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Abstract 
Objectives: Silicon quantum dots (SiQDs) are of great interest for bio-imaging applications due to their tunable 
luminescence, low toxicity, unique surface chemistry, and high quantum yield. Most synthesis routes produce SiQDs that 
are not water-dispersible, making them unattractive for biological applications. Here, we show that Pluronic® block 
copolymers can encapsulate SiQDs to make them water dispersible and suitable for cancer imaging applications. 
Methods: Transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and temperature and 
pH stability measurements were used to evaluate these Pluronic®-encapsulated SiQDs (PSiQDs). The particles were also 
tested in targeted in vitro imaging and in vivo bio-distribution experiments. 

Results: Encapsulation with Pluronic® polymers renders the SiQDs water dispersible, preserves their optical properties, 
protects them from oxidation, and prevents aggregation. Surface modification of the PSiQDs with pancreatic cancer 
targeting moieties, anti-claudin-4 and anti-mesothelin, led to enhanced uptake of these nanoconstructs in comparison to 
PSiQDs modified with folate as the targeting moiety. 

Conclusions: The particles are stable at biological conditions, and show promise for targeted diagnostic applications 
without possessing elementally toxic components. 
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Introduction 
Research on quantum dot technology for biological applications aims to produce optical imaging agents that are useful for 
labeling, monitoring, and delivery [1, 2]. The unique advantages of QDs for these applications include bright luminescence, 
tunable emission spectra, broad excitation, and photostability [1-4]. Significant research contributions have been made 
towards the development [5-10] and biological applications [11-16] of QDs that are made from combinations of elements in 
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group II and VI of the periodic table (e.g. CdSe). Even though many successful demonstrations of the use of QDs in 
biological applications have been published, the elemental toxicity of heavy metal components of these QDs has raised 
concerns about their future clinical applicability [17-20]. Multiple approaches are being used to alleviate concerns related to 
releasing cadmium ions or other heavy metals, but extensive investigations are still required to fully understand QD 
toxicity [20, 21]. This has created a demand for non-heavy-metal-based QDs made from elements such as silicon; such QDs 
are much less toxic than Cd-based QDs [22]. In addition to the low elemental toxicity of silicon, its potential 
biodegradability to silicic acid, its abundance and low cost, and promising results of recent bio-imaging investigations 
indicate that SiQDs should be further investigated for biomedical applications [22-25]. Sailor’s group has demonstrated 
passive tumor uptake with porous silicon; however, the structure of those particles differs from the free-standing SiQDs 
considered here. It has also been demonstrated that properly encapsulated SiQDs can be used for active targeting of cancer 
cells [26] and tumors in vivo [22]. A few other studies have demonstrated in vitro imaging [27]. Kauzlaurch has shown water 
dispersible SiQDs can be doped with Mn and used for multimodal imaging of macrophages [27]. The emission spectrum of 
their silicon, however, was limited to the blue region of the spectrum, peaking at 441nm. He et al. showed that HEK2-293T 
cells can take up acrylic acid terminated SiQDs [28]. Even though some biological applications have been demonstrated, 
synthesizing water dispersible SiQDs remains a challenge and a subject of ongoing investigation [29]. Water dispersible 
SiQDs with narrow emission spectra (FWHM of ~ 60nm) have been synthesized by Kang et al. [30]. Their method involves 
the oxidation of small particles, which can be difficult to control and reproduce. The Veinot group recently investigated the 
effect of organic chain length on water-dispersible SiQD surfaces to improve the understanding of SiQD properties [29]. 

Addressing the fundamental surface coating issue to enable biomedical application of SiQDs is important for a number of 
reasons: 1) The surface coatings affect the luminescence of particles; the ideal surface coating will maintain optical 
properties. 2) The coatings provide functional groups for conjugation reactions; however, amine groups may quench SiQD 
luminescence, so simple methods used for creating amine termination on other QDs may result in degraded optical 
properties. 3) Silicon is biodegradable, and different coatings will have differing effects on biodegradation rates. 

Therefore, the main question being addressed in this article is, “What is the best surfactant, based upon the criteria given 
above, for utilizing SiQDs in medical applications?” Here, we present block copolymer coated SiQDs, (PSiQDs) that 
maintain the optical properties of SiQDs while providing reactivity needed for bio-conjugation. These are evaluated in 
targeted cancer cell imaging applications. Pluronic® block copolymers are used because of their biocompatibility, 
versatility as delivery vehicles for chemotherapeutic drugs and MRI agents, and their observed minimal effect on the 
optical properties of QDs. 

Materials and methods 

Materials 
Silane (SiH4, Voltaix, electronic grade, 99.999%), hydrofluoric acid (HF, Acros Organic, 48-51%), nitric acid (HNO3, 
EMD, 68%-70%), ethyl undecylenate (Acros Organic, 99%), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, 
Pierce Biotechnology, 98%-100%), anti-mesothelin (Clone 5B2, dilution 1:20; Novocastra, Newcastle Upon Tyne, United 
Kingdom), anti-claudin-4 (0.5mg/mL Invitrogen, Carlsbad, California), folic acid (Sigma-Aldrich, >98%), dimethyl 
sulfoxide (DMSO, Fisher Scientific, 99.9%), N-hydroxysulfosuccinimide (Sulfo-NHS, Fluka, ≥98.5%), and Pluronic® 
F127 NF Prill Surfactant (BASF Corporation) were all used as received if not otherwise noted. 

Preparation of silicon nanocrystals 
A fine powder of non-luminescent silicon nanocrystals was formed through high temperature CO2 laser pyrolysis of silane 
(SiH4) gas, a method developed and described in detail previously [31]. The resulting product was collected without 
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exposure to the air in a glove box to prevent any oxidation of the particle surfaces. Primary particle diameters in the 
aggregated powder averaged about 10nm. 

Preparation of photoluminescent SiQDs 
The non-luminescent particles were dispersed in methanol, 300mg per 30mL, using sonication. Then a 10:1 acid mixture, 
hydrofluoric acid (48 wt%, 100mL) and nitric acid (69 wt%, 10mL), was added to the SiQD suspension and the mixture 
was stirred for about 2 to 4 min. At the end of this mixing step, the particles were luminescent, but emitted at a wavelength 
longer than the desired wavelength. The solution was then added to 400mL of methanol to quench the reaction. A slight 
blue shift of the luminescence was observed during this quenching step. The SiQDs were then collected on a poly 
(vinylidene fluoride) (PVDF) membrane filter using a pressure filtration device (Millipore, 142mm diameter). The etched 
particles were washed four times with a water-methanol mixture (3/1, v/v), (500mL, 500mL, 50mL) to remove acid 
residue. Lastly, the particles were rinsed four times with 50mL of methanol. The filters upon which the particles were 
collected were sonicated in a vial containing ethyl undecylenate to remove the particles from the filter. The entire etching 
process was conducted in a glove box under a nitrogen atmosphere to prevent oxidation. This helps maintain the 
photoluminescence quantum yield (QY). This procedure is illustrated in Figure 1(A). 

Functionalization 
The cloudy dispersion of freshly-etched SiQDs in 20mL of ethyl undecylenate was placed into a vial containing a stir bar, 
which was then placed in a UV reactor under 254nm illumination. The double bond of the ethyl undecylenate reacts with 
the hydrogen-terminated surface of the SiQDs resulting in a Si-C bond. After reaction, the particles form stable dispersions 
in nonpolar solvents like chloroform, hexane, and toluene. The solution goes from cloudy to optically clear as the reaction 
goes to completion. The SiQDs were collected by centrifugation at 10,000 rpm. 

Preparation of F127COOH 
The triblock copolymer (F127) was modified to have carboxylic acid termination using published methods [32-34]. To a 
solution of toluene (100mL), pyridine (5mL), and F127 (25.0g, 1.95mmoL), maleic anhydride (1.93g, 19.5mmoL) was 
added. The resulting solution was stirred for 8 hr at room temperature under nitrogen. The product was then purified by 
precipitation from excess diethyl ether thrice. Finally 21.3g (85% yield) of F127-COOH, a light-brown solid, was  
obtained [32-34]. 

Micelle encapsulation 
The SiQDs and the modified Pluronic® F127 were each suspended in chloroform and mixed. The chloroform was then 
removed in a rotary evaporator, leaving a film of SiQD/Pluronic® on the flask wall. HPLC water was added and the 
dispersion was sonicated to encapsulate the nonpolar SiQDs within micelles formed by the the amphiphilic Pluronic® 
polymer. We used a 1:20 mass ratio of SiQDs: Pluronic® at a total (Silicon plus Pluronic®) concentration of ~5mg/mL for 
all experiments described below. 

Bioconjugation 
In separate experiments, the PSiQDs were conjugated to folic acid, anti-mesothelin, and anti-claudin-4. An EDC-coupling 
reaction was used to form an amide bond between the carboxyl groups on the PSiQDs, at the end of the hydrophilic 
segment of the Pluronic®, and a primary amine group on these reactants. Along with EDC, sulfo-NHS was used to 
stabilize the reactive intermediate of the EDC reaction, which is prone to react with water to re-form the carboxyl group. 
To conjugate the PSiQDs to anti-mesothelin or anti-claudin-4, we started from 1mL of the PSiQD sample. 8mg/mL 
solutions of EDC and sulfo-NHS were freshly made for each experiment using HPLC water. HPLC water solutions of 
anti-mesothelin and anti-claudin-4 were made at 2mg/mL (1.6mg of biomolecule in 0.8mL), and a DMSO solution of folic 
acid was made at 0.12mg of folic acid in 60µL. Then, 40µL of EDC was added to the PSiQD solution and stirred for 1 min. 
Then 40µL of sulfo-NHS was added while the stirring continued for 1hr. These steps were conducted at room temperature. 
Then the PSiQDs were pelleted out of the solution by adding 1mL of methanol and centrifuging at 10,000g for 15min. This 
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removed the EDC and sulfo-NHS. The particles were then redispersed in water and conjugated to folic acid or other 
targeted molecules which were added to the dispersion. The particles were washed with water and collected by 
centrifuging the sample three times. 

Cellular imaging 
The bio-conjugated samples were imaged with human pancreatic cancer cells (Panc-1) which were maintained in DMEM 
medium, with 10% fetal bovine serum (FBS) and appropriate antibiotics. One day before treatment, cells were seeded in 
35mm cell culture dishes. The next day, the cells, at a confluency of 70%-80%, were incubated with bio-conjugated SiQDs 
at 37ºC for two hours. Then, the cells were washed with PBS three times and imaged using a Leica laser scanning confocal 
microscope. The excitation wavelength used was the shortest available wavelength on the microscope, 405nm. 

Organ imaging 
The animal was housed at 24ºC and was exposed to 12 hour light/dark cycles. He was fed ab libitum with water and 
standard laboratory feed. Animal experiments were conducted in compliance with the guidelines set by the University at 
Buffalo (SUNY) IACUC. The animal was acclimated to the animal facility at least 48 hours before the experiment was 
conducted. A Balb C mouse was injected intravenously with the micelle encapsulated SiQD formulation. After 24 hours 
the mouse was sacrificed and dissected. The heart, liver, spleen, lungs, kidneys, and brain were removed. These organs 
were then imaged with the Maestro in vivo optical imaging system (CRI, Inc., Woburn, MA) using blue excitation (with a 
488nm short-pass filter), and a 580nm long-pass emission filter. 

SiQDs characterization 
The silicon nanoparticles were characterized by transmission electron microscopy (TEM, JEOL 2010) before and after 
encapsulation. Photoluminescence spectra (Fluorescence spectra) were recorded with a Fluorolog-3 Spectrofluorometer 
(Jobin Yvon; fluorescence spectra). The excitation wavelength was set to 350nm and the emission cutoff filter was set to 
400nm. In order to determine the QY, the PSiQDs dispersion emission was compared to that of rhodamine 6G dye 
solutions of matched absorbance. The hydrodynamic diameter was measured by dynamic light scattering (BIC, 90Plus). 
The zeta potential was measured with a BI-ZEL Electrode Assembly for aqueous and polar lipids (BIC 90Plus). The 
uptake of bioconjugated SiQDs into pancreatic cancer cells was confirmed by laser confocal imaging (Leica Microsystems 
Semiconductor GmbH, Wetzlerm Germany, laser excitation at 405nm).Temperature and pH studies were conducted using 
the Fluorolog-3 Spectrofluorometer mentioned above. 

Figure 1. Schematic of SiQDs plus Pluronic 
formulation. A: Hydrophobic SiQDs coated 
with ethyl undecylenate (covalently bound 
to the SiQD surface) were encapsulated with 
pluronic block copolymer F127COOH. B: 
Folic acid was bioconjugated to the surface 
of the micelle.  
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Results 
Transmission electron microscopy (TEM) imaging of red-emitting (650nm peak wavelength) SiQDs cast from organic 
media [Figure 2(A)] shows that the average size of these functionalized QDs is about 5nm. The blue circle highlights 
lattice fringes that show the crystallinity of the SiQDs. The lighter shade that can be seen around the dark core is due to the 
organic layer formed by functionalizing the QD with ethyl undecylenate. TEM images of PSiQDs cast from aqueous 
media are shown in Figure 2(B). These are the same SiQDs that can be seen in Figure 2(A), except they are now within 
micelles formed by F127COOH. The micelles are formed by the interaction of the ethyl undecylenate layer around the 
SiQDs and the poly (oxypropylene) (PPO) section of the F127COOH. As a result the poly (oxyethylene) (PEO) and 
carboxylate groups at the ends of the F127COOH are pushed to the outside of the micelle, forming a hydrophilic shell and 
making the micelles dispersible in water and other polar solvents. The size of the micelles ranges from 20-200nm, and the 
number of SiQDs encapsulated within each micelle varies with the overall size. At the expense of reduced yield, the 
dispersions can be filtered to achieve sizes as low as 20nm. Upon close observation of the low resolution TEM image 
[Figure 1(B), left panel)] small micelles within this range can be observed. 

 

Figure 2. TEM images of SiQDs before A: and after B: encapsulation with Pluronic® F-127COOH. To demonstrate the 
hydrophilicity of the particles, a sample of PSiQD suspended in HPLC water was added to a vial containing only 
chloroform. When exposed to 350nm UV [Figure 3(A)] only the aqueous phase shows luminescence. 
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Figure 3. Photograph of sample and photoluminescence and absorbance spectra. A: PSiQDs suspended in (i) HPLC 
water, above (ii) chloroform; B: Normalized UV-vis absorption (blue and green) and PL emission (red and black) 
spectra, in chloroform (before encapsulation) and in water (after encapsulation) C: PL emission spectra (350nm 
excitation) unnormalized, of red-emitting SiQDs. Each sample contains 1mg of SiQDs in 3ml solvent. The optical 
properties of these SiQDs were examined by UV-vis absorbance and photoluminescence spectroscopy. Figure 3(C) 
shows the unnormalized PL spectra of the same samples shown in Figure 3(B). 

The hydrodynamic diameter and zeta potential of PSiQDs were measured by dynamic light scattering. The average size of 
the original sample was 175nm and the zeta potential was -37mV [Figure 4(A)]. Upon dilution, the size of the micelles 
decreased slightly, down to 168nm after 100x dilution with water and 163nm after 100x dilution with saline solution. Note 
that after this dilution, the pluronic concentration is decreased from about 3.9 × 10-4 M to 3.9 × 10-6 M. The latter value is 
much closer to the critical micelle concentration (CMC), which according to the literature is 4.7 × 10-7 M, but it is not 
below it [32]. The zeta potential became more positive upon dilution, -30mV in 100x water and ~ 0mV in 100x NaCl. The 
average hydrodynamic diameter could be reduced to about around 20nm by filtration with a membrane with 200nm 
nominal pore diameter and centrifugation. 

The PL of a PSiQD sample was then measured under varying conditions of pH and temperature. The pH of the PSiQD 

sample was changed by the addition of HCl or NaOH. For pH values from 2 to 9, the intensity remained rather stable 

[Figure 4(B)] at about 80% of its highest intensity, obtained at pH 1. The intensity dropped dramatically to 40% of the pH 
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1 intensity at pH 10, to 20% at pH 11 and essentially disappeared at pH 12. The PL spectrum of the emission observed at 

pH 13 was different from that that at lower pH, suggesting that it did not come from the PSiQDs. Also, at pH 13 a white 

precipitate became visible after ~1 hour. The PL intensity of the sample was nearly constant with increasing temperature 

[Figure 4(C)]. Despite some irregularities in the overall trend, these results show that the intensity stays above 70% of its 

value at ambient conditions under physiological conditions. 

Figure 4. Physiological analysis results. A: Zeta potential and the effective hydrodynamic diameter of several different 
dilutions of a polar red-emitting SiQD sample. A-polar is the as-prepared PSiQDs, 10x water is the A-polar sample 
diluted 10x with water, others are A-polar diluted 100x with water (100xwater), A-polar diluted 10x with 10 mM NaCl 
(10x NaCl), A-polar diluted 100x with 10mM NaCl (100x NaCl). B: PL intensity as a function of pH. C: PL intensity as 
a function of temperature 

Laser confocal imaging (Figure 5) of Panc-1 cells incubated with folate-conjugated PSiQDs showed clear luminescence 

from the SiQDs however it was sparsely distributed. In order to test the uptake method the Panc-1 cells were saturated with 

3.5mM folic acid (FA) solution before adding the folate conjugated SiQDs. Due to competitive inhibition very little uptake 

of the particles was seen within the cells. 
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Figure 5. Confocal microscopy of pancreatic cancer cells treated with folate conjugated red-emitting SiQDs. Left 
Panel: Fluorescence; Middle Panel: Transmission; Right Panel: Overlay A: Cells after FA saturation with no uptake 
B: Cells with FA-conjugated PSiQDs showing some uptake 

The confocal images shown in Figure 6 show the targeting effect of bioconjugated micelle encapsulated SiQDs. With both 
anti-mesothelin [Figure 6(B)] and anti-claudin-4 [Figure 6(C)] there is a high concentration of the luminescent SiQDs on 
the surface of the cells, thereby labeling them. In the control images, no luminescence can be seen. This confirms that 
labeling occurs through receptor-mediated attachment. 

Figure 6. Confocal microscopy images of pancreatic cancer cells treated with antibody-conjugated PSiQDs. 
A: Control - unconjugated. B: Anti-mesothelin conjugated, and C: Anti-claudin-4 conjugated red-emitting SiQDs 
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Thus the main question is how to stabilize the SiQDs in an aqueous solution, and make them biocompatible while 
maintaining their optical properties. To encapsulate the SiQDs, they are suspended in chloroform with the Pluronic® and 
stirred. After the chloroform is removed, the Pluronic® SiQD film is redispersed in HPLC water. Polymer micelles are 
formed due to hydrophobic and hydrophilic interactions between the water, the hydrophobic particles, and the amphiphilic 
Pluronic®. 

The TEM images of the particles before and after encapsulation confirmed the presence of the particles within the 
Pluronic® The micelle diameters observed in TEM ranged from 20-150nm, a range that has previously been reported to be 
appropriate for use in vivo.[22, 26]. Thus, the Pluronic® effectively encapsulated the particles in micelles within a reasonable 
size range. 

The suspension test is another experiment done in order to assess how effectively the Pluronic® encapsulated the particles. 
Upon excitation of the particles, any non-encapsulated SiQDs that were only dispersible in organic solvent would have 
luminesced in solution (ii). Since all of the luminescence is observed in the top solution (i), the aqueous solution, we 
conclude that all of the particles have been encapsulated. Hydrophilicity is an important step in making SiQDs more 
biocompatibile and thus useful as in vivo imaging agents. 

The absorbance and PL spectra of red-emitting SiQDs before encapsulation and after [Figure 3(B)] show little difference. 
These spectra are similar to those seen in other studies [35]. The slight increase in apparent absorbance from the PSiQDS 
can be attributed to scattering from the micelles. The expected structure of the PL spectra can be seen, with a peak at 645 
nm. Figures 3(B) and Figure 3(C) show that the encapsulation process does not cause a shift of the PL spectra, nor does it 
decrease the intensity. Therefore, we conclude that the encapsulation process does not alter the optical properties of the 
SiQDs. The QY of the particles is estimated to be 25%. This is a great improvement over previously report QY values for 
SiQDs [36]. 

DLS measurements of hydrodynamic diameter were generally consistent with observations from the TEM images. The 
average hydrodynamic diameter of 175nm is somewhat larger than that observed in TEM. However, in the high vacuum 
environment of the TEM, the micelles are expected to collapse and all volatile components are removed. In solution, the 
hydrophilic domains of the polymer extend into the solvent, leading to a larger effective diameter. The degree of difference 
between DLS and TEM observations of size is typical of previous studies [37]. Even after dilution, the particles remained 
stably dispersed, because the concentration of the Pluronic® was still above the very low CMC of the polymer. Thus, these 
particles would be stable in aqueous environments typical of biological systems. 

Zeta potential was also measured to quantify the surface charge of the particles, since the Pluronic® being used had 
terminal carboxylic groups, which at biological pH should have a negative charge. This hypothesis was confirmed with a 
measured zeta potential of -37mV initially, and -30mV after 100x dilution with water. The negative value is attributed to 
the carboxylic groups added to the normally neutral F127 Pluronic®. In previous studies using pluronic to encapsulate 
SiQDs, the zeta potential was 0mV [38]. The addition of carboxylic groups is a very important difference, because these 
groups provide a chemical “handle” that can be further utilized for bio-conjugation either through electrostatics or through 
covalent bonding. 

The micelles proved to be quite stable over a broad range of pH and temperature, as evidenced by the maintenance of PL 
intensity and wavelength (Which would be degraded if the SiQDs were exposed to water). The PSiQDs maintained at least 
80% of their initial intensity from pH 2 - 10. This stability has been observed for other water dispersible SiQDs [37] and is 
even greater than another formulation that utilized carboxylic acid terminated surfactants [39]. This could be the result of 
the particles being further separated from the surrounding media. In the temperature study the particles proved to be stable 
at physiological temperature and higher. The stability is even greater than the formulation previously reported using 
phospholipid-PEG encapsulation [26]. 
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After the above-described characterization, particles were studied in vitro for their ability to target and label pancreatic 
cancer cells. With the terminal carboxylic acid functional group a peptide bond can be formed with a cancer targeting 
moiety that has a terminal amine group like folic acid, anti-claudin-4, or anti-mesothelin. With these targeting moieties 
there was a vast improvement in the cellular uptake. Similar results have previously been observed with heavy metal based 
quantum dots [40]. With this new formulation the clear visibility of the labeled cells is maintained without the toxicity 
concerns of heavy metal materials. 

The particles were then studied in vivo in a single animal to determine qualitatively where the particles collected within the 
body. As can be seen from the overlay image the particles are concentrated in the spleen and the liver. These results were 
expected due to the role that these organs play in the reticuloendothelial system (RES). RES capture is the dominant mode 
of removal from circulation for nanostructures of this size range. This experiment confirmed that the particles did not 
migrate to any unexpected areas like the heart, brain, or lungs. Previous papers have also reported concentration of larger 
nanoparticles in the liver and spleen 24 hrs post injection [41, 42]. 

Conclusions 
This study showed that carboxyl-terminated Pluronic® can form effective coatings for creating stable aqueous dispersions 
of SiQDs. These amphiphiles do not quench or shift the luminescence of the particles while making them water dispersible 
and suitable for biological applications. These PSiQDs are also stable at physiological pH and temperature, comparably so 
to previous studies, upon some of which there are improvements with this formulation. The surface can readily be 
modified to incorporate cancer targeting molecules using the carboxylic groups, which also bestow electrostatic 
characteristics. The in vivo experiments showed no concentration of the particles in the heart, lungs, or brain. The micelles 
were only in the liver and spleen, as a result of RES clearance of the particles. This work moves SiQD in the direction of 
high quantum yield aqueous formulations that can be competitive with organics and useful for tumor targeting in cancer 
applications. 
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