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Abstract 

The effects of COVID-19 have been devastating globally. However, countries have essential asymmetries regarding 
the disease spread dynamics and the respective mortality rates. In addition to containment strategies and boosting 

growth and economic development in the face of the COVID-19 pandemic, society calls for solutions that allow the 
development of vaccines, treatments for the disease, and especially, indicators or early warnings that anticipate the 
evolution of new infections and deaths. This research aims to track the total deaths caused by COVID-19 in the most 
affected countries by the pandemics after the approval, distribution, and implementation of vaccines from 2021. We 
proposed an Autoregressive Integrated Moving Average (ARIMA) specification as a first adjustment. Subsequently, 
we estimate the conditional variance of total deaths from an Exponential Generalized Autoregressive Conditional 

Heteroscedasticity (EGARCH). Finally, we compute a rolling density backtesting within a 7-day rolling window to 
demonstrate the robustness estimation for COVID-19 mortality. The work's main contribution lies in exhibiting a 
tracking indicator for volatility and COVID-19 direction, including a weekly window to observe its evolution.  

Keywords: COVID-19 tracking, rolling conditional variance, ARIMA, EGARCH, forecasting 
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1. Introduction 

The health crisis caused by the SARS-COV-2 coronavirus revealed the degree of vulnerability of homo sapiens and 
their health, social, economic, and political institutions. Empirical evidence indicates several costs associated with the 
COVID-19 besides nearly five million deaths and 240 million infections. For example, reduction in world economic 
activity, abrupt falls in international financial markets, job losses, business closings, decrease in patterns of social 

mobility, a significant increase in domestic violence cases, and other disorders of the human psyche as a response to 
confinement measures. Likewise, there is an increase in school dropout and backwardness levels before adopting new 
paradigms and educational strategies and the lack of information technology infrastructure in many regions of the 
planet, to mention a few aspects (Ekinci, 2021). 

The impact of the COVID-19 pandemic also showed the lack of attention in health systems infrastructure, insufficient 
resources allocated to research and development on bacteriological issues, and the development of vaccines. Likewise, 
the adverse effects of the coronavirus seem to reflect the progressive strengthening of globalization and financial 
market integration, causing diverse economic and public health damage. 

The international scientific community analyses the causes and effects of the SARS-COV-2 virus from a holistic 
perspective to better understand the spread of the pandemic, containment techniques, and the design of strategies to 
face its multiple harmful effects. Thus, forecasting the evolution of the COVID-19 disease through new infections and 
deaths is an urgent and essential activity (Sahai, Rath, Sood, & Singh, 2020). This work adds to the efforts that have 
addressed the causes, consequences, and implications of the COVID-19 pandemic on different areas of human 
endeavor by modeling the behavior of daily deaths in the most affected countries after approval, distribution, and 

implementation of vaccines, from April 1, 2020, to September 20, 2021. Starting from an Autoregressive Integrated 
Moving Average (ARIMA) specification, we estimate the conditional variance of total deaths using an Exponential 
Generalized Autoregressive Conditional Heteroscedasticity model (EGARCH). Finally, we calculated a rolling 
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backtesting within a 7-day rolling window to demonstrate the robustness estimate of COVID-19 mortality. The work's 
main contribution is to show a volatility monitoring indicator and COVID-19 direction, including a weekly window to 
observe its evolution. Our research results can be used to assist in the design of early warnings that allow taking 
preventive, health, and economic measures, in the face of unforeseen shocks, such as the COVID-19 pandemic. 

The second section discusses relevant literature to get an overview of factors that, from the financial sphere, have 
contributed to the transmission of effects between different economies; several consequences of the pandemic are 
discussed along with recent proposals to model the monitoring of its deadly effects. Sections three and four offer the 
methodological aspects and the discussion of the results obtained, respectively. Finally, section five presents the 

conclusions and recommendations of the study. 

2. Literature Review 

2.1 SARS-COV-2 Effects 

The health crisis caused by the COVID-19 pandemic has had essential consequences on world dynamics. Even though 
its effects have been compared with, until then, the most significant health crisis documented in the 20th century: the 
1918 Spanish H1N1 influenza pandemic. The COVID-19 crisis begins at the end of 2020 as a public health problem: a 

new coronavirus, with high levels of contagion and mortality, identified as SARS-COV-2, in Wuhan, capital of the 
Hubei province in China, and that quickly spread to practically every country in the world (Sahai et al., 2020). In 
response, the World Health Organization (WHO) was forced to decree the pandemic in March 2001. As with the 1918 
crisis, the one caused by COVID-19 has also triggered countless studies and investigations in the more diverse areas of 
knowledge (De Salles, 2021). 

There are multiple similarities by comparing the effects of the 1918 H1N1 versus the current COVID-19 health crises. 
In the first of them, some acute health effects were identified, such as hospital costs, lost workdays, drug costs, and, of 
course, the number of deaths. On the other hand, within the economic effects, the reorientation of public spending, the 
increase in resources on health and economic aid to vulnerable sectors, the decrease in fiscal income, and the 
corresponding fiscal deficit of the government stand out in addition to multiplier effects, economic and significant 

changes in the behavior pattern of aggregate consumption, to mention just a few aspects (Mackellar, 2007). The 
COVID-19 pandemic has directly affected social and economic life in practically all the world's countries, negatively 
affecting financial markets, economic agents' expectations through the money, exchange, credit, and capital markets 
and their corresponding effect on financing, saving, and investment (De Salles, 2021). The advance of the health 
ravages of the COVID-19 pandemic, particularly the number of deaths, decreases confidence in financial markets in 
the face of expectations of prolonged lockdowns and a slow recovery in economic growth (Daehler, Aizenman, & 

Jinjarak, 2021). 

The COVID-19 crisis has also caused significant damage to supply chains, loss of employment, increased poverty 
levels, social unrest, and even, it has had significant effects on education and learning, among other manifestations of 
the human psyche (Ekinci, 2021). Regarding economic impacts, the COVID-19 pandemic triggered falls in global 

capital markets value of approximately 30%, because of the high levels of contagion and mortality of the 
SARS-COV-2 virus, as well as to the measures of confinement and reduction of economic activity (Ali, Alam, & Rizvi, 
2020). 

The COVID-19 pandemic had significantly negative impacts on emerging economies; besides, the potential to unleash 

the greatest crisis in such economies can transmit harmful effects to their developed counterparts (Cakmakli, Demiralp, 
Kalemli-Ozcan, Yesiltas, & Yildirim, 2020) According to the WHO, table 1 offers a list of the countries with the most 
deaths from SARS-COV-2. It is important to note that six of these countries (86%) correspond to emerging economies. 

 

Table 1. Countries with the highest deaths number by COVID-19 

Country Deaths Confirm cases Country Deaths Confirm cases 

USA  657 114 41 066 110 Italia 130 027 4 613 214 

Brazil 587 066 21 006 424 Colombia 125 687 4 931 563 

India 443 497 33 316 755 Iran 115 167 5 340 656 

Mexico 267 969 3 516 043 France 113 681 6 710 718 

Peru 198 799 2 161 358 Argentina 113 640 5 226 831 

Russia 195 041 7 194 926 Germany 92 769 4 101 931 

Indonesia 139 682 4 178 164 Spain 85 548 4 918 526 

United Kingdom 134 446 7 282 814       
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In the months that followed the declaration of the COVID-19 pandemic, emerging countries began to show symptoms 

of economic-financial deterioration due to the increase in the cost of external financing, significant reductions in 

commodity prices, depreciation of currencies, the collapse of demand, capital withdrawals, among other aspects (Note 

1). In response, the governments of these economies, as in some cases in their advanced counterparts, increased their 

domestic debt through unconventional policies that allowed them fiscal resources to face the challenge imposed by the 

pandemic (Rodríguez, Gurrola, & López, 2021). Notwithstanding, the ravages of the COVID-19 pandemic were more 

significant in Latin American; a third of the countries in table 1 belong to this region where their economies are more 

susceptible to receiving the effects of a global crisis, such as that caused by the SARS-COV-2 virus (De Salles, 2021). 

Experts on the subject of pandemics have pointed out other alarming aspects to consider about the SARS-COV-2 virus. 

On the one hand, the pandemic evolution suggests that the entire world population will face the virus, whether 

vaccinated or not. On the other, the appearance of various outbreaks is inevitable, so it will probably become a global 

endemic virus. In a recent study, (Ramírez & Jiménez, 2021) studied the evolution of the COVID-19 pandemic in a 

group of advanced and emerging economies concerning their economic growth. Using dynamic modeling and machine 

learning techniques, the authors find that the cyclical trajectory of CODID-19 suggests its duration may be longer than 

expected according to official reports up to 9 years unless there are significant measures regarding the implementation 

of vaccines or the strengthening of health policies. 

2.2 Modelling COVID-19 Deaths' Behavior 

The effects of the COVID-19 pandemic triggered the scientific community mobilization for design diagnostic and 

mitigation strategies and the search and development of treatments and vaccines. Part of the community's efforts 

focused on proposals to forecast the evolution and effects of the pandemic in various aspects and phenomena. It is 

highlighted that in the area known as biosurveillance, in the last 20 years, interest in prospective studies on infectious 

disease outbreaks has increased (Sahai et al., 2020).  

Although the pandemic was initially a public health phenomenon, it can also be characterized as an unforeseen 

disturbance or shock through time series analysis The Auto-Regressive Integrated Moving Average (ARIMA) models 

are among the most popular specifications for making time-series forecasts (Note 2). Although such models became 

popular from applications in economics and finance, they have been widely used to anticipate infectious outbreaks 

thanks to their simplicity, systematic structure, and, above all, the level of effectiveness of its forecasts (Wang et al., 

2018). Some recent examples of ARIMA models for forecasting the spread of the COVID-19 pandemic are found in 

Sahai et al., (2020) and (Ceylan, 2020). The first one uses an ARIMA model in the five countries with the highest 

number of infections: United States, Brazil, India, Russia, and Spain; the authors found acceptable results at 18 days, 

under the criteria of the mean absolute deviation (MAD) and the percentage of mean absolute error (MAPE). Ceylan 

(2020) uses the ARIMA methodology in Italy, Spain, and France, obtaining a good level of forecast adjustment under 

the minimum MAPE criterion. 

Shinde et al., (2020) offer an extensive literature review on forecasting tools, impact, and control measures of the 

COVID-19 pandemic. After analyzing the available evidence, which they classify into four groups: big data, social 

media, mathematical models and stochastic theory and machine learning techniques, the authors assure the urgency of 

incorporating into the forecast models considerations such as the multiple peaks that have been documented in the 

short term as well as tracking newly infected cases. Ekinci (2021) reaches similar conclusions since, based on the 

limitations indicated to the ARIMA models, it raises the need to consider the conditional variance and asymmetric 

effects, the heavy-tail distributions of the daily growth rate, which characterize the evolution of COVID - 19 pandemic. 

The author explores several possibilities of the generalized autoregressive conditional heteroscedasticity family of 

models -GARCH-, finding that the asymmetric ARMA-GARCH and GARCH specifications produce the best fits, 

according to the Mean Square Error (RMSE) criterion. 

The ideas developed in the previous paragraphs bring a couple of essential aspects to the table for academic discussion. 

First, it is necessary to develop and implement early warning systems, allowing anticipating the unwanted effects 

caused by the SARS-Cov-2 virus in a more timely manner. Second, such efforts must recognize how the COVID-19 

pandemic has been evolving. In this way, such early warning systems and prediction models must consider the 

conditional variance, the asymmetric effects, and the heavy-tailed distributions observed in the growth rate evolution 

of the new daily confirmed cases. This study aims to contribute to this effort. 
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3. Methodological Issues 

3.1 COVID-19 Death Rates Tracking 

This section presents the COVID-19 tracking from total deaths using daily data from April 1, 2020, to September 20, 

2021. This sample selection allows to gather homogeneous information for all countries studied and collected from 

Our World in Data open-source database. We use logarithmic differences to display the deaths rate as follows: 

     (
  

    

) 
(1) 

Where   refers to death’s rate,    is the total deaths in time t and      in the previous period. Figure 1 presents the 

evolution of the death rate. From April to June 2020, high death rates are concentrated in most countries due to the 

spread of COVID-19. As sanitary measures and lockdown to quash COVID-19 outbreaks were implemented, death 

rates decreased between 5% to 2%. Among the cases, India and Argentina stand out, showing rises in their death rate 

(close to 20%) in June and October 2020, respectively, while Spain had a significant reduction (-5%) in May 2020. 

Likewise, Colombia and Mexico had crucial rebounds on the same date, close to 10% growth rates. 

 

 

Figure 1. Death rate from April 2020 to September 2021 

 

Nevertheless, the story in 2021 is different for the evolution of death's rates due to the approval of vaccines such as 

Pfizer / Biontech (Germany), AstraZeneca (United Kingdom), Moderna (USA), Johnson & Johnson (USA), Sinovac 

(China), Cansino Biologics (China) to name some of the most popular and firstly approved. Likewise, the case of the 

Sputnik vaccine from Russia, despite not being supported by the WHO, is still one of the most efficient (Jones & Roy, 

2021). 

Figure 2 represents only the death rates from January 2021 to September 20, 2021, where it is observed that the rates 

are reduced by at least 3% for the first quarter of 2021 in most countries except for Germany and the United Kingdom 

(UK). In addition, figure 2 also shows the effects of the Delta variant of COVID-19, which is characterized by a 

rebound in contagions and higher countries' death rates. Those that suffered the most significant damage in terms of 

deaths were India in April 2021 (close to 2%), Mexico in June (close to 2%), Indonesia in July exceeding 2%, while the 

other countries were around 1%. 
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Figure 2. Death rate from January 2020 to September 2021 

 

The differences between the annualized dispersions (standard deviation) also reflect a significant change. Table 2 

shows that from April 2020 to September 2021, Mexico is the country that presents a more substantial variation in 

terms of death rates (57.27%), while Iran presents the minimum with 9.69%. However, the data split by year shows that 

the highest growth rates involve Mexico with the highest volatility (74.38%) and Iran with 10.18%. Finally, from 

January 2020 to September 2021, Germany had the highest standard deviation (9.99%) while Russia was the lowest 

with 2.40%. Overall, there is a significant reduction in the standard deviation concerning the death rate in 2021. 

 

Table 2. Death rate from January 2020 to September 2021 

Country 
Annual  

SD % 

2020 

SD % 

2021 

SD % 
Country 

Annual  

SD % 

2020 

SD % 

2021 

SD % 

USA 32.75 43.70 4.21 Italy 10.96 14.30 3.23 

Brazil 46.42 60.87 4.49 Colombia 47.15 60.04 3.74 

India 48.07 61.07 8.24 Iran 9.69 10.18 2.75 

Mexico 57.27 74.38 4.80 France 26.59 36.19 3.74 

Peru 45.49 59.47 3.83 Argentina 36.02 43.29 3.68 

Russia 50.38 65.49 2.40 Germany 31.54 41.84 9.99 

Indonesia 23.89 30.23 7.64 Spain 15.96 21.37 4.78 

UK 32.01 43.17 6.72         

Note: SD for standard deviation 

 

3.2 ARIMA Approximation 

Since death rates represent each country's univariate (scalar) time series, we use an Auto-Regressive Integrated 

Moving Average (ARIMA) model to identify dependence from lagged observations and residual errors. Using the 

traditional Box & Jenkins (1970) notation. The death rate throughout the time      is now introduced with the 

ARIMA model, as shown in equation 2: 
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     ∑       

 

   

∑         

 

   

                

(2) 

Where    is the current value of the series and depends linearly on its previous values (Autoregressive -AR- Process) 

and last noises (Moving Average -MA-process) plus the error term that is assumed to be white noise, meaning that the 

process is stationary. We use the Augmented Dickey-Fuller (ADF) test for unit root detection, if    rejects the null 

hypothesis of unit root presence, then it is assumed that    is stationary in a weak sense; meaning that death rates have 

a constant mean and variance for all the samples (           . Table 3 display the results for the ADF test. 

 

Table 3. Augmented Dickey-Fuller test for death rates 

Country ADF Test Country ADF Test 

USA 
-0.1433 

(0.9999) 
Italy 

-0.2564 

(0.9999) 

Brazil 
-1.7532 

(0.6798) 
Colombia 

-0.9923 

(0.9383) 

India 
-1.1403 

(0.9146) 
Iran 

-1.2084 

(0.9036) 

Mexico 
-1.9274 

(0.6065) 
France 

-1.232 

(0.8994) 

Peru 
-3.9407** 

(0.0124) 
Argentina 

-0.8237 

(0.9586) 

Russia 
-2.015 

(0.5696) 
Germany 

-3.0723 

(0.1243) 

Indonesia 
-0.8735 

(0.9542) 
Spain 

1.701 

(0.7018) 

UK 
-0.6842 

(0.9711) 
    

Note. The Dickey-Fuller statistic is reported, and the p-value is in parentheses to test the null hypothesis that death rates 

have a unit root. The symbols *, ** and *** denote significance at 10%, 5% and 1% respectively. 

 

Table 3 indicates that all mortality rates, except for Peru, present unit root problems. In that sense, it is necessary to 

capture the autocorrelated values in the AR and MA components to eliminate unit root problems. Table 4 exhibits the 

results of combining different numbers of lags       for AR and MA. The Akaike criterion (AIC) is used to define the 

model that best fits the series performance. 

 

Table 4. Best ARIMA fitting 

Country 
Best ARIMA 

fitting 
AIC Country 

Best ARIMA 

 fitting 
AIC 

USA (2,0,4) -2815.3366 Italy (4,0,0) -3094.9894 

Brazil (1,0,0) -2547.2585 Colombia (2,0,0) -3164.4818 

India (3,0,0) -2714.3175 Iran (1,0,2) -3326.3698 

Mexico (2,0,0) -2403.9471 France (5,0,0) -2660.6084 
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Peru (4,0,0) -2802.6155 Argentina (4,0,0) -2619.6799 

Russia (3,0,1) -3316.4354 Germany (1,0,3) -2208.3170 

Indonesia (1,0,2) -2596.6046 Spain (5,0,2) -2468.4010 

UK (2,0,1) -2631.2499     
 

 

Once the ARIMAs estimators are obtained, the Ljung Box test is performed on the residuals to verify if autocorrelation 

problems are solved. A significant p-value rejects the null hypothesis that the time series does not present 

autocorrelation. Another way to interpret this test is that residuals are independently distributed. Likewise, the ARCH 

effects test is incorporated to identify non-linear autocorrelation in the squared residuals. The ARCH effects test for the 

null hypothesis of homoscedastic residuals from the ARIMA output. Table 5 shows the results. 

 

Table 5. Residual test 

Country 
Ljung-Box 

(p-value) 

ARCH-Effects 

(p-value) 
Country 

Ljung-Box 

(p-value) 

ARCH-Effects 

(p-value) 

USA 0.8585 0.000*** Italy 0.5056 0.000*** 

Brazil 0.7167 0.000*** Colombia 0.2464 0.000*** 

India 0.9906 0.9999 Iran 0.9903 0.000*** 

Mexico 0.4372 0.2094 France 0.8908 0.000*** 

Peru 0.3130 0.0057** Argentina 0.7432 0.1819 

Russia 0.3105 0.000*** Germany 0.9144 0.000*** 

Indonesia 0.9660 0.4134 Spain 0.9770 0.000*** 

UK 0.0697 0.000***       

 

Table 5 shows that the autocorrelation problems are solved from the ARIMAs estimation for each country. For the 

ARCH effects test, the homoscedasticity of the residuals is rejected for all countries except for India, Mexico, 

Indonesia, and Argentina. Hence, it is necessary to incorporate additional information into the ARIMA proposals to 

measure the clustering formation of death rates (causing the non-linear autocorrelation of the residuals). In this sense, 

we use an Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH). EGARCH models 

allow capturing volatility clustering and the asymmetry effects in death rates for all countries. 

4. Results Discussion 

4.1 Conditional Variance 

To capture volatility clusters in   , we start from a Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) model defining    from equation 1 as the conditional variance of    (equation 3). 

  
    

                       (3) 

Being   
  the squared residual conditioned to its lagged squared errors (ARCH process). By making   

  recursive and 

allowing the conditional variance to be dependent on its lags, the equation for the conditional variance is: 

  
          

        
  (4) 

Equation 4 represents a GARCH (1,1) process where   
  is the conditional variance,   is the intercept of variance 

equation,       
  is the ARCH process indicating the previous volatility, and       

  is the fitted variance in the last 

period. Nevertheless, the GARCH models are symmetric, meaning no difference between positive and negative shocks 

on conditional volatility. Likewise, GARCH models lack leverage effects, omitting shocks magnitude over   
 , 

whether positive or negative (McAleer, 2015). We consider the traditional Nelson (1991) EGARCH (1,1) model to 

capture asymmetry effects in equation 5. 
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    (5) 

Nelson's (1991) proposal allows no sign restrictions on (     ). The   indicates whether the asymmetry exists for 

EGARCH when    . Leverage effects show up when     and        . (Ramírez & Jiménez, 2021) The 

results of all estimations, including the ARIMA mean equations, are represented in appendix 1. For all the countries, 

    confirms the asymmetry effects. It is worth noting that a skewed t-Student distribution is used to catch fat tail 

formations in death rates. 

         

{
 

 
  

     
 [          ]        

 

 
  

     
 [          ]        

 

 

 (6) 

Where    is distributed as a skewed t-Student and  [        ] is the density function. Parameter   refers to 

symmetry, and   determines the presence of fat tails. Finally, both   and   are the traditional mean and variance 

parameter for a noncentral t-distribution.  

  
 (

   
 

)√   

√  (
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  (   
 

  
  )     

(7) 

4.2 ARMA-EGARCH Rolling Window and Forecast Fitting 

Figures 3 to 10 show the annualized volatility of death rates (black line) while the estimated volatility (  ̂ 
 ) is 

represented by the red line and is also annualized. Both annualized volatility and estimated volatility are seven days 

smoothed to show the weekly performance of death rates ( ). Likewise, we compute the rolling conditional volatility 

from ARMA-EGARCH models with seven days refitting to get estimations accuracy. 

 

 
Figure 3. Seven days rolling conditional volatility vs. tracking: USA and Brazil 
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Figure 3 presents the annualized volatility in a 7-day rolling window vs. the track estimated from the 

ARMA-EGARCH models proposed for each country. Below them are the absolute returns in terms of COVID-19 

deaths. In the United States panel, the annualized death rates decrease from 10% to 2% from January to July 2021; 

however, the track shows the rebound in deaths from August 2021 to reach a maximum of 6% at the end of September 

2021. Regarding the predicted vs. realized conditional volatility, the result shows overestimations in some points of 

May, June, and July, resulting from the sudden rises of 4 and 3% in May and June, respectively. In this sense, the better 

adjustment corresponds to Brazil; the forecast better captures its volatility. The latter is also reflected on the track, 

slightly ahead of Brazil's 12% increase in deaths in April 2021. 

 

 
Figure 4. Seven days rolling conditional volatility vs. tracking: USA and Brazil 

 

Figure 4 shows a similar analysis for India and Mexico. India's track adapts appropriately to the volatility peaks of 

death rates. Its highest dispersion was 15% in July and approximately 10% in August. After the sharp rebound in July, 

the forecast overfitted the volatility's impact and stabilized about 15 days later to re-adjust its behavior. In Mexico's 

case, figure 4 shows an increase in death rates in February, May, and July 2021 of 20%, 15%, and 22%, respectively. In 

both cases, the track correctly follows the conditional volatility direction in a weekly window. At the same time, a 

robust adjustment is also observed for the forecast, considering the moments of most outstanding dispersion. Hence, 

the ARMA-EGARCH track for Mexico turns out to be one of the most accurate. 
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Figure 5. Seven days rolling conditional volatility vs. tracking: Peru and Russia 

 

Figure 5 shows the annualized rolling window for Peru and Russia. Peru has more death rates volatility fluctuating 

between 2% and 6% from February to June 2021. Its highest rebound was in July 2021 with 8%, and after that, the 

volatility of death rates remained below 2%. Peru's volatility forecast has a good fit except for March, when the 

prediction overestimates actual data. The track for Russia shows in a general way the gradual fall that the country has 

had in death rates. During some moments of volatility, such as June 2021, the track does not fully catch this peak in the 

rolling window. For the daily forecast, the estimate reacts to the increase in death rates in July, remaining accurate to 

the volatility registered until September 2021. 

 

 
Figure 6. Seven days rolling conditional volatility vs. tracking: Indonesia and UK 
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Figure 6 offers corresponding Indonesia and the UK analysis. The first country has the highest levels of volatility in 

February (13%), April (10%), and from July to September with peaks of 10% as well. The resulting track captures 

these movements, and in terms of forecasts, the only lag is in February, where the model overestimates the volatility of 

death rates. The sharp fall in UK's death rates volatility stands out, going from 15% in January 2021 to less than 1% 

from April to September 2021, with rises close to 1% in September. The forecast overfits February's values for the UK. 

For the rest of the series, the model fits appropriately. 

 

 
Figure 7. Seven days rolling conditional volatility vs. tracking: Italia and Colombia 

 

Figure 7 shows the results for Italy and Colombia. The highest Italy's death rates correspond to January (5%) and April 

(4.9%); the track correctly follows the deaths rate's volatility. The forecast offers a good fit except for May. Colombia's 

rolling weekly window has one of the best adjustments of all countries in the sample; it generates an accurate track for 

all the volatility peaks generated in May, July, and September with rates of 5%, 4%, and 4.5%, respectively. The 

forecast also fits well when capturing the greatest dispersion moments. 
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Figure 8. Seven days rolling conditional volatility vs. tracking: Iran and France 

 

Figure 8 includes the results of Iran and France. Iran's death rate volatility in May (3 peaks of 3% each), August, and 

September 2021 (2%). Despite this, Iran's death rate volatility is lower than some countries analyzed (such as Indonesia, 

Mexico, or India), where the peaks in death rates reach up to 10%. Italy's death rate volatility forecasted is consistent 

except for May, where the forecast overestimates real value. Although France's track generally follows the death rates 

behavior, April's effect shows a 10% rebound. The previous is consistent with the forecast; there is a lag between the 

estimation and the observed volatility for the first months. 

 

 
Figure 9. Seven days rolling conditional volatility vs. tracking: Argentina and Germany 
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Figure 9 displays the corresponding analysis for Argentina and Germany. Argentina's track underestimates the effects 

of death rates volatility, with values oscillating between 4 and 8% for most of the sample, except May with peaks of 

10% and a substantial decrease of 3% in September 2021. On the other hand, Germany's track correctly records the 

behavior at the end of January 2021; however, this country presents a similar situation to the UK, where it goes from a 

high death rate (30%) to below 1 % as of June 2021. February's forecast offers a significant inconsistency as in April 

and June 2021, with a couple of overestimated values in daily volatility.  

 

 
Figure 10. Seven days rolling conditional volatility vs. tracking: Spain 

 

Finally, Figure 10 shows Spain's results. The track appropriately follows the annualized volatility in the rolling weekly 

window. However, an underfitting forecast is observed in April 2021, and two overestimates in May and early 

September for daily conditional volatility. 

5. Conclusions 

The resulting SARS-COV-2 coronavirus pandemic revealed significant levels of weakness and vulnerability in the 

health, social, economic, and political institutions to face the unexpected health crisis. The former is consistent with the 

havoc in several aspects of the human dynamic, considering multiple health and economic ravages caused by the 

COVID-19 pandemic. To better understand the spread's pandemic dynamic, containment techniques, and the design of 

strategies to face its multiple harmful effects, the entire scientific community has committed to analysing the causes 

and consequences of the new coronavirus from a holistic perspective. Efforts that allow forecasting the evolution of 

SARS-COV-2 through new infections and deaths is an urgent and essential activity. 

This work contributes to these concerns by offering empirical evidence on the pandemic's daily deaths behavior in the 

most affected countries after the approval, distribution, and implementation of vaccines, from April 1, 2020, to 

September 20, 2021. Starting with an Autoregressive Integrated Moving Average (ARIMA) specification, we estimate 

the total death conditional variance, using an exponential Generalized Autoregressive Conditional Heteroscedasticity 

model (EGARCH). Finally, we calculated a rolling backtesting within a 7-day rolling window to demonstrate the 

robustness of our COVID-19 mortality forecast. 

Overall, our estimates accurately track death rates volatility in all the countries analysed; the best adjustments 

correspond to Colombia, Indonesia, Mexico, and Peru. Notwithstanding, in some cases (USA, Iran, Argentina, 

Germany, and Spain), the forecast overestimates the daily death rates volatility, being the main limitation of the study. 

However, it is essential to remark the forecast quickly adjusts to the actual behavior of the series.  

Future research should improve understanding of the spread of the new contagion cases dynamics. For example, other 

time series approaches allow the analysis of impulse-response functions, considering the effect of extreme values in the 

prediction models and exploring potential effects of cointegration with different economic and health phenomena. 

Likewise, it is worth considering other models of the GARCH family that also assume asymmetric effects, such as the 

Threshold GARCH (T-GARCH) or GJR-GARCH models, to name just a few. 

Beyond proposing a methodology to track the spread rate of the COVID-19 pandemic from the information contained 

in the volatility clusters of new infections, the study's main contribution is that the results obtained can contribute to the 

design of strategies allowing anticipate unexpected shocks. 
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Notes 

Note 1. The growth rate of emerging markets was already showing signs of retreat since 2013 with the taper tantrum, a 

term used to describe the markets' reaction to the reduction of expansionary policies carried out by the Federal Reserve 

-FED.  

Note 2. See Ekinci (2021) for a comprehensive review of studies that have addressed forecasts of the COVID-19 

pandemic by using ARIMA models. 
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Appendix 1. Estimation Output From ARMA(p,q) and EGARCH(1,1) 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/4.0/). 


