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Abstract 
Kruppel like factor 4 (KLF4), member of SP1/KLF transcription factor family is characterized by three extremely 
conserved C2H2-type zinc-finger motifs at its carboxyl boundary that are crucial for its interaction with target DNA. 
Participation of KLF4 in the control of proliferation, differentiation and apoptosis are suggestive for KLF4 critical role in 
tumorigenesis. Depending on the genetic and cellular context, KLF4 gene acts as both oncogene and tumor-suppressor. 
KLF4 is a significant regulator in reprogramming of somatic cells to pluripotent cells that can give rise to all of the cell 
types that make up the body. Multiple in vitro and in vivo studies have shown inhibitory role of KLF4 in epithelial- 
mesenchymal transition (EMT) in various cancer types and loss of KLF4 expression during EMT significantly correlates 
with tumor angiogenesis, metastasis and aggressiveness. The manuscript updates the interrelationship that exists between 
epigenomic regulation of KLF4, its effector genes and oncogenic transformation. 
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1 KLF Genome: Evolution and nature 
Given the pivotal role played by Kruppel like factors (KLFs) in abroad spectrum of physiological and pathological 
processes, it is not surprising that these transcription factors have acquired great recognition all across the globe. Recent 
evidence have shown the involvement of KLFs in various processes including cell proliferation, differentiation, apoptosis, 
metabolism, inflammation, embryogenesis and tumorigenesis. Somatic cells can be re-programmed into pluripotent stem 
(iPS) and maintenance of embryonic stem cells pluripotent state is reliant on KLFs [1]. The three highly conserved cysteine 
and histidine (C2H2)-type zinc finger motifs at the carboxyl-terminus in KLF chain member’s exhibits shared ancestry to 
the Drosophila melanogaster Kruppel protein, accounting for the name. Although C-terminal region shares similarity, the 
amino-terminal region of KLFs family members vary significantly that allows them to bind to different coactivators, 
corepressors and modifiers [2]. Till now 17 members have been identified in Kruppel like factor family which are named 
from KLF1 to KLF17 [3] (see Figure 1). In recent time researchers have discovered a new variant of KLF gene/pseudogene 
christened as KLF18 which is widely suspected to be present in maximum number of placental mammals with sequenced 
genomes. KLF18 is chromosomally similar to KLF17 and is suspected to be a result of its duplication [4]. The KLF family 
members are divided into 3 clusters on the basis of functional characteristics. Cluster 1 comprises of KLFs 3, 8 and 12; 
Cluster 2 family members include KLFs 1,2,4,5,6 and 7 and Cluster 3 includes KLFs 9,10,11,13,14 and 16. Cluster 2 KLF 
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KLF4 has an ORF of 1444bp coding for a 470 amino acid protein with an estimated molecular mass of 52 kDa. The 
transcription factor KLF4 contains three functional domains, an acidic N-terminal transactivation domain followed by a 
repressor domain and a C-terminal DNA mandatory domain [11]. The DNA binding domain contains three highly 
conserved zinc finger motifs which help KLF4 to bind with GC or CACCC-boxes in DNA with diverse affinity. It has two 
nuclear localization signals (NLS), the first of which is located between repressor and DNA binding domain, and second is 
placed within first two zinc fingers. KLF4 gene also has PEST sequence, located between activation and repressor domain 
which allows KLF4 to undergo ubiquitin-mediated proteasomal degradation. Activation and repressor domains provide 
KLF4 with the capacity to influence target gene transcription in a positive or negative way depending on the cellular 
context. The following section will shed more light on the importance of KLF4 in cellular genomics. 

2.1 KLF4 and Wnt signaling  
β-catenin plays a pivotal role in mediating cell-cell adhesion and its involvement in many processes including 
embryogenesis, differentiation, tumor growth and progression has been well elucidated. In normal cells, accumulation of 
β-catenin in the cytoplasm is eluded since a destructive complex consisting of proteins including axin, adenomatous 
polyposis coli (APC), glycogen synthase kinase 3β (GSK-3β) and casein kinase 1α (CK1α) degrades β-catenin by 
ubiquitination. However, upon reception of the Wnt signal, the destruction complex becomes disrupted leading to 
maintenance of cytoplasmic β-catenin levels which then increase in the nucleus, activating target genes such as cyclin-D1 
and c-Myc  with the help of members from LEF/TCF family of DNA binding proteins [12]. Inappropriate expression of 
these genes would result in massive proliferation leading to malignant transformation. A high level of β-catenin activity is 
directly related to the severity of cancer invasiveness and progression [13, 14]. Numerous belligerent and mortal diseases like 
gastric, lung and breast cancers are characterized by increased β-catenin expression which weakens cell-cell junctions and 
promote carcinoma cell dedifferentiation, hyper-proliferation, invasion and metastasis [12]. KLF4 is an opponent of 
β-catenin and studies have reported possible association between the two in a variety of cancer types [15].  Investigation of 
expression levels of these genes revealed significant increased expression of β-catenin and down-regulated expression of 
KLF4 in colon neoplasm [16]. In colorectal carcinogenesis, decreased expression of KLF4 reduces its ability to inhibit 
β-catenin expression levels [16]. An inverse association of their expression levels has been reported in gastric cancer; loss of 
KLF4 expression is correlated with increase β-catenin levels [17]. A similar behavior was reported in lung (A549), colon 
(SW480), and breast (T47D) cancer cell lines [18]. Forced increased expression of KLF4 inhibits invasion and metastasis of 
gastric cancer by down-regulating β-catenin expression and subsequently repressing β-catenin mediated gene expre 
ssion [19]. Various studies have shown different mechanisms of β-catenin regulation by KLF4 in cancer types. Some studies 
reported that KLF4 controls β-catenin by directly binding and inhibiting its transcriptional activation domain while some 
other studies have shown KLF4 prohibiting the binding between β-catenin and p300/CBP [15,16]. KLF4 and p300/CBP 
compete with each other to bind the C-terminus region of β-catenin and KLF4 may block p300/CBP-mediated acetylation 
of β-catenin thus inhibiting histone acetylation on c-Myc and survivin genes. Down-regulation of β-catenin resulted in 
clamp down of the Wnt signaling pathway providing anti-tumorigenic and anti-proliferative properties on the cells. 

2.2 KLF4 and notch signaling  
The Notch signaling pathway is activated in gliomas, lung cancer, breast carcinomas, liver cancer, T-cell leukemia/ 
lymphoma, acute promyelocytic leukemia [18]. Notch signaling influences multiple pathways that are involved in cell 
survival, cell growth, cell proliferation, apoptosis and thus aberrant expression of Notch is linked with tumor progression 
in a variety of cancer types. Supporting evidence suggests both oncogenic and tumor suppressive role of Notch in various 
cancers depending on genetic and cellular context. In T-cell acute lymphoblastic leukemia, Notch signals activate 
PI3K-AKT-mTOR signaling, significantly up-regulate expression of oncogene c-Myc and increase NFⱪB expression 
through activation of IⱪB kinase triggering cell growth (see Figure 2). Constitutive activation of PI3K-AKT signal 
transduction pathway triggers signals responsible for mediating multiple cellular responses including increased cell 
growth, cell proliferation, cell survival and cell death [20]. Crosstalk’s between Notch and KLF4 has been reported 
extensively, and several studies indicate that Notch signaling inhibits KLF4 expression in intestinal tumors and colorectal 
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expression of miRNAs in different cancer types leads to inappropriate expression of their target genes, which functions 
either as tumor suppressor or oncogene. As a result, aberrant miRNA-target gene expression promote massive 
proliferation, tissue invasion, angiogenesis, evasion of apoptosis, de-differentiation that ultimately link to transformed 
phenotype. High expression of miR-29a targets KLF4 and silences its expression in colorectal cancer. Down-regulation of 
KLF4 in colorectal cancer strongly correlated with increased cell invasion and metastasis [32]. In vascular smooth muscle, 
miR-146a contains antisense binding sites in the 3ˈUTR of its target gene KLF4, specifying its negative regulation [33]. 
Recently we reported that apoptosis antagonizing transcription factor (AATF) encodes novel miRNA miR-2909, which 
regulates genes involved in inflammation, cell cycle, and immune response [34-36]. miR-2909-mediated regulation of KLF4 
gene expression has been implicated in pediatric B-cell acute lymphoblastic leukemia (ALL) [37] as well as coronary heart 
disease (CHD) [38]. However, miR-2909 fails to regulate KLF4 gene expression in T-cell acute lymphoblastic leukemia as 
a consequence of mutation in the 3ˈUTR region of KLF4 [37]. Further, in human embryonic stem cells, miRNA-145- 
mediates KLF4 repression was observed [39]. KLF4 was also shown to be regulated by miR-10b in human esophageal 
cancer cell lines [40]. Additionally, miR-130a and 135b targets KLF4 mRNA in M1 AML patient blasts and silencing of 
KLF4 in turn arrests the maturation of blood cells at an early progenitor stage with subsequent monocytic differen- 
tiation [41]. 

3 KLF4 and cell decisions 
KLF4 epigenomics has been shown to affect the variety of cell fate decisions: 

3.1 Cellular proliferation  
Innumerable scientific studies have shed light on the role of KLF4 as a regulator of cell proliferation. In vitro studies using 
cultured cells have shown there is a temporary association between KLF4 expression and conditions that encourage 
growth arrest, such as DNA damage, serum deprivation and contact inhibition [6]. During DNA damage, P53 stabilization 
induces KLF4 which promotes the activation of cyclin-dependent kinase inhibitor, p21WAF1/Cip. The proximal region of the 
p21WAF1/Cip promoter contains many specific KLF4 binding sites and binding of KLF4 to these sites recruits p53 to the 
p21WAF1/Cip promoter which in turn provides p53 the ability to drive transcription of the p21WAF1/Cip gene [42]. The cell cycle 
inhibitor p21WAF1/Cip induces arrest at G1/S phase and blocks progression of cells to a next phase (see Figure 3). KLF4 
overexpression in RKO cells induces p21WAF1/Cip, promotes G1/S arrest and inhibits cell proliferation [43]. Consistent 
findings were reported in mouse embryonic fibroblasts in which overexpression of KLF4 induce p21WAF1/Cip and acts as a 
suppressor of cell proliferation [6]. In vascular muscle cells, KLF4 plays the role of proliferation inhibitor and prompts p21, 
p27, p53, and retinoblastoma (Rb) [44]. In addition to its effect on activation of p21WAF1/Cip, KLF4 exerts its role as 
suppressor of proliferation by suppressing cyclin D1 and cyclin B , which are responsible for promoting progression the 
G1-S and G2-M limits, respectively [45, 46]. In HT29 and RKO colon cancer cells, overexpressed KLF4 results in 
suppression of cyclin D1 [43]. Recently, studies have shown that KLF4 plays a part in preventing mRNA expression of 
ornithine decarboxylase, a biosynthesis regulatory enzyme which encourages cell proliferation and is involved in the 
advancement of colon cancer [47]. In lung cancer patients, KLF4 expression was found to be drastically reduced, and its 
restoration induced G1 phase arrest in lung cancer cells with negligible apoptosis induction. Restoration of KLF4 
expression in lung cancer cells inhibited lung cancer cell growth in vitro and suppressed the growth of tumors derived from 
lung cancer cell lines in vivo [48]. Overexpression of KLF4 induced G1 arrest in both FG cells and BxPC-3 pancreatic 
cancer cells [49]. Consistently, overexpression of KLF4 suppressed cell growth in bladder cancer cell lines [50]. Moreover, 
murine pro-B/pre-B cell lines altered with BCR-ABL or v-Abl expressed low mRNA and protein levels of KLF4 than 
stimulated splenic B cells. Restoration of KLF4 in these cells induced cell-cycle arrest, indicated by increased percentage 
of cells in G1 phase and reduces cell number in S phase [51]. These findings suggest that KLF4 exert antiproliferative 
effects in variety of epithelial and other cancers through its capability to create cell cycle checkpoints and impede the 
progression of cells to the next phase. 
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gastric [65], bladder [66] and colon cancer cells [67]. KLF4 levels increase significantly in K562 leukemia cells and PBMCs of 
CML patients in response to H2O2 stimulation. KLF4 overexpression in K562 cells and PBMC’s of CML patients showed 
increased apoptosis rates for H2O2 group as compared to control. This increase could be attributed to the activation of 
caspase 3, up regulation of bax and down regulation of bcl-2. The promoter sequence of bax and bcl-2 contains KLF4 
binding site with a strong trans inactivation effect on the bcl-2 promoter and the strong transactivation effect of KLF4 on 
the bax promoter [68]. KLF4 is down-regulated in bladder cancer cell lines and cancer tissues. Transduction of KLF4 using 
adenoviral vectors induced apoptosis in the same [50]. Studies have shown that KLF4 induces apoptosis in murine 
RAW264.7 macrophages and C2C12 cells [69, 70]. Amplified expression of KLF4 resulted in apoptosis of N87 and SK-GT5 
gastric cancer cells [65] and prostate cancer cell lines PC-3 and DuPro cells [71]. KLF4 enforced expression in adult T-cell 
leukemia cells induces apoptosis [72]. In contrast recent publications have supported that KLF4 plays an important role in 
its ability to inhibit apoptosis in different tumor types. Up-regulated expression of KLF4 suppresses p53 expression 
inhibiting p53-dependent apoptosis in breast cancer [73]. KLF4 represses transcription of p53 in MDA-MB-134 breast 
cancer cells and inhibits apoptosis. Furthermore, inhibition of KLF4 expression using KLF4-specific siRNA molecules in 
MDA-MB-134 cells re-establishes p53 levels leading to sudden induction of apoptosis [73]. Ectopic expression of KLF4 
inhibits apoptosis in TE2 esophageal cancer cell line [74]. A newly conducted study has shed light on the fact that KLF4 
possibly supersede RasV12-induced senescence in primary fibroblasts, stimulating transformation. Overexpressed KLF4 
leads to an increased expression of p21Cip1/WAF1 resulting in cell cycle arrest. Alternatively presence of RasV12 leads to 
inhibition of p21Cip1/WAF1 expression, giving KLF4 the capability to repress p53 which in turn results in blocked apoptosis 
and reduced expression of p21Cip1/WAF1, eventually led to transformation +. Thus KLF4 can either act as tumor suppressor 
or a tumor promoter depending on the genetic and cellular contexts. Exhibiting anti-apoptotic properties in a variety of 
cancer cells may support KLF4 oncogenic role. 

3.4 Somatic cell reprogramming 
The function of KLF4 has been researched widely with respect to its role in  hematopoesis, cell differentiation and tumor 
formation, but it’s role in embryonic stem (ES) cell self-renewal and pluripotency has not got attention that it deserved till 
recently when spate of studies reported the crucial role of KLF4 in conversion of somatic cells into pluripotent cells. The 
scientific community still does not properly understand how KLF4 controls ES cell self-renewal and somatic cell 
reprogramming. Recent cutting edge research has shown that terminally differentiated somatic cells can be reprogrammed 
to generate induced pluripotent stem (iPS) cells that are similar to ES cells via overexpression of combinations of 4 
transcription factors-Oct4, Sox2, c-Myc, KLF4, and Nanog [76, 77]. c-Myc reactivations is directly responsible for tumor 
formation and this behavior is crucial safety concern that needs to be addressed before this approach can be used on 
humans. It is imperative that we develop reprogramming without using c-Myc oncogene. Pluripotent state of fibroblasts 
can be achieved by Oct4, Sox2, and KLF4 when c-Myc is not present. c-Myc functions as an enhancer of reprogramming 
and can be removed [78]. Oct4 plays a pivotal role in vivo and in vitro for regulation of early embryonic differentiation and 
maintenance of pluripotency. Presence of even small amounts of Oct4 is essential for thwarting differentiation and 
supporting ES cell self-renewal [79]. Oct4 works in partnership with Sox2, member of the Sox (SRY-related HMG box) 
gene family for regulating gene expression [80]. A key factor in maintaining ES cell pluripotency is Nanog. Nanog’s 
overexpression in ES cells stimulates self-renewal and its deletion prompts the ES cells to undergo differentiation. It is 
assumed that Nanog functions in conjuction with other factors like Oct4 and Sox2 to establish ES cell identity [81]. KLF4 
interaction with Oct4 and Sox2 leads to the formation of complex which binds to Nanog promoter amplifying Nanog’s 
expression which prevents ES cell differentiation. Nanog’s expression promotes ES cell pluripotency even when KLF4 
manifestation is brought down, however knockdown of Nanog encourages differentiation of ES cells that overexpress 
KLF4. The above behavior clearly demonstrates that KLF4 functions upstream of Nanog in ES cell self-renewal and in 
preventing ES cell differentiation [81]. KLF4’s interactions with c-Myc helps in maintaining iPS cells immortality. KLF4 
and c-Myc collaborate to promote iPS cell self-renewal, with KLF4 quashing apoptosis prompted by c-Myc and c-Myc 
deactivating the cytostatic effect of KLF4 by suppressing p21 [76, 77]. This creates a balance between KLF4 and c-Myc 
which may institute the preserved state of iPS cells. KLF4 is highly expressed in undifferentiated ES cells and the 
expression decreases intensively during differentiation. KLF4 overexpression in ES cells gives it better capacity for 
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KLF4 is down-regulated by B-cell activation and remarkable, the inhibition of B-cell propagation by FOXO transcription 
factors is strongly correlated with KLF4 induction [87, 88]. Decreased expression of KLF4 is reported in intestinal adenomas, 
colonic adenomas, and colonic adenocarcinomas of mice and patients with inherited and irregular tumors [2]. In 
comparison to normal tissues it has been found that the levels of KLF4 mRNA are extensively reduced in intestinal 
adenomas in the APCMin/+ mice and familial adenomatous polyposis (FAP) patients. KLF4 mRNA levels have been 
found to be significantly repressed in mice infected with intestinal adenomas of multiple intestinal neoplasias (APCMin/+). 
The same behavior is noticed in human patients afflicted with colonic adenomas (FAP) vis a vis adjacent normal  
mucosa [89]. Colon cancer cell lines showed low expression of KLF4 as compared to untransformed colonic epithelial cell 
line with the lowest mRNA expression was observed in RKO colon cell line [50].  In addition loss of heterozygosity (LOH) 
has been reported in the KLF4 locus in a subset of colorectal cancer specimens [50]. Consistent observations of low KLF4 
expression was reported in prostate cancer cell lines compared with nontumorigenic prostate cells [18]. KLF4 acts as cell 
cycle regulator and functions as a tumor suppressor through its ability to induce p21 [73] and suppress SP1 expression [90]. It 
competes with SP1 binding site on the Sp1 promoter and negatively regulates the expression of Sp1 transcription factor. 
Typical overlapping sites for both KLF4 and Sp1 are present on the Sp1 promoter and for which both transcription factors 
compete for binding; KLF4 negatively regulated Sp1 promoter activity and in contrast Sp1 positively controlled it [90]. 
Thus a loss of KLF4 expression because of epigenetic changes in various tumors may activate high Sp1 expression [90]. 
Overexpression of Sp1 and reduced expression of KLF4 has been reported in a majority of human gastric cancers [90, 91], 
colorectal cancer [50] and pediatric acute lymphoblastic leukemia [37]. High Sp1 expression was directly correlated with an 
increased metastatic potential, poor prognosis, lymph node metastasis, and low survival in gastric cancer [91], pancreatic 
cancer [92, 93] and lung cancer [94], squamous cell carcinoma [95] and colorectal cancer [96]. Supporting evidence has 
suggested that Sp1 regulates expression of angiogenic genes VEGFR1, VEGFR2, VEGF [97] and growth inhibitory genes 
such as p21 and caveolin. Its overexpression promotes tumor growth and development and its reduced expression retards 
tumor growth and angiogenesis in animal models [98]. Previous findings from our laboratory reported that increased Sp1 
expression up-regulated oncogenes including apoptosis-antagonizing transcription factor (AATF) and c-Myc gene in 
Jurkat cells [99]. High Sp1 expression also led to an increased expression of AATF, c-Myc and BCL3 in pediatric acute 
lymphoblastic leukemia potentially leading to unbridled transformation [37]. The ability of KLF4 to down-regulate Sp1 
expression may possibly repress many genes central to the processes of cell growth, angiogenesis and cell invasion and 
decrease resistance to apoptosis, which may mitigate tumor progression and survival. KLF4 represses several genes 
involved in angiogenesis, including VEGF-A and endothelin-1 [100]. Low expression of KLF4 in breast cancer cells was 
correlated with increased VEGF expression. Moreover, co-transfection of these cells with KLF4 and HDAC expression 
plasmids resulted in suppression of VEGF expression and inhibition of angiogenesis [101]. The human VEGF promoter 
contains overlapping sites for SAF-1 and KLF-4, where SAF-1 induces and KLF-4 suppresses VEGF expression. Low 
expression of KLF4 in breast cancer cells may lose its competition with SAF-1 to bind to its binding sites; as a result 
SAF-1 wins and promotes VEGF expression. Some studies have shown that KLF4 represses VEGF expression through 
recruitment of histone deacetylases (HDACs) -2 and -3 at the VEGF promoter [101]. However this was not shown in 
MDA-MB-231 cancer cells but was experimentally proved in normal MCF-10A cells [101]. This suggests KLF4 with its 
tumor-suppressive role, inhibiting angiogenesis in mammary carcinoma leading to marked reduction in tumor size. 
Nevertheless sustained KLF4 expression in endothelial cells impaired tube formation and inhibited vascular network 
formation in implanted Matrigel plugs in nude mice [102]. Recent studies have thrown light on the role of KLF4 in epithelial 
to mesenchymal transition (EMT). Cancer cells undergo EMT transition that enables them to acquire the properties of 
migration and invasion. EMT provides cancer cells the ability to metastasize to distant sites. It represents series of events 
characterized by loss of epithelial characteristics such as cell polarity and cellular adhesion and gain of mesenchymal 
features with migratory and invasive properties, allowing metastatic spread to remote sites, turning into more malignant 
and aggressive phenotype [103]. EMT has been reported in various human cancers including breast cancer [104], prostate 
cancer [105], diffuse gastric carcinoma [106], lung cancer [107] and other epithelial cancer [108]. E-cadherin, N-cadherin, 
vimentin and β-catenin are essential EMT genes and alterations in their expression affect cell adhesion contacts, increases 
cell motility and facilitate migration of cells to distant sites, events that are critical in tumor progression. Loss of 
E-cadherin has been reported in poorly differentiated tumors and in highly invasive tumor cell lines. N-cadherin 
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expression has been shown to be up-regulated in many tumors since its increased expression is directly correlated with cell 
mobility [109]. Transcription factors like Snail1/2, Slug, Zeb1/2, Twist and FoxC2 repress cell-cell interaction proteins such 
as E-cadherin, clauddin, occludins and ZO-family genes [110, 111]. KLF4 inhibits EMT through its ability to activate 
E-cadherin and suppress Snail1 expression [112]. KLF4 negatively regulates EMT of GI and breast cancers [113, 114].  Loss of 
KLF4 expression during EMT correlated with tumor angiogenesis, metastasis and aggressiveness [100]. Moreover in vitro 
and in vivo functional analyses shed light on the role played by KLF4 as a suppressor of HCC cell migration, invasion and 
metastasis [115]. Enforced KLF4 expression led to increase of E-cadherin mRNA levels and loss of mesenchymal markers 
N-cadherin and vimentin in several HCC cell lines [115]. Consistent findings were reported in highly spreading 
“MDA-MB-231” breast cancer cell line where forced expression of KLF4 restores E-cadherin expression and suppresses 
migration and invasion [112]. This may suggest that KLF4 diminishes tumor development, inhibits exodus and invasion of 
cancer cells and suppresses metastasis in multiple carcinomas through its ability to inhibit EMT. KLF4 supports tumor 
suppressive properties by inhibiting colony formation, migration, and invasion of tumor cells. It has been shown to inhibit 
metastasis in several cancers, including esophageal [116], pancreatic [49] and colorectal cancer cells [67]. When KLF4 
expression is reintroduced in MKN-45 gastric cancer cells it leads to appreciable reduction in proliferation, colony 
formation, preventing the metastasis in vitro and tumor formation in vivo [19]. KLF4 overexpression in RKO colon reduces 
tumorigenecity in vivo [67]. Overexpressed KLF4 resulted in reduction of renal cancer cell migration and inhibited 
metastasis [117]. KLF4 overexpression in PC-3 cells reduced cell migration and cell invasion by approximately 44% and 
65% respectively in KLF4-infected (pMXshKLF4) cell population as compared to empty vector control [18]. Forced 
expression of KLF4 in metastatic MDA-MB-231 breast cancer cells inhibited both cell migration and invasion [112]. 
Consistent with the above observations, KLF4 overexpression in highly metastatic 4T1 cells significantly reduced both 
cell migration and invasion as compared to control [118]. Transient adenoviral expression of KLF4 (AdKLF4) in the 4T1 
orthotropic mammary cancer model drastically reduced primary tumor growth and also micrometastases to lungs and liver 
as compared to control mice. On examination of lungs and liver from control and AdKLF4 tumor-bearing mice at 21 days 
after injection revealed that 60% of mice in the control group developed lung micrometastasis as compared to 10% in the 
AdKLF4 group, and liver micrometastases was reduced by 40% in the AdKLF4 group as compared to control [118]. In an 
orthotopic animal model of pancreatic [49], gastric [19] and colorectal cancers [119], ectopic overexpression of KLF4 
significantly suppressed tumor growth and metastasis in vivo. Moreover, tetracycline-inducible appearance of KLF4 in B 
cell progenitors of transgenic mice blocks transformation by BCR-ABL and depletes leukemic pre-B cells in vivo [51].  

KLF4 also exhibits oncogenic properties with its increased expression strongly associates with tumor formation in various 
cancer types. Numerous studies have shed light on the critical role played by KLF4 in development and progression of 
tumors. KLF4 mRNA and protein levels were up-regulated in 70% of breast cancer cases. The increased nuclear 
expression of KLF4 strongly correlates with the aggressiveness of breast cancer phenotypes [120, 121]. High levels of KLF4 
in breast cancer cells promote massive cell proliferation by stimulating increased resistance to apoptosis and uphold 
increased glycolytic phenotype [122]. Increased KLF4 expression in breast cancer cells activates platelet isoform of 
phosphofructokinase (PFKP) expression contributing to a stimulation of glycolytic metabolism. The elevated KLF4  
levels in breast cancer cells enhance glucose uptake and lactate production by activating PFKP expression. PFKP, 
phosphofructokinase, liver (PFKL), phosphofructokinase, muscle (PFKM) are three most prominent isotypes of 
phosphofructokinase (PFK-1). Citrate and ATP have an inhibitory effect on PFKM whereas PFKL and PFKP isotypes are 
less sensitive to citrate and ATP and more sensitive to fructose 2,6-bisphosphate. Increased KLF4 expression induces 
PFKP by directly binding to its promoter region contributes to high glucose utilization supporting cell proliferation, 
growth and meeting other energy demands in breast cancer cells. KLF4 knockdown from breast cancer cells significantly 
decreased glucose uptake and lactate production by suppression of PFKP expression [122]. Over expressed KLF4 is directly 
linked with squamous cell carcinoma in larynx and skin [123,124]. Furthermore, dysplastic lesions resembling squamous cell 
carcinoma were observed in transgenic mice in which KLF4 has been ectopically expressed in basal keratinocytes [125]. 
Moreover, expression of KLF4 in cultured RK3E epithelial cells showed powerful transformation activity. KLF4 
transformed RK3E cells can lead to tumors in xenografted mice [124]. The ability of KLF4 to function either as a controlling 
factor for cells that are proliferating are bearing offspring or a transmuting gene mainly depends on functional status of p21. 
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p21 loss is sufficient to turn KLF4 from an inhibitor of proliferation into a transforming oncogene in vitro [75]. p21 
inactivation enables KLF4 to act as a tumor promoter by subduing p53.  Thus we can safely say that KLF4 is part of the 
ever increasing list of genes that have dual context driven role in cancer. 

5 Concluding remarks 
Mounting evidence has established that KLF4 function is affected by its epigenetic context and it has the capacity to act as 
a transcriptional activator, repressor, tumor suppressor and an oncogene depending on the context. However, the exact 
molecular mechanisms by which KLF4 play multiple roles remain less understood. The studies provided ample evidence 
to support tumor suppressive role of KLF4 and how its loss of expression affects the genes critical in tumor formation and 
survival contributing to unbridled proliferation, sustained vascularization, tissue invasion and metastasis. KLF4 also 
exhibits oncogenic properties with its increased expression strongly associates with tumor formation in various cancer 
types. Given the role of KLF4 in various pathways central to tumor formation, detailed understanding of molecular 
mechanism of KLF4 functional role could help in identifying the therapeutic target that could mimic the action of KLF4 to 
combat neoplasm. Understanding of KLF4 interactome and its genomics will be of great importance in resolving as to how 
cell maintains an orchestrated balance between the genes coding for tumor suppressors and tumor promoters. This 
phenomenon will be crucial in developing various preventive/curative strategies for various types of oncogenic processes. 
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