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ABSTRACT

Introduction: The aim of this study was to determine whether radiomic features measured at baseline in Magnetic Resonance
images (MRI) of acoustic neuromas (AN) can predict Gamma Knife (GK) treatment outcome.
Methods: The study was conducted on pre- and post-GK MRI-T2 scans of 32 patients with AN who underwent stereotactic
radiosurgery (SRS) for 12 Gy dose. Radiomic features extracted include Intensity, Fractals, Laplacian of Gaussian and textural
Co-Occurrence, Run-length (RL), Size Zone, and Neighborhood Gray-Tone Difference matrices (NGTDM) features. Subjects
were classified as treatment failures (TF) if tumor volume increased > 10%. Pre- and post-SRS audiology reports were utilized in
hearing evaluation.
Results: Fifteen subjects (47%) qualified as TFs. In univariate receiver operating characteristic (ROC) analysis, two radiomic
features, complexity in NGTDM and run percentage in RL, displayed areas under curves of > 0.65.
Conclusion: This initial radiomic study establishes features that illustrates the prognostic ability of the SRS treatment in acoustic
neuroma. Hearing preservation was achieved in a majority of acoustic neuroma patients treated in Gamma Knife.
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1. INTRODUCTION

Acoustic neuroma (AN) or vestibular schwannoma was re-
ported in 5%-8% of all intracranial tumors are slowly pro-
gressing benign growth that develops on the eighth cranial
nerve, causing gradual hearing loss, loss of balance, and
facial numbness.[1] Contrast-enhanced magnetic resonance
(MR) images or computed tomography (CT) are considered
the gold-standard imaging for periodic assessment, diagnosis

and staging of AN. Treatment options such as microsurgery
and craniotomy were associated with morbidities.[2] For
patients with contraindications to surgery, stereotactic radio-
surgery (SRS) is an alternative option. Noren et al. were the
first to report favorable outcomes with Gamma Knife (GK)-
based SRS treatment.[3] High dose conformality and high
dose heterogeneity with SRS might suggest higher tumor
control rate with less tumor morbidities[4] and low incidence
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of neuropathy with SRS.[5] Prevention of hearing deteriora-
tion following SRS is critical for long-term hearing preser-
vation. Although underpowered, maximum radiation dose
to cochlear nucleus was shown to be single significant prog-
nostic factor for hearing deterioration.[6] WHO and RECIST
criteria for response is often based on 1D tumor size.[7, 8] Al-
though response to therapy is measurable, these descriptors
fall short of determining treatment outcome.[9] Although se-
quential MRI scans are preferred, increase in tumor volume
after SRS is not considered as treatment failure and transient
changes were observed by Pollock et al.[10] Based on imag-
ing methodology, 2 mm diameter or 10% volume change is
considered significant.[11] Radiomics aid extracting quantita-
tive features from medical images.[12] The present study is
an effort to use radiomics analysis to quantify MR images of
AN patients treated with SRS at our institution. The purpose
of this study is to examine prognostic property of radiomic
features in pre-SRS MR images to treatment outcome. Au-
diometric classifications such as Gardner-Robertson hearing
scale (GRHS) was used to grade hearing before and after
treatment of AN.[13]

2. METHODS AND MATERIALS
2.1 Patient population
In this Institutional Review Board approved study, data from
32 patients diagnosed with AN and treated using single-
fraction SRS on a GK Perfexion (Elekta Instruments AB,
Stockholm, Sweden) at our institution between 2010 and
mid-2018 were included. A tumor volume increase larger
than 10% following GK is considered treatment failure (TF).

2.2 Treatment planning
The treatment planning was performed on MRI-T2 images ac-
quired at sub-mm slice thickness in a 1.5 T Philips Achieva
MRI scanner (Philips Healthcare, Best, The Netherlands)
using Leksell GammaPlan Ver 10.0 in TMR10 algorithm.
Gross tumor volume (GTV) is contoured on each slice of
MR images. A single fraction stereotactic radiation dose of
12 Gy to the 50% isodose volume was prescribed to the GTV.
Tolerance dose to normal structures were observed, and hot
spots were restricted within the target volume.

2.3 Radiomic extraction
Mathematical definitions of all radiomic features, and the ex-
traction methods, were previously described.[14] MR images
were exported to a MimVista software version 6.6.5 (MIM
Software Inc., Cleveland, OH). MR and target contour were
exported to an in-house software for feature extraction. Fifty-
five three-dimensional (3D) radiomic features extracted from
3D MR images quantify tumor characteristics, including
features based on intensity, texture, shape, fractal dimen-

sions, and Laplacian of Gaussian (LoG). While 3D image
intensity was derived from first order statistics, 3D textural
features were extracted from gray-level co-occurrence matrix
(GLCM), gray-level run-length matrix (GLRLM), gray-level
size zone matrix (GLSZM), and neighborhood gray-tone
difference matrices (NGTDM). These 4 matrices used in fea-
ture extraction were based on averages along 13 directions
on 3D image space, as stated in Kurani et al.[15] Oliver et
al. had described extraction of GLCM features that deal
with spatial dependence of neighboring voxels.[16] GLRLM
feature implementation followed guidelines published else-
where.[17] GLSZM and NGTDM features were developed
based on Thibault et al.[18] and Amadasun et al.,[19] respec-
tively. Shape features describe 3D geometric properties of
the tumor.[20] Fractal dimensions were calculated based on
Sarkar et al.[21] LoG features were determined using filters
of sizes ranging from 0.5 mm to 2 mm in increments of 1
mm.[22] Image intensities were binned into 64 equally spaced
gray levels for radiomic feature extraction in an in-house im-
age analysis software.

2.4 Statistical analysis
Univariate Receiver Operating Characteristics (ROC) anal-
ysis was performed on each Radiomic feature measured
at baseline (shortly before SRS treatment) using the Lo-
gistic Procedure in SAS v9.4 software (The SAS Institute,
Cary, NC, USA), in order to summarize the prognostic per-
formance over a range of trade-offs between rates of true-
positive and false-positive TF predictions. Because there
were fewer than 20 TFs, multivariate analysis was not con-
ducted in order to avoid over-fitting.[23] An unadjusted alpha
= 0.05 significance level was used for all hypothesis tests
despite the multiple testing, in order not to inflate Type II
error in this small, modestly powered study. Performance
of a radiomic feature at successfully identifying a TF was
measured using area under curve (AUC) in the ROC curve.

2.5 Hearing evaluation
The hearing evaluation before and after GK treatment was
based on audiogram. A hearing sensitivity measure, pure-
tone average (PTA) was extracted from hearing levels (deci-
bels) at three frequency levels - 500, 1000 and 2000 Hz.
Word recognition score (WRS) was used as a measure of
the speech audiometry. In GRHS classification, hearing abil-
ity was assessed from PTA and WRS on a scale of 1 - 5
(1-good, 2-serviceable, 3-non-serviceable, 4-poor, and 5-
deaf).[24] Hearing preservation was defined as maintenance
of GRHS grades 1-2 with SRS treatment. The audiogram
reports were available both prior to SRS and post-SRS on 14
of 32 cases due to patient compliance.
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3. RESULTS
3.1 Patient population
Among the 32 AN patients included in this study, seventeen
patients were female and 15 patients were male. The mean
± standard deviation (SD) age at SRS were 59 ± 13 years.
The mean ± SD time interval between MRI examinations
before and after SRS was 207 ± 72 days (range: 88 - 368
days). AN was localized on the right vestibular nerve on 14
patients, on the left vestibular nerve on 18 patients and none
bilaterally. Figure 1 displays MR images of a typical AN on
the left ear acquired pre-GK and on 16th month follow-up
visit post-GK.

3.2 Tumor volume
Tumor was contoured in MRI scans acquired before and after
SRS. Based on pre-SRS tumor volume, 22 can be considered
small (< 1.5 cm equivalent diameter) and 10 were consid-
ered medium-sized (equivalent diameter between 1.5 and 2.5
cm). The average ± standard deviation (SD) of the tumor
size was 1.5 ± 1.35 cc prior to SRS and 1.7 ± 1.2 cc post
SRS. The absolute tumor volume change was minimal in
almost all cases. Shown in Figure 2 is the percent change in
PTV against pre-GK PTV classified according to the type of
treatment response.

Figure 1. MR images revealing a typical AN in the left ear (A) in pre-GK and (B) in 16 month follow up visit post-GK

Figure 2. Percent change in PTV against the pre-GK PTV
classified by the treatment response

With regard to the change in tumor size on MR images fol-
lowing SRS, Vokurka et al estimated inaccuracies of ± 13%
in manual segmentation.[25] In our study, a volume change >
± 10% have been considered as progression or regression,

respectively. A sizeable number (N = 15 or 47%) can be clas-
sified as treatment failures. Among the other 53% cases (N
= 17), 13 cases had < 10% volume change in either direction
(stable lesions) while only 4 cases showed decline > 10% in
tumor volume (responders). In Vokurka et al, tumor growth
was shown in 12 (32%), potential growth for 7 (18%), no
growth for 17 (45%) and shrinkage only for 2 cases (5%).[25]

3.3 ROC analysis

In ROC curve analysis, 2 features with highest AUC val-
ues are complexity in NGTDM and run percentage (RPC)
in GLRLM. Amadusan et al had described complexity
as a visual information content of a texture derived from
NGTDM19. RPC was computed from ratio of the total num-
ber of runs of all gray scale values to total number of pixels
in the image.[17] Figure 3 illustrates the ROC curve of the
complexity and RPC. Their ROC AUCs (90% confidence
limits) are 0.729 (0.571 - 0.888) for Complexity and 0.682
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(0.522 - 0.842) for RPC. The fact that the lower 90% confi-
dence limits of AUCs of these 2 Radiomic features identified
were > 0.5 shows that the ROC AUCs were significantly
greater than the null AUC value of 0.5 via 1-sided test at α =
0.05.

Figure 3. Receiver operating characteristics (ROC) curve
for (A) complexity and (B) RPC. The ROC AUCs (90%
confidence limits) are 0.73 (0.57–0.89) for Complexity and
0.68 (0.52–0.84) for RPC

Figure 4. Gardner-Robertson hearing scores from a subset
of patients with audiogram reports acquired before and after
GK-based SRS treatment

3.4 Hearing evaluation
The average ± SD of GRHS values were 1.3 ± 0.7 prior to
SRS, and were 2.1 ± 0.8 post SRS treatment, as shown in
Figure 4. The X-axis in Figure 4 indicate the patient # with
audiogram reports obtained before and after SRS treatment.
Before GK, 12 patients (86%) evaluated were in scale 1 and
2 (14%) in scale 3. Hearing was preserved in 8 of 14 pa-
tients (57%) who showed GRHS grades of 1-2 both prior
to and post-SRS treatment. Iwai et al. reported that useful
hearing was preserved in only 56% of patients after GK SRS,
although good tumor control rate was observed in 96%.[26]

Ten out of 14 patients had less than 20 dB loss in PTA in the
follow-up examination.

4. DISCUSSION
A PubMed search with keywords such as “Radiomics” and
“Acoustic Neuromas” or “Vestibular schwannoma” failed to
return any tangible result. This study could be the first one
on radiomics based prognosis of a benign tumor. In this
study, we have investigated a total of 55 radiomic features
using univariate ROC analysis for treatment failure progno-
sis following SRS of ANs. Reasonably good performance
at predicting treatment failure was achieved for 2 features
out of 55, the AUCs of which exceeded a threshold of 0.65
with a lower 90% confidence intervals higher than 0.5. Ab-
sence of sequential MRI scans and dependence on a single
follow-up MRI scan can be a drawback of the study. A long
term study with sequential MRI scans may have helped in
identification of pseudo-progression in tumor volumes after
SRS. It is debatable if some of the tumor volume change is
transient, as discussed at length by Pollock et al.[27] How-
ever, this aspect which involves serial imaging is beyond the
scope of our study. An inherent bias due to limited size of
patient population is present in our study, like in any study
with similar patient size. A study on evaluation of radiation
associated ototoxicity was presented by Bhandare et al.[28] A
specific tolerance radiation dose to cochlea resulting in oto-
toxicity was not determined, mainly due to the small volume
of cochlea where a dose volume histogram is not feasible.
Hua et al observed the positive correlation between increases
in cochlea dose with hearing loss from conformal radiother-
apy of pediatric brain tumors.[29] Kano et al. revealed that
a cochlea dose less than 4.2 Gy resulted in retention of ser-
viceable hearing at 2 years post GK-based SRS of ANs.[30]

Hearing evaluation was pursued based on the hearing status
before and after SRS treatment using the Gardner-Robertson
hearing score. Based on the available audiogram test per-
formed before and after treatment, hearing preservation was
achieved in a majority of our patients.

5. CONCLUSION
Our study is an initial attempt to investigate the prognos-
tic potential of radiomics of acoustic neuromas treated with
radiosurgery. Two radiomic features were identified using
logistic regression modelling for prognosis of radiosurgery
treatment.
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