling factor estimated, the 
standard procedures may employ a Wald test, score test [46], or the likelihood ratio test [22]. Due to the cost of sequencing, 
however, usually only a small number of samples are available. This raises the question about the appropriateness of 
procedures based on large sample approximations [53]. 

Robinson and Smyth developed an exact test for small sample estimation in the negative binomial model [53]. It was 
originally applied to serial analysis of gene expression (SAGE) data [13]. Similar to Fisher’s exact test, they replace the 
hypergeometric probabilities with negative binomial probabilities. Anders and Huber follow the same strategy [40]. 

Specifically, for a comparison between samples in treatment A and treatment B, they define ݇݅ܶ ൌ ∑ ܶ∋݆݆݅ݕ , ሺܶ ൌ ,ܣ  ,ሻܤ
where T denotes the set of sample indices in Treatment T. Thus ݇݅ܶ is the sum of transcript i in treatment T and ݇݅ܵ ൌ݇݅ܣ ൅ ܣ݅݇ is the overall sum. Given the negative binomial model, the probability of the  ܤ݅݇ ൌ ܽ and ݇݅ܤ ൌ ܾ, denoted ݌ሺܽ, ܾሻ	can be calculated for any values a and b.  Then the two sided p-value for the exact test is the probability of 

observing treatment sums more extreme than the observed combination of ݇݅ܣ and ݇݅ܤ, conditional on the overall sum ݇݅ܵ. 
In other words, the p-value for transcript i is given by the following, 

௜݌ ൌ ∑ ௣ሺ௔,௕ሻೌశ್సೖ೔ೄ೛ሺೌ,್ሻರ೛ሺೖ೔ಲ,ೖ೔ಳሻ∑ ௣ሺ௔,௕ሻೌశ್సೖ೔ೄ                                                                           (2) 
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where the denominator is the probability of observing the overall sum ݇݅ܵ, and the numerator is the sum of probabilities 

less than or equal to ݌ሺ݇௜஺, ݇௜஻ሻ  given the overall sum ݇݅ܵ. 
8 Multiple testing 
Commonly, a separate test is performed on the null hypothesis for each transcript, and a p-value is computed for each test. 

Although a p-value < 0.05 or 0.01 is usually considered significant for a single test, this decision rule presents a problem in 

genome-wide multiple testing, where tens of thousands of tests are performed simultaneously. Suppose in a comparison 

between biological replicates, none of 10,000 transcripts are differentially expressed. If the decision rule calls p-values less 

than 0.01 significant, on average 100 transcripts will be incorrectly identified as DE. In general we want to discover as 

many differentially expressed transcripts as possible while keeping the false discovery rate (FDR) [54] relatively low. 

Conventional statistical adjustments for multiple testing, such as the Bonferroni correction, aim to control the family wise 

error rate over the whole family of transcripts. These procedures lack sufficient power and are too conservative for 

transcriptome-wide studies. There is a consensus that FDR estimation procedures are a good alternative approach [55]. 

Benjamini and Hochberg coined the term FDR and provide a procedure for its control [54]. Several other procedures have 

been developed to estimate FDR [56-59], and many of them have been widely applied to microarray data. Li et al. showed 

that the standard plug-in permutation greatly overestimates the true FDR [46]. Due to the mean-variance dependency in 

RNA-Seq models, the test statistic has very different permutation distributions for null and non-null transcripts. These 

approaches need to be modified in order to be used for RNA-Seq data. Li et al. propose an adapted approach by excluding 

non-null genes from the permutation distribution as implemented in PoissonSeq [46]. 

9 Future work 
A precise catalogue of all transcripts across diverse cell types provides us insight about gene functions and pathways. 
RNA-Seq technology is a powerful tool to quantify the transcriptome in the tissues under different physiological 

conditions. It has broadened our view of the expression studies in transcriptome analysis. In this review, we have outlined 
the major steps in RNA-Seq technology and the statistical analysis of the RNA-Seq data. Although this review mainly 

discussed two group comparisons, some statistical packages reviewed in this manuscript are capable of handling more 

complex designs including experiments with quantitative outcomes or multiple treatment conditions [60]. On the other 
hand, duplicate samples are required to estimate the overdispersion in some models, but they are not generally available 

for quantitative outcomes [46].  This could restrict the application of some of the methods. 

As previously discussed, RNA-Seq data processing starts with alignment of short reads. The alignment method affects the 

summarized counts of reads and there are many algorithms for sequence alignment and reads summarization. These 
methods vary in short reads mapping and transcriptome reconstruction, thus they have different impact on the obtained 

matrix of summarized reads. Other studies indicate that the RNA-Seq platforms also produce bias in generating  

reads [61, 62].  So far, there has been little research on the choice of these methods and its impact on the DE analysis [63].  

To analyze RNA-Seq data more accurately, other experimental aspects should be taken into account. Unlike the 

microarray studies, a technical feature of RNA-Seq is the bias caused by the sequence of transcript. A major aspect is the 

length bias, in which longer transcripts have more reads than short ones at the same expression level. Meanwhile, the 

so-called “GC-content” (percentage of G and C bases) bias is observed in several studies [64], in which transcript fragments 

of high GC-content are preferentially detected in the sequencing process. Although the sequence effects such as length and 

GC-content are negated when testing for the same transcript, these biases result in greater statistical power in DE analysis 

for transcripts with longer sequences and higher GC content. This can significantly affect the results of multiple testing 

and the downstream analyses, such as Gene Ontology (GO) for enrichment among a set of DE genes [65]. As the 
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understanding of the bias sources grows, more robust statistical models will be needed to account for these sources of 

technical variation. 

Both RNA-Seq and microarrays are effective tools for transcriptome profiling and they have shown similar performance in 
some studies [37, 66-68]. Although RNA-Seq results are believed to be highly reproducible, there are discrepancies between 
the expression levels measured by RNA-Seq and microarrays [22]. For example, a large range of low expression genes in 
microarrays are not detectable by RNA-Seq [37]. This demonstrates a need for validation datasets and appropriate 
validation criteria. Real-time polymerase chain reaction (RT-PCR) has been the choice to assess the accuracy of 
microarray and RNA-Seq technologies, but the small scale of RT-PCR may restrict its application to validation in 
genome-wide studies. 

In microarray expression studies involving multiple testing, false discovery rate (FDR) has been the choice for 
genome-wide error control, yet there is limited work on how to control FDR in RNA-Seq data analysis. The methods 
previously developed for microarrays are not appropriate for RNA-Seq. It is been shown that FDR may not be controlled 
well by the traditional Benjamini-Hochberg procedure and the rate of errors is underestimated [69]. Current procedures for 
FDR estimation need to be re-evaluated for RNA-Seq data with regard to the difference in DE and non-DE genes, sample 
exchangeability, and gene independency [46]. Ultimately, as the cost of RNA-Seq continues to decrease, more flexible 
statistical frameworks are needed to handle complex RNA-Seq experiments. 
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