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Abstract 
Endometrial cancer (EC) is a common reproductive system cancer in females and one of the leading causes for 
cancer-related deaths in women, ranked only after ovarian and cervical cancers. It is classified into two types with type I 
having better prognosis. At present, surgical removal is the major approach for the treatment of the disease. For those with 
metastasized cancer, chemotherapy, hormone therapy and radiotherapy are applied. However, the therapeutic efficacy is 
unsatisfactory and toxicity is severe. Recently, immune system has been recognized as an important factor in both cancer 
development and treatment. Immunotherapy against PD-1 has been shown to be effective with low side-effects in many 
cancers. This opens a novel approach for EC treatment as EC has been shown to have increased PD-L1/PD-1 axis. In this 
review, we summarize the most recent progress in PD-L1/PD-1 axis and prospect that anti PD-L1/PD-1 may be an 
effective approach for EC treatment. 
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1 Introduction 
Endometrial cancer (EC) is a common reproductive system cancer in females [1]. EC incidence was estimated to be 32,000 
worldwide in 2012 and caused 76,000 deaths in the same year [2]. The common risk factors associated with EC are obesity, 
diabetes, high blood pressure and excessive estrogen exposure [3-6]. EC incidence is increasing every year in parallel to the 
increase of obese population [6]. The treatment outcomes of EC depend on cancer types or grades. EC is classified into two 
types with type I having better prognosis [7]. Type I ECs are low grade endometrioid adenocarcinomas, which are sensitive 
to hormone therapy as these cancers express both estrogen receptor (ER) and progesterone receptor (PR) [7]. The 5-year 
survival rate of type I ECs is more than 80% [8]. Type II ECs include high grades of endometrioid adenocarcinoma, serous 
papillary and clear-cell cancers [9]. Type II ECs are not sensitive to estrogen and progesterone. Type II ECs are poorly 
differentiated and highly aggressive, resulting in a 5 year survival rate less than 35% [10-13]. Molecular characteristics of 
high-grade ECs are different from that of low-grade ECs. For example, serous papillary EC has frequent TP53 mutations 
and decreased ER and PR expression while type I ECs usually have frequent mutations in PTEN, PIK3CA, ARIDIA, Kras 
and beta-catenin [14, 15]. At present, surgical removal is the main approach for the treatment of ECs in the early stage with 
high survival rate for low-grade and unmetstasized tumours [16-18]. For those with metastasized cancer, chemotherapy, 
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hormone therapy and radiotherapy are applied. The therapeutic outcomes, however, are unsatisfactory and toxicity is 
severe. Thus, new approach is needed to increase treatment efficacy of EC. 

Recently, the importance of cancerous immune system is highly recognized. The lack of immunological control is 
considered as a hallmark for cancer development, i.e. cancer cells are able to evade human immune system during tumour 
formation [19]. Effective immune system is also necessary for cancer therapy to eliminate cancer cells weakened by 
chemotherapy or targeted therapy. Thus stimulation of immune system (immunotherapy) has been studied to increase 
treatment efficacy for EC. There are two types of immune therapies; vaccination and immune checkpoint blockage [20]. 
Vaccination is based on genetic and epigenetic alterations in cancers, which provide a diverse set of antigens for inducing 
anti-tumour immunity. At present, sipuleucel-T (Provenge®), which are dendritic cells stimulated by antigen prostatic acid 
phosphatase, was approved by the Food and Drug Administration for the treatment of metastatic hormone-refractory 
prostate cancer [21]. However, the effectiveness of vaccination could be reduced by cancer immune escape ability. Cancer 
can stimulate the inhibition system of immune cells. For example, activation of T-cells requires that antigens are presented 
by antigen presenting cells (APC) through major histocompatibility complex (MHC) and activation of co-receptor CD28 
by cytokines. The activation of T-cells is fine-tuned by inhibition signals through cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4) or programmed death-1 (PD-1) [20]. Cancer cells can express PD-1 ligand PD-L1 to enhance the 
inhibition of T-cells. Thus, immunotherapy has been developed to reduce PD-1 to stimulate patients' own immune system 
and has been shown to be effective with low side-effects in many cancers [22-26]. In melanoma, inhibition of PD-L1/PD-1 
caused sustainable tumour-shrinkage effect in 31% patients and was proposed to be used together with targeted therapy 
against MAPK pathway [26, 27]. The approach also caused 29% and 17% response rate in kidney and lung cancers, 
respectively [28-30].  

Immunotherapy has also been explored in papillary serous EC patients by using patients' dendritic cells which are treated 
with tumour lysates. The major problem of this method is immunosuppression from cancer cells [31]. Inhibition of 
PD-L1/PD-1 axis has never been tested in EC. Recent studies show that this axis is increased in EC [32, 33]. This raises a 
possibility for the treatment of endometrial cancer through inhibition of PD-L1/PD-1 axis. In this review, we summarize 
the most recent progress in PD-L1/PD-1 axis research and discuss the possible integration of this new approach into EC 
treatment regime such as combination with chemotherapy, hormone therapy and targeted therapy. 

2 PD-L1/PD-1 axis in immune responses 
PD-1 was discovered as an immune modulator in 1992, which negatively regulates lymphocyte activity so that the 
cytotoxic effects of T-cells on self-tissues can be avoided [34]. PD-1 is a 50-55 kDa glycoprotein containing a stalk, a 
transmembrane domain and an intracellular domain (see Figure 1). PD-1 expresses in many cells including CD4+ and 
CD8+ T-Cells, B-cells, natural killer cells, macrophages and dendritic cells, indicating its extensive roles in the immune 
system. PD-1 is able to suppress T-cell proliferation and function to balance activation status, which is stimulated by 
recognization of antigens through MHC together with co-stimulatory molecules such as CD28 [35]. Loss of PD-1 can lead 
to over-activation of T-cells and autoimmune diseases. In mice, knockout of PD-1 caused several autoimmune diseases 
including systemic lupus erythematosus, psoriasis and dilated cardiomyopathy [36, 37]. Blockage of PD-1 by anti-PD-1 
antibody in vivo has also been shown to increase experimental autoimmune encephalomyelitis in mice [38].  

Two PD-1 ligands are identified including PD-L1 and PD-L2 [35, 39]. PD-L1 and PD-L2 have similar structure but different 
expression patterns and kinetics. PD-L1 expresses in all cell types and many cancer cells. PD-L2 is only expressed by 
activated T cells, myeloid dendritic cells and macrophages [40]. Therefore, PD-L1 is more related to cancer immune escape 
ability. PD-L1 is regulated by many inflammatory factors including IFN-gamma, LPS, GM-CSF, IL-4 and IL-10 through 
signalling pathways such as MEK and JAK2 [41]. 
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latin [73]. High-dose of the administration of these drugs has been shown to increase patient survival rate [73]. These drugs, 
however, cause side-effects including hair loss, low neutrophil levels and gastrointestinal problems. Combination of 
chemotherapy with anti-PD-L1/PD-1 may reduce the dosage of these drugs and thus decrease side-effects. 

Many signalling pathways have been shown to be increased in endometrial cancer such as PI3K and Wnt, VEGF and 
EGFR [74-77]. These signalling pathways promote cell proliferation and decrease apoptosis and thus are important for 
cancer maintenance and progression. Activation of signalling pathways could be caused by hormones, viruses and gene 
mutations [78-82]. Inhibitors have been developed to target key molecules in these pathways for the treatment of EC. Among 
them, PI3K/Akt pathway is the most studied pathway [77]. Akt can regulate mitochondrial apoptotic pathway to increase 
EC cell survival and proliferation. Akt down-stream mitochondrial anti-apoptotic protein Bcl-2 is increased in ECs and 
correlated with disease stages [83]. Cisplatin-induced Bcl-2 increase through Akt activation is associated with drug 
resistance [84]. Dual PI3K/mTOR inhibitor GDC-0941 and mTOR inhibitor (temsirolimus) are effective to EC cell lines 
with PIK3CA or PTEN mutations [85]. It is possible to combine targeted therapy with anti-PD-L1/PD-1 therapy. Cancer 
cells weakened by targeted therapy could be eliminated further by activated T-cells. 

6 Conclusions 
PD-L1/PD-1 inhibition is effective in many cancers and has been in Phase III clinical trials. Recent studies showed that 
PD-L1 is also increased in endometrial cancer. This raises an opportunity for the treatment of EC by manipulating this 
axis. Inhibition of PD-L1/PD-1 will lead to activation of immune cells, especially T-cells, which can produce cytotoxic 
effect on cancer cells. The anti-PD-L1 /PD-1 therapy may be combined with other therapies such as chemotherapy, 
targeted therapy, etc. 
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