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Abstract 

This study utilizes panel data from 30 Chinese provinces spanning 2007 to 2023 and integrates machine learning and 

graph neural network (GNN) approaches to examine the spatial dynamics of carbon emissions. It aims to 

systematically evaluate the impact pathways of the digital economy on carbon intensity and to uncover its spatial 

diffusion patterns and regional heterogeneity. The empirical findings are threefold. First, the digital economy 

significantly reduces carbon intensity, consistent with the Environmental Kuznets Curve (EKC) hypothesis, and this 

effect exhibits clear heterogeneity across economic development levels and regions. Second, due to the existence of 

spatial spillover effects, GNN models outperform traditional machine learning methods in carbon emission 

prediction tasks. Third, carbon intensity displays strong temporal inertia and negative spatial spillovers across 

regions. Notably, spatial diffusion capacity and sensitivity to the digital economy vary substantially: central and 

western regions exhibit stronger spillover effects, northeastern provinces show more pronounced internal feedback 

mechanisms, while eastern coastal areas demonstrate relatively weaker effects. Overall, this study expands the 

analytical perspective on the digital economy's role in carbon mitigation and provides theoretical and empirical 

support for the design of differentiated emission reduction policies and coordinated regional governance. 

Keywords: digital economy, carbon emissions, machine learning, GNN, spatial spillover effects 

1. Introduction 

As global climate change and environmental pollution intensify, the transition toward a low-carbon economy has 

become a pressing concern for the international community. In China in particular, rapid economic growth has been 

accompanied by mounting energy consumption and carbon emissions, raising the critical question of how to balance 

economic development with environmental protection. In response, classical theories—especially the Environmental 

Kuznets Curve (EKC) hypothesis proposed by Grossman and Krueger (1991)—suggest that the relationship between 

economic growth and environmental degradation follows an inverted U-shape, providing a valuable theoretical 

framework for exploring sustainable development paths. Against this backdrop, the emerging digital economy offers 

a promising mechanism for reducing carbon emissions through industrial upgrading, improved resource allocation 

efficiency, and the diffusion of green technological innovation. 

However, despite a growing body of empirical evidence supporting the emission-reduction potential of the digital 

economy, notable gaps remain. First, existing studies are largely based on aggregate analyses and often overlook 

differences across regions and levels of economic development. Second, research methods to date have not fully 

integrated traditional machine learning techniques with more recent approaches such as Graph Neural Networks 

(GNN), limiting the ability to capture the spatial diffusion and networked interdependence of regional carbon 

emissions. Third, there remains a lack of systematic analysis of the spatial transmission mechanisms and regional 

heterogeneity underlying carbon emission patterns. Addressing these gaps is not only critical to advancing theoretical 

understanding of the digital economy’s environmental impacts, but also essential for designing differentiated and 

effective green transition policies. 

Considering this, this study sets out three key objectives. First, it extends the traditional EKC model by incorporating 

digital economy variables to test the validity of the EKC hypothesis and explore the carbon mitigation effects of 

digital development. Second, it compares the predictive performance of traditional machine learning models with 
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GNN-based approaches to assess the suitability and accuracy of different methodologies. Third, it combines spatial 

econometric models with GNN-based visual analyses to investigate the spatial spillover effects of the digital 

economy on carbon emissions and uncover the underlying mechanisms and heterogeneity of spatial transmission. 

This study contributes to the existing literature in several ways. Theoretically, it enriches the EKC framework by 

offering new insights into the digital economy–carbon emissions nexus. Methodologically, it introduces an 

innovative integration of econometric modeling and GNN techniques to analyze spatial spillovers and regional 

disparities more effectively. Practically, it provides a robust empirical foundation for formulating differentiated 

digital economy strategies and promoting coordinated regional carbon mitigation efforts. 

The remainder of this paper is structured as follows. Section 2 reviews the relevant literature and formulates the 

research hypotheses. Section 3 presents the data and variable definitions. Section 4 outlines the model specification. 

Section 5 reports the empirical results. Section 6 conducts robustness checks, and Section 7 concludes. 

2. Literature Reviews and Hypotheses 

2.1 Literature Reviews 

The Environmental Kuznets Curve hypothesis, first proposed by Grossman and Krueger (1991), posits an inverted 

U-shaped relationship between economic development and environmental pollution—pollution levels initially rise 

with income growth, but decline once income surpasses a certain threshold. Although the EKC hypothesis has been 

widely tested and extended in subsequent studies, its validity remains contested across different pollutants, countries, 

and stages of development (Alper & Onur, 2016). Meanwhile, the digital economy, as an emerging economic 

paradigm centered on information technologies and data-driven activities, has attracted growing scholarly interest. 

Recent studies have explored how the digital economy can influence environmental outcomes through 

innovation-driven growth, industrial transformation, and more efficient resource allocation (2022). Internationally, Li 

et al. (2021) found that digitalization significantly reduces carbon emissions, though its effects vary across countries. 

Further, Muhammad et al (2024) focusing on OECD nations, demonstrated that digital technologies enhance 

environmental governance and substantially mitigate greenhouse gas emissions. In the Chinese context, Feng et al 

(2023) suggested that while the digital economy contributes to high-quality economic growth, its emission reduction 

impact exhibits substantial regional heterogeneity. 

As theoretical work has advanced, empirical approaches have also evolved to more accurately capture the complex 

dynamics between digital economy development and carbon emissions. Traditional machine learning models, such as 

Random Forest and XGBoost, have been widely adopted in carbon emission forecasting and have shown promising 

predictive performance (Luo et al., 2024). Meanwhile, spatial econometric methods have proven essential in 

analyzing the spatial dependence of carbon emissions across regions (Sun et al., 2023). More recently, advanced 

models such as Dynamic Spatial Panel Models (DSPM) and GNN have emerged as powerful tools, capable of 

capturing spatial correlations and network structures (Zhang et al., 2022), thereby offering deeper insights into the 

dynamic and spatial diffusion processes of carbon emissions. 

Despite these advances, several gaps remain in the literature. First, most studies are confined to aggregate or 

single-region perspectives, overlooking the heterogeneity across economic development stages and regional 

characteristics. Second, existing empirical work predominantly relies on traditional econometric techniques, with 

limited integration of cutting-edge methods such as machine learning—and particularly graph-based models like 

GNN—that are better suited to capturing spatial interactions and nonlinearities. Third, there is a notable lack of 

systematic research on the spatial diffusion pathways of carbon emissions and the heterogeneity of these effects 

across regions. To address these shortcomings, it is imperative to broaden theoretical perspectives and adopt a more 

integrated methodological framework for examining the relationship between the digital economy and carbon 

emissions. 

2.2 Hypotheses 

Existing studies have found that the digital economy contributes to systematic reductions in carbon emissions 

through mechanisms such as the green transformation of industrial structures, the efficient allocation of production 

factors, and innovation-driven low-carbon technological change. Specifically, this is reflected in three pathways: 

First, industrial structure optimization. The digital economy facilitates the upgrading of traditional industries toward 

higher value-added and lower-carbon forms, thereby reducing the proportion of high-emission sectors (Guo et al. 

2024).Second, enhanced resource allocation efficiency. Digital technologies—such as big data and platform-based 

economic models—improve the precision of factor matching, effectively reducing emissions (Chen, 2022).Third, 

technological innovation and diffusion. The digital economy encourages firms to increase investment in green 
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technologies and accelerates their widespread adoption, thereby strengthening long-term decarbonization 

mechanisms (Yan & Zhang, 2023).Based on these insights, the following hypothesis is proposed: 

Hypothesis 1a: Under the EKC framework, the digital economy has a significant mitigating effect on carbon 

emission intensity. 

As economic development progresses, heterogeneity in regional resource endowments, technological capacity, and 

institutional environments may cause the carbon-reducing effects of the digital economy to vary with development 

level. Specifically, Chen et al (2023) found that regions with higher levels of economic development tend to have 

more advanced digital infrastructure, greater energy efficiency, and stronger innovation capabilities—factors that 

enhance the digital economy’s ability to reduce carbon emissions. Conversely, less developed regions may face 

constraints such as weak infrastructure, talent shortages, and limited innovation capacity, which hinder the full 

realization of digital decarbonization potential. Based on this, the following hypothesis is proposed: 

Hypothesis 1b: The carbon-reducing effect of the digital economy increases with the level of economic development. 

Moreover, disparities in economic fundamentals, industrial composition, and resource endowments across regions 

create considerable variation in the conditions for digital economy development. This uneven spatial development 

may lead to significant regional heterogeneity in how the digital economy affects carbon emissions. For instance, 

Sun & Chen (2023) found that the emission-reducing effect of the digital economy is more pronounced in highly 

developed eastern coastal regions of China, while the impact is relatively weaker in central, western, and 

resource-dependent areas—indicating spatial heterogeneity in digital decarbonization outcomes. Based on this, the 

following hypothesis is proposed: 

Hypothesis 1c: The carbon-reducing effect of the digital economy exhibits significant regional heterogeneity. 

As economic and environmental systems increasingly exhibit regional integration and policy coordination, carbon 

emission activities naturally display strong spatial dependence and spillover effects. Liu & Liu (2019) empirically 

demonstrated that carbon emissions are significantly spatially correlated across regions, meaning that the emission 

levels of neighboring areas mutually influence one another. Consequently, traditional machine learning models—if 

they fail to account for such complex spatial interdependencies—may struggle to capture the dynamic diffusion 

characteristics of carbon emissions. Building on this, Gong et al (2024) argue that static or non-spatial models have 

clear limitations in forecasting multi-regional carbon emissions, as they are unable to simulate dynamic propagation 

paths and spatial feedback mechanisms. Therefore, effectively identifying and modeling interregional spatial 

linkages, and incorporating these into prediction frameworks, has become a key prerequisite and breakthrough point 

in carbon emission modeling. Based on this, the following hypothesis is proposed: 

Hypothesis 2: Due to the existence of spatial spillover effects, GNN outperform traditional machine learning models 

in predicting carbon emissions. 

The spatiotemporal patterns of carbon emissions are shaped not only by internal factors such as regional economic 

development stages and industrial restructuring but also by interregional dynamics, including policy coordination, 

industrial relocation, and similarities in energy structures. On the one hand, Sun et al (2023) identify significant 

spatial clustering in carbon intensity across regions, suggesting the presence of positive spatial correlations and 

spillover effects that facilitate the diffusion of emission patterns through spatial transmission mechanisms. On the 

other hand, Chen and Xu et al (2017) reveal that with the ongoing industrial relocation and regional coordination, 

energy-intensive industries tend to move from more developed to less developed areas, resulting in a redistribution of 

carbon emissions and reinforcing the interregional connectivity and dynamic evolution of carbon emission patterns. 

Based on this, the following hypothesis is proposed: 

Hypothesis 3a: Carbon emission intensity exhibits significant temporal inertia and spatial spillover effects. 

Furthermore, the spatial diffusion of carbon emissions is not homogeneous but is influenced by both internal 

structural characteristics and external connectivity. As noted by Chen and Xu et al. (2017), the convergence of 

industrial structures, energy dependencies, and policy coordination within a region can lead to reinforced internal 

feedback loops of carbon emissions. In contrast, disparities in economic foundations, governance capacities, and 

development stages across regions can give rise to asymmetric transmission of spatial spillovers, resulting in distinct 

and uneven diffusion patterns. Accordingly, we propose the following hypothesis: 

Hypothesis 3b: The spatial spillover effects of carbon emissions not only exhibit significant regional heterogeneity 

but also reflect internal feedback mechanisms and asymmetric diffusion patterns across regions. 
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3. Data and Variables 

Table 1 provides a detailed overview of the dependent variable, key explanatory variables, control variables, and the 

specification of the spatial weight matrices, along with their respective data sources. Based on these, a 

comprehensive panel dataset covering 30 Chinese provinces from 2007 to 2023 was constructed. To mitigate 

potential issues of non-normality, the core explanatory variables—digital economy development level and per capita 

GDP—were log-transformed. The construction of the digital economy indicator draws on the methodology proposed 

by Wang et al. (2021), the measurement of technological innovation follows the approach of Xingan (2021), and the 

low-carbon energy structure index is based on the work of Yaqin et al. (2022). Table 2 presents the descriptive 

statistics for the main variables. 

 

Table 1. Variable definition and source 

Variable Definition Source 

Dependent Variable   

Carbon intensity CO₂ emissions (10,000 tons) / GDP 

(billion RMB) 

China Statistical Yearbook; China Energy 

Statistical Yearbook 

Independent Variable   

Digital economy Level of digital economy development China Statistical and Electronic Information 

Industry Yearbook 

Economy level Per capita GDP Provincial Statistical Yearbooks 

Control Variable   

Urbanization Ratio of urban permanent residents to total 

population 

Statistical Bulletin on National Economic 

and Social Development of China 

Technology Total number of green patent applications  Green Patent Database from CNRDS 

Energy structure Low-carbon index of energy consumption 

structure 

China Statistical Yearbook; China Energy 

Statistical Yearbook 

Industry structure Ratio of secondary industry value added to 

gross output value 

Provincial Statistical Yearbooks 

New energy New energy power generation (hydro, 

wind, solar, nuclear) / total power 

generation 

China Statistical Yearbook 

Matrix   

Spatial geographic 

matrix 

Normalized and standardized geographic 

distance between province capitals 

 

Spatial economic 

matrix 

Normalized and standardized differences 

in per capita GDP between provinces 

China Statistical Yearbook 

Geo-economic matrix A combined matrix incorporating 

geographic and economic weights, 

determined through data-driven optimal 

weighting based on model fitting results 

Computed via data-driven weighting; 

weights adjusted according to model fit to 

reflect spatial and economic 

interdependence 

Note: The calculation of carbon emissions follows the 2006 IPCC Guidelines for National Greenhouse Gas 

Inventories. Data on the ratio of new energy generation to total electricity generation is only fully available starting 

from 2013; for earlier years, some provinces have missing values. This study addresses the issue by applying 

interpolation methods to fill in the missing data. 
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Table 2. Variable statistics 

Variable Mean Std.Dev Min P50 Max 

Carbon intensity 2.615 2.053 0.140 1.968 11.231 

Digital economy 0.113 0.111 0.008 0.081 0.747 

Economy level 52862.51 32669.15 7778 45720.5 200278 

Urbanization 0.581 0.133 0.282 0.571 0.896 

Technology 7.626 1.566 2.708 7.765 10.937 

Energy structure 5.659 0.421 4.998 4.998 7.145 

Industry structure 0.423 0.088 0.159 0.431 0.620 

New energy 0.268 0.336 0 0.182 5.447 

 

4. Models 

4.1 Baseline Regression Model 

       𝑜𝑛                                         
  

   X               Y            

In this study,        𝑜𝑛  represents the logarithm of carbon emissions intensity, while          and        
  

 

denote the level and squared term of per capita GDP, respectively. The variable              represents the level of 

digital economy development and X   represents control variables including urbanization, technology, energy 

structure, industry structure, and new energy.     is the residual term capturing unobserved heterogeneity.         

and Y     indicate region- and year-fixed effects, respectively. 

4.2 Traditional Machine Learning Models for Carbon Emissions Prediction 

4.2.1 XGBoost 

  ̂  ∑ 𝑓 (  )
 
   ,   ∑ (  ̂    )

  
     ∑   

   𝑓    

Here,   ̂ is the predicted value of carbon emissions intensity at time 𝑡, and    is the observed value. 𝒙𝒕 is the 

feature vector, including the digital economy, per capita GDP and its squared term (as core explanatory variables), as 

well as control variables. 𝑓 (𝒙𝒕) represents the output of the 𝑚 -th decision tree, and M is the number of trees. The 

loss function   includes a mean squared error term and a regularization term  , which helps prevent overfitting and 

controls model complexity. 

4.2.2 Random Forest 

  ̂  
1

𝑀
∑ 𝑓 (𝐱𝐭)

 

   

 

This formula shares the same structure as XGBoost. In constructing the random forest model, the digital economy, 

per capita GDP, and its squared term are set as the core explanatory variables. Control variables such as industry 

structure, urbanization, and energy structure are incorporated as additional inputs to capture temporal trends in 

carbon emissions intensity and to compare results across models. 

4.2.3 LSTM 

𝐢𝐭  𝜎(𝑊𝑖𝐱𝐭  𝑈𝑖𝐡𝐭−𝟏   𝑖) 

𝐟𝐭  𝜎(𝑊𝑓𝐱𝐭  𝑈𝑓𝐡𝐭−𝟏   𝑓) 

𝐨𝐭  𝜎(𝑊𝑜𝐱𝐭  𝑈𝑜𝐡𝐭−𝟏   𝑜) 



http://rwe.sciedupress.com Research in World Economy Vol. 16, No. 1; 2025 

Published by Sciedu Press                        6                          ISSN 1923-3981  E-ISSN 1923-399X 

𝐜𝐭  𝐟𝐭 ⋅ 𝐜𝐭−𝟏  𝐢𝐭 ⋅    h(𝑊𝑐𝐱𝐭  𝑈𝑐𝐡𝐭−𝟏   𝑐) 

𝐡𝐭  𝐨𝐭 ⋅    h(𝐜𝐭) 

   is the input feature vector, including variables such as the digital economy, per capita GDP and its square (the 

core explanatory variables), as well as control variables such as industrial structure. h −  represents the hidden state 

(model memory), and 𝐜𝐭 is the cell state that stores long-term memory. 𝑊𝑖, 𝑊𝑓, 𝑊𝑜, 𝑊𝑐 are weight matrices 

controlling input, forget, and output gates. 𝜎 is the Sigmoid activation function, and    h is the hyperbolic tangent 

function. 

4.2.4 Transformer 

Attention(Q, K, V)  softmax (
QKT

√𝑑𝑘

)V 

Multi Head(Q, K, V)  Concat(head , … , headℎ)W
O 

In the Transformer self-attention mechanism, (Q, K, V), Q, K, V refer to the query, key, and value matrices, 

respectively, which are derived via linear transformation from the input feature vectors (including explanatory and 

control variables).𝑑𝑘 denotes the dimensionality of the key vector. The softmax function is used to normalize the 

attention weights. In the multi-head attention mechanism Multi Head(Q, K, V), each headℎ  corresponds to an 

independent attention module, WO represents the output projection weight matrix. 

4.3 Carbon Emission Prediction Models From the Perspective of GNN 

Traditional machine learning models often overlook the implicit spatial dependencies between regions, making it 

difficult to effectively capture spatial spillover effects. To address this, we further introduce GNN models to better 

reflect the spatial characteristics and transmission mechanisms of carbon emissions. In this section, we compare the 

performance of GCN, GAT, and GraphSAGE models—not merely to conduct carbon emission prediction, but more 

importantly, to identify the most suitable GNN method for analyzing the spatial spillover effects of the digital 

economy. This also lays the foundation for the in-depth analysis in the following sections. The specific model 

settings are as follows: 

4.3.1 GCN 

 (   )   ( ̂ ( )𝑊( )) 

Where  ( ) represents the node feature matrix at layer 𝑙, including explanatory and control variables panel data 

features at the provincial level.  ̂ is the normalized adjacency matrix, constructed based on a geo-economic nested 

weight matrix, which captures spatial linkages and economic spillover pathways across regions. 𝑊( )  is the 

trainable weight matrix of layer 𝑙, and 𝜎 is the activation function. 

4.3.2 GAT 

 𝑖
   ( ∑  𝑖 𝑊

   (𝑖)

  ) 

Where 𝒉𝒊
  is the updated feature representation of node 𝑖, and  (𝑖) represents the set of its neighboring nodes. 

The attention coefficient 𝛼𝑖 between node 𝑖 and node 𝑗 is computed as: 

𝛼𝑖  
𝑒 𝑝( 𝑒 𝑘 𝑅𝑒 𝑈(  ,𝑾𝒉𝑖  𝑾𝒉𝒋-))

∑ 𝑒 𝑝( 𝑒 𝑘 𝑅𝑒 𝑈(  ,𝑾𝒉𝑖  𝑾𝒉𝒋-))𝑘  (𝑖)
 

Here,   is the learnable weight vector, 𝑾 is the weight matrix for node features, and    denotes concatenation. In 

this study, the GAT model can adaptively learn the spatial influence weights 𝛼𝑖  based on carbon emission 
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correlations and geo-economic similarities between provinces. This allows for a more accurate modeling of spatially 

heterogeneous carbon spillover paths—particularly in cases where "strong-weak" transmission patterns exist between 

regions—thus significantly enhancing prediction accuracy and structural interpretability. 

4.3.3 GraphSAGE 

 𝑖
   .𝑊  𝑖  𝑊 ⋅ AGG EGA E(*  , 𝑗   (𝑖)+)/ 

In this equation,  𝑖
  is the updated feature representation of node 𝑖, and the AGG EGA E function refers to a 

neighborhood feature aggregation function (e.g., mean, max, or LSTM-based methods). 𝑊  and 𝑊  are learnable 

weight matrices. In this study, GraphSAGE aggregates spatial and digital economy characteristics of neighboring 

regions to model the spatial diffusion of carbon emissions. Its flexible aggregation mechanism makes it particularly 

suitable for large-scale regional datasets and scalable implementation. 

4.4 Spatial Spillover Effects Under Traditional Econometric Models 

To further investigate the spatial transmission mechanism of how the digital economy affects carbon emissions, this 

study introduces traditional spatial econometric models. By comparing various models, we select the most 

appropriate one to identify and quantify the spillover effects of carbon emissions across regions, providing a 

benchmark and theoretical foundation for the construction of GNN-based spatial models. 

4.4.1 Static Spatial Spillover Models 

  ρ𝑊  𝑋  𝜖                                    (1) 

  ρ𝑊  𝑋  𝑊𝑋θ   𝜖                                 (2) 

  𝑋  λ𝑊   𝜖                                    (3) 

According to established theoretical frameworks, equations (1), (2), and (3) correspond to the Spatial Autoregressive 

Model (SAR), Spatial Durbin Model (SDM), and Spatial Error Model (SEM), respectively. 

In these models, 𝒚 denotes carbon emission intensity, 𝜌 is the spatial autoregressive coefficient, indicating the 

strength of spatial dependence. 𝑊 is the spatial weight matrix representing adjacency between units. 𝑋 and 𝛽 

denote the matrix of explanatory variables and their coefficients. 𝜃 represents the spatial spillover coefficients of 

explanatory variables, capturing the spatial diffusion effect.   is the spatial error coefficient, and 𝜖 is the error term 

assumed to be independently and identically distributed. 

4.4.2 Dynamic Spatial Panel Model  

 𝑖  ρ𝑊 𝑖  𝑋𝑖   λ 𝑖( − )   𝑖  

Here, 𝒚𝑖  and 𝒚𝑖( − ) denote the carbon emission intensity of region 𝑖 at time 𝑡 and 𝑡  1, respectively. 𝑊 is 

the spatial weight matrix, 𝜌 is the spatial autoregressive coefficient, 𝑋𝑖  is the vector of explanatory variables for 

region 𝑖 at time 𝑡, 𝛽 represents the coefficients of the explanatory variables, and   is the lag effect coefficient, 

capturing the impact of past emissions on current carbon emissions. 𝜖𝑖  is the error term. 

5. Results 

5.1 Baseline Regression Model Results 

As shown in column 1 of Table 3, the coefficient of the digital economy development level is −0.333 and is 

statistically significant at the 1% level, indicating that the digital economy significantly reduces carbon emission 

intensity. Specifically, a one-unit increase in the digital economy index is associated with a 0.333-unit reduction in 

carbon intensity. In addition, per capita GDP is positively correlated with carbon intensity at the 10% significance 

level, while its squared term is negative and significant at the 1% level, suggesting a pronounced inverted U-shaped 

relationship between carbon intensity and economic development. This finding confirms the EKC hypothesis. 
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Table 3. Baseline and Economic heterogeneity results 

 Baseline Low-digital Mid-digital High-digital 

 (1) (2) (3) (4) 

             -0.333*** -0.125* -0.094 -0.353*** 

 (0.053) (0.227) (0.180) (0.040) 

         0.808* -0.921 14.897 2.689 

 (0.483) (1.035) (14.865) (1.299) 

       
  

 -0.104*** 0.019 -0.767 -0.171** 

(0.022) (0.050) (0.727) (0.048) 

Industry_structure 0.798 1.127 0.959 0.952 

 (0.456) (1.117) (0.645) (0.657) 

Urbanization 0.028*** 0.001 0.012 0.027* 

 (0.005) (0.014) (0.006) (0.010) 

Technology -0.103* -0.089 -0.111 -0.035 

 (0.056) (0.059) (0.061) (0.043) 

Energy_structure -0.291*** -0.099* -0.157 -0.274*** 

 (0.069) (0.033) (0.093) (0.056) 

New_energy -0.053* -0.628* -0.952** -0.033 

 (0.024) (0.164) (0.245) (0.024) 

Region FE YES YES YES YES 

Year FE YES YES YES YES 

N 510 70 48 392 

R-squared 0.551 0.463 0.477 0.558 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01(Unless otherwise specified, all tables in this paper represent this meaning). 

 

The underlying mechanisms can be explained as follows: First, in the early stages of economic development, rapid 

industrialization and urbanization tend to rely heavily on energy-intensive industries and fossil fuels, leading to 

increased emissions alongside GDP growth (Jing et al. 2023). Second, once per capita income reaches a certain 

threshold, enhanced fiscal capacity enables governments to invest in environmental infrastructure and promote 

low-carbon industrial transformation (Hu et al. 2024). At this stage, technological advancement and green innovation 

become key drivers of growth, with economic activities shifting toward services and digital sectors, contributing to 

lower emissions per unit of output (Chen et al. 2023). These results are consistent with Hypothesis H1a. 

Regarding the control variables, urbanization has a significantly negative effect on carbon intensity, with a 

coefficient of −0.028.  his may be attributed to two factors: first, urbanization improves the efficiency of green 

infrastructure and public services, contributing to lower emissions per unit of GDP; second, it promotes a shift in 

industrial structure toward the service sector, reducing the share of secondary industry, particularly energy-intensive 

manufacturing, thereby decreasing overall carbon intensity (Tang et al. 2020). Additionally, industrial structure has a 

positive coefficient of 0.798, which, although statistically insignificant, suggests that a higher share of secondary 

industry may be associated with increased emissions—a trend that warrants attention. 

Technological innovation, energy structure, and the share of renewable energy generation all exhibit significant 

negative effects on carbon intensity, with coefficients of −0.103, −0.291, and −0.053, respectively.  he rationale is as 

follows: first, innovation enhances green technologies and energy efficiency, thereby reducing emissions (2021); 

second, coal-dominated energy structures are major contributors to high carbon intensity, while structural 

optimization—namely reducing coal dependency and increasing the share of cleaner energy sources—leads to lower 

emissions (Yin, Ding & Fan, 2021); third, a higher share of renewables in the energy mix facilitates low-carbon 

transformation and reduces reliance on fossil fuels, contributing to effective carbon mitigation (Liu et al. 2023). 
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5.2 Heterogeneity Results 

5.2.1 Economic Heterogeneity 

Columns (2), (3), and (4) of the Table 3 present the effects of the digital economy on carbon intensity across regions 

with low, medium, and high levels of economic development. The estimated coefficients are −0.125, −0.094, and 

−0.353, respectively. Among them, the reduction effect is most significant in regions with high economic 

development, significant at the 1% level. Although the coefficient for the low-development group is also statistically 

significant at the 10% level, the magnitude of the reduction effect is relatively weak. In contrast, the result for the 

medium-development group is statistically insignificant, suggesting that the emission-reduction mechanism may be 

unstable or underdeveloped in such regions. These findings partially support Hypothesis H1b. 

Several factors may explain these results. First, high-income regions typically possess more advanced digital 

infrastructure and stronger technological absorption capacity, enabling more efficient application of digital tools in 

energy conservation and emissions reduction (Wu, 2022). Second, in regions with lower levels of economic 

development, carbon reduction mechanisms are still in the early stages. Although the digital economy is beginning to 

take effect, it has not yet brought about deep transformation in energy-intensive industries, leading to relatively 

limited reduction effects (Yan & Zhang, 2023). Third, medium-development regions are generally in a ―technological 

integration phase,‖ where a mismatch exists between digital infrastructure and the degree of industrial digitization. 

As a result, digital technologies have not yet penetrated deeply into high-emission sectors, and the 

emission-reduction mechanism remains immature or unstable (Liu, 2023). 

5.2.2 Regional Heterogeneity 

Table 4 presents the results of the regression analysis examining the impact of the digital economy on carbon 

intensity across different regions. The estimated coefficients for the eastern, central, western, and northeastern 

regions are −0.093, 1.642, −0.626, and −0.189, respectively. Specifically, the coefficient for the central region is 

significantly positive at the 1% level, indicating a counterintuitive positive correlation between the digital economy 

and carbon emissions in that region. In contrast, the coefficient for the western region is significantly negative at the 

1% level, suggesting a strong emission-reduction effect. For the eastern and northeastern regions, the coefficients are 

statistically insignificant, indicating that the digital economy has not yet shown a clear impact on carbon intensity in 

these areas. Overall, these findings are consistent with Hypothesis H1c. 

 

Table 4. Regional heterogeneity results 

 East Mid West Northeast 

 (1) (2) (3) (4) 

             -0.093 1.642*** -0.626*** -0.189 

 (0.095) (0.449) (0.114) (0.264) 

         2.359** 6.151 0.355 5.248 

 (0.874) (8.464) (0.927) (3.907) 

       
  

 -0.137*** -0.419 -0.140** -0.288 

(0.038) (0.381) (0.047) (0.198) 

Industry structure -0.456 6.995*** 1.431*** 0.233 

 (0.454) (1.784) (0.371) (0.498) 

Urbanization 0.026*** 0.149*** 0.034** 0.071*** 

 (0.005) (0.024) (0.011) (0.012) 

Technology -0.108* -0.239 0.098* -0.065 

 (0.052) (0.234) (0.044) (0.072) 

Energy_structure -0.239*** -0.475 -0.394*** -0.351** 

 (0.064) (0.409) (0.100) (0.118) 

New_energy -0.019 -0.736* -0.816*** 0.322 

 (0.022) (0.307) (0.162) (0.545) 
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Region FE YES YES YES YES 

Year FE YES YES YES YES 

N 170 102 187 51 

R-squared 0.409 0.804 0.482 0.882 

 

Several factors may explain these regional disparities. First, in the central region, the development of the digital 

economy tends to be ―virtual-oriented,‖ with a bias toward consumer internet and digital finance, rather than 

real-sector applications. This structural imbalance limits its capacity to promote green transformation, and may even 

increase energy consumption through data centers, logistics, and other infrastructure—ultimately raising carbon 

intensity (Guo et al. 2024). Second, the western region, as a national pilot zone for green development, has benefited 

from preferential policies supporting digital infrastructure. The digital economy in this context has been more 

effectively applied to improving energy efficiency and advancing green energy, thereby significantly reducing carbon 

emissions (Hu et al. 2024).  hird, both the eastern and northeastern regions are approaching ―digital saturation,‖ 

where marginal effects diminish. Although the eastern region has a well-established digital foundation, digital 

integration into high-carbon industries has plateaued, weakening its additional mitigation effect. In the northeast, 

industrial inertia and deep-rooted reliance on traditional heavy industries hinder the effective deployment of digital 

technologies, making it difficult to observe emission reductions in the short term (Lyu et al. 2023). 

5.3 Machine Learning Models 

5.3.1 Comparison of Traditional Machine Learning Models 

As shown in Figure 1, compared to Random Forest, LSTM, and Transformer, the residuals from the XGBoost model 

are more evenly distributed around zero, suggesting that the model demonstrates the most stable performance in 

carbon emission prediction. The lack of systematic bias and low prediction error further highlight its robustness and 

high predictive accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Residual analysis chart 
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From Figure 2, it can be observed that the residual distributions of XGBoost and Random Forest are clearly 

symmetric and centered around zero, in contrast to LSTM and Transformer. This indicates that XGBoost and 

Random Forest models provide better fitting performance with smaller and more balanced prediction errors in carbon 

emissions forecasting. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Error density analysis chart 

 

Figure 3 further illustrates that the predicted values of XGBoost and Random Forest align closely with the actual 

values. The prediction curves almost completely overlap with the observed trends, suggesting strong fitting 

capability and high accuracy in capturing carbon emission dynamics. In contrast, the prediction curve of LSTM 

deviates slightly from the actual values, particularly in lower and higher value ranges, indicating less accurate 

performance at certain data points. 
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Figure 3. Predictions VS True values 

 

Table 5 compares the prediction results of traditional machine learning models on the 2019–2023 test set. XGBoost, 

Random Forest, and LSTM all outperform the Transformer model in terms of both MSE and RMSE. According to 

the R² metric, XGBoost achieves the highest explanatory power at 0.6879, outperforming the other three models. 

 

Table 5. Machine learning comparison 

 MSE RMSE R² 

XGBoost 0.2069 0.4549 0.6879 

Random Forest 0.2350 0.4848 0.6454 

LSTM 0.2935 0.5418 0.5506
 

Transformer 0.2644 0.5142 0.1595 

 

Taken together, these findings demonstrate that XGBoost performs exceptionally well in carbon emissions prediction, 

offering accurate data fitting and low prediction error. Therefore, XGBoost is selected as the baseline model for 

subsequent forecasting tasks. 

5.3.2 XGBoost-Based Further Analysis 

Figure 4 presents the feature importance rankings derived from the XGBoost model. The results indicate that 
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technological innovation holds the highest importance among all variables, followed by regional fixed effects and 

new energy indicators. In contrast, the digital economy variable exhibits relatively low weight in the model, 

suggesting its marginal contribution to prediction outcomes is limited. However, this does not preclude its potential 

impact through nonlinear relationships or interaction effects. Therefore, SHAP analysis is further employed to gain 

deeper insight into its influence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Feature importance 

 

Figure 5(a) displays the SHAP dependence plot for the digital economy variable. The results show a clear downward 

trend in SHAP values as the level of digital economy increases, indicating a progressively stronger suppressive effect 

on carbon emissions. Furthermore, the negative marginal effects are more pronounced in high-income regions 

(represented by red data points), implying that the digital economy more effectively promotes emission reduction in 

more developed areas—further supporting Hypothesis H1b. 

 

(a) SHAP dependance (b) SHAP interaction 

Figure 5. SHAP analysis 

 

Figure 5(b) illustrates the SHAP interaction effect between the digital economy and per capita GDP, revealing 

whether their combined influence contributes additional explanatory power to carbon emissions prediction. The plot 

shows that under higher levels of economic development (red dots), the interaction values are predominantly 

negative, suggesting a significant synergistic effect on emission reduction. In contrast, in lower-income regions (blue 
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dots), the interaction effect weakens and, in some cases, approaches positive values, indicating limited or even absent 

joint mitigation effects. 

Synthesizing the findings from Figures 4 and 5, the XGBoost model identifies technological innovation, new energy, 

and regional heterogeneity as the most important drivers of carbon emissions, highlighting their critical roles. 

Although the digital economy variable ranks lower in feature importance, further SHAP-based dependence and 

interaction analyses reveal that it has a significant marginal suppressive effect at higher levels of development and 

demonstrates a nonlinear linkage with economic growth. These findings not only reveal the heterogeneous 

mechanisms underlying the digital economy’s environmental impact but also provide empirical support for the 

Environmental Kuznets Curve (EKC) hypothesis observed in the baseline regressions. 

5.3.3 Application of GNN Models in Carbon Emissions Prediction 

In this study’s carbon emissions prediction task, the performance of three graph neural network (GNN) 

models—GCN, GAT, and GraphSAGE—is compared using test error (MSE) and training loss curves as the primary 

evaluation metrics. 

As shown in Table 6, the GAT model outperforms GCN and GraphSAGE across all test-set evaluation indicators, 

including MSE, RMSE, and R², indicating its superior generalization ability and predictive accuracy in the carbon 

emissions prediction task. 

 

Table 6. GNN comparison 

 MSE RMSE R² 

GCN 0.0236 0.1536 0.9564 

GAT 0.0117 0.1082 0.9683 

GraphSAGE 0.0172 0.1311 0.9628
 

 

According to the loss curves presented in Figure 6, all three GNN models demonstrate strong fitting capabilities 

during training. Compared to GCN and GraphSAGE, which converge at a moderate pace, the GAT model achieves 

faster early-stage convergence and maintains the lowest MSE in the later training stages—reflecting its excellent 

stability and convergence efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Loss curve 
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Figure 7 provides a visual representation of the GA  model’s performance.  he scatter plot (left) shows that the 

predicted values are closely aligned with the actual values, with data points densely distributed along the diagonal 

line, suggesting high overall predictive accuracy. The right panel unfolds predicted and actual values along the time 

series, further demonstrating that the GAT model effectively captures temporal trends in carbon emissions, even 

under conditions of high volatility. 

 

 

Figure 7. GAT results 

 

Furthermore, in the context of this carbon emissions forecasting task, GAT not only outperforms GCN and 

GraphSAGE across all metrics but also surpasses traditional machine learning models such as XGBoost, Random 

Forest, LSTM, and Transformer—thereby supporting Hypothesis H2. Several factors may account for this 

performance advantage: First, GNN is inherently well-suited to handle spatially structured data, enabling them to 

capture inter-regional spatial dependencies(Bao et al. 2024), whereas traditional models rely solely on local sample 

features and fail to account for neighborhood spillovers. Second, GNN is capable of modeling complex geographic 

adjacency and economic linkages within graph structures, allowing them to fully leverage regional interconnectivity 

and improve overall predictive performance(Zhang et al. 2023). Third, carbon emissions exhibit notable spatial 

heterogeneity and diffusion characteristics. Neighboring regions often share commonalities in policy responses, 

industrial activities, and energy structures (Liao et al. 2024)—all of which can be better represented by GNN, thanks 

to their stronger expressive power in modeling such mechanisms. 

Based on these insights, the following section will adopt both spatial econometric models and graph neural network 

frameworks to analyze and compare spatial spillover effects, offering complementary perspectives on spatial 

dynamics. 

5.4 Spatial Spillover Effect Results 

5.4.1 Model Selection 

We ultimately adopt the Dynamic Spatial Panel Model (DSPM) based on a geo-economic nested spatial weight 

matrix. The rationale is as follows: 

First, from an empirical perspective, prior SHAP-based interpretability analysis and subgroup regressions by 

economic development level and regional heterogeneity reveal that the impact of the digital economy on carbon 

emissions exhibits significant spatial heterogeneity. Relying solely on traditional non-spatial models may fail to 

accurately capture these cross-regional influence pathways. By introducing a geo-economic nested spatial weight 

matrix and adopting the DSPM—which incorporates both spatial spillovers and temporal dynamics—the model 

achieves not only theoretical consistency but also enhanced explanatory power and empirical suitability. 

Second, considering existing literature and model characteristics, carbon emissions—as an environmental variable 

with strong externalities—are inherently shaped by interregional policy coordination, industrial spillovers, and 

synchronized energy structures. These spatial interactions align with China's current landscape of regional 

governance (Song et al. 2020). Compared with traditional static spatial models such as the SAR, the DSPM 
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incorporates lagged dependent variables, thereby capturing the inertia and persistence of carbon emissions over time. 

 his feature enhances both the model’s interpretability and its theoretical relevance. 

Third, from the perspective of statistical performance, Table 7 provides a comparative evaluation that further 

supports the DSPM's superiority in modeling spatial spillover effects. Specifically, under the geo-economic nested 

matrix, the DSPM achieves a Pseudo R² of 0.772, with AIC and BIC values of 1355.7 and −1311.94, respectively 

outperforming all alternative specifications in terms of model fit and explanatory power. 

Fourth, from the standpoint of robustness, subsequent sections conduct additional sensitivity tests using alternative 

spatial weight matrices and variable specifications. These robustness checks are designed to validate the stability of 

the DSPM results and provide stronger empirical support for the model’s validity. 

5.4.2 DSPM Model Results Analysis 

Table 8 and Figure 8 report the results of the DSPM. The direct effects of per capita GDP and its squared term are 

0.1519 and −0.0088, respectively. Although these coefficients are not statistically significant, their signs exhibit a 

clear inverted U-shaped relationship, in line with the EKC hypothesis. The direct effect of the digital economy 

variable is 0.0486 and is significant at the 1% level.  he indirect effect is −0.0019, and the total effect is 0.0467, both 

statistically significant at the 1% level. 

 

Table 7. Matrix comparison 

Matrix Spatial geographic matrix Spatial economic matrix Geo-economic matrix 

 Pseudo 

R² 

LogL AIC BIC Pseudo 

R² 

LogL AIC BIC Pseudo 

R² 

LogL AIC BIC 

SAR 0.6404 -333.33 686.68 729.02 0.6712 -310.35 640.71 683.05 0.6401 -333.47 686.94 729.29 

SEM 0.6231 -301.61 621.23 665.58 0.6345 -316.38 650.77 695.11 0.6197 -309.86 637.73 605.09 

SDM 0.7240 -271.27 578.54 654.76 0.6734 -308.68 653.36 729.58 0.7456 -246.43 528.87 682.08 

DSPM 0.6975 669.16 1365.3 -1310.40 0.6944 -674.88 1349.96 -1303.04 0.772 -635.9 1355.7 -1311.94 

 

Table 8. DSPM results 

Variable Direct effect Indirect effect Total effect 

 (1) (2) (3) 

             0.0486*** -0.0019 0.0467*** 

         0.1519 -0.0059 0.1460 

       
  

 -0.0088 0.0003 -0.0085 

Industry structure 0.0156 -0.0006 0.0150 

Urbanization 0.0007 -0.0000 0.0007 

Technology -0.0191*** 0.0007 -0.0184*** 

Energy structure -0.0018 0.0001 -0.0017 

New energy -0.0202** 0.0008 -0.0194** 

L.ln_carbon 1.0168*** –0.0393 0.9775*** 

W_ln_carbon –0.0402**   
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Figure 8. DSPM results 

 

Compared to the baseline regression where the digital economy exerted a significantly negative effect on carbon 

intensity, this result reveals a divergence. Possible explanations include: first, the spatial econometric model 

incorporates temporal lags and spatial spillover pathways, allowing for a more realistic simulation of interregional 

carbon dynamics and externalities. This may cause the short-term positive emission effects of digital development to 

become more visible (Liu et al. 2022). Second, the current stage of digital economy development in China remains 

infrastructure-driven and energy-intensive, and its associated environmental burdens may temporarily overshadow its 

emission-reducing potential (Zhang et al. 2022). 

The coefficient of the temporal lag term, L.ln_carbon, is 1.0168 and is highly significant at the 1% level, indicating 

strong persistence in carbon intensity. Meanwhile, the coefficient of the spatial lag term, W_ln_carbon, is −0.0402 

and significant at the 5% level, supporting Hypothesis H3a. Two main reasons help explain this finding. First, the 

observed negative spatial spillover effect may stem from regional policy competition or coordinated governance, 

which contributes to a complementary regulatory mechanism within the spatial network. Second, the strong temporal 

inertia of carbon emissions reflects the high difficulty of restructuring carbon sources and the stability of existing 

energy use patterns, making it challenging to alter emission trajectories over the short term (Gao & Qu, 2025). 

5.4.3 Analysis of Spatial Spillover Effects From the Perspective of GNN 

5.4.3.1 Spatial Spillover Intensity and Digital Economy Sensitivity 

Figure 9 presents two types of spatial feature learning results generated by the GNN model. The left panel of Figure 

9 illustrates the average spatial spillover effect of carbon emissions across regions. Darker colors represent stronger 

spillover intensity. It can be observed that the central and western regions exhibit higher average neighbor influence, 

indicating that carbon emissions in these areas are not only driven by local factors but also exert significant external 

effects on surrounding regions—demonstrating a clear spatial diffusion pattern. In contrast, several eastern coastal 

provinces show relatively weaker spillover intensity, which may be attributed to their more independent industrial 

structures and energy systems, limiting regional interconnectivity. 
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Figure 9. GNN Visualization analysis 

 

The right panel of Figure 9 depicts the sensitivity distribution of the digital economy in predicting carbon emissions. 

Here, deeper colors represent stronger marginal impacts of the digital economy variable on the model’s prediction 

results. The figure shows that central China is more sensitive to changes in digital economic development, suggesting 

a higher responsiveness of carbon emissions in this region to digital infrastructure and related factors. This may 

reflect a ―digital dividend release phase,‖ where digitalization begins to play a more prominent role in shaping 

carbon outcomes. In contrast, northeastern and some northwestern provinces show lower sensitivity, possibly due to 

lower digital penetration rates or structural constraints in their industrial bases. 

5.4.3.2 Regional Heterogeneity of Spatial Spillover Effects 

Figure 10 illustrates the spatial spillover intensity of carbon emissions across different regions, as estimated by the 

GNN model. The results show that intra-regional spillover effects are consistently stronger than inter-regional ones, 

highlighting the presence of robust internal feedback mechanisms. Among all regions, Northeast China exhibits the 

strongest self-spillover effect, with a coefficient of 0.074—significantly higher than that of other regions. The central 

and western regions also show notable internal linkages, with spillover coefficients of 0.044 and 0.049, respectively. 

In terms of cross-regional spillovers, the influence from the eastern region to the central region is 0.044, while the 

reverse effect from the central region to the east is 0.030, indicating a relatively strong bidirectional carbon emission 

association between these two regions. In contrast, the spillover intensities involving the northeast and western 

regions remain relatively weak, reflecting spatial asymmetries and non-uniform distribution patterns. 

 

 

Figure 10. GNN Heatmap 
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Figure 11 further reveals the heterogeneity in average spatial spillover effects across regions. The central region 

shows the most pronounced effect, with an average value of −0.020, followed by the western and eastern regions 

(−0.018 and −0.016, respectively), while the northeast region displays the weakest spillover effect at −0.014. 

 

 
Figure 11. GNN Lollipop 

 

Taken together, these findings confirm Hypothesis H3b and lead to the following conclusion: carbon emission 

spillover effects in China exhibit a spatial structure of "stronger internal than external, tight linkages in the 

east-central axis, and relative detachment in the west and northeast." On the one hand, all regions demonstrate strong 

intra-regional coupling of carbon emissions; on the other hand, the central and western regions exert greater 

influence on adjacent areas, suggesting a stronger spatial radiation effect. 

Several factors contribute to this pattern. First, differences in development stages: central and western provinces are 

still in the phase of integrating digital economy development with industrial upgrading. Guided by supportive 

policies and technology diffusion, these regions exert stronger spillover effects on their neighbors (Wang, 2023). 

Second, disparities in energy structure: traditional energy sources dominate in the central and western regions, and 

their broader energy supply radius tends to foster cross-regional carbon emission linkages (Liu, Li & Ji, 2021). Third, 

differences in policy coordination and infrastructure: eastern and central regions benefit from stronger interregional 

policy communication and transportation connectivity, facilitating the diffusion of carbon reduction pathways. In 

contrast, the northeast region—facing challenges such as industrial decline and population outflow—exhibits weaker 

transmission capacity and responsiveness in carbon emissions, resulting in relatively modest spillover effects (Gao et 

al. 2022). 

6. Robustness Checks 

To ensure the reliability of the mixed-effects model estimation results, this study conducts a series of robustness 

checks. First, correlation analysis and multicollinearity diagnostics are carried out. As shown in Tables 9 and 10, 

apart from the constructed variables of per capita GDP and its squared term—which exhibit expected correlation due 

to design—correlations among other variables remain within acceptable ranges, with all VIF values below the 

conventional threshold of 10, indicating no serious multicollinearity issues that might compromise the baseline 

model. 
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Table 9. Pearson correlation 

Variable ln_carbon ln_carbon ln_perGDP industry_structure urbanization technology energy_structure new_energy 

ln_carbon 1        

ln_digital 0.694** 1       

ln_perGDP -0.404** 0.388** 1      

industry_structure -0.163 0.346** 0.100 1     

urbanization -0.500** 0.678** 0.868** -0.379** 1    

technology -0.698** 0.922** 0.797** -0.250 0.625** 1   

energy_structure -0.155 0.640** 0.701** -0.076 0.811** 0.654** 1  

new_energy -0.505** 0.478** 0.868** -0.679** 0.680** 0.534** 0.145 1 

 

Table 10. VIF results 

Variable VIF 1/VIF 

ln_digital 8.75 0.114 

ln_perGDP 5.11 0.196 

industry_structure 6.23 0.161 

urbanization 5.76 0.173 

technology 2.83 0.353 

energy_structure 1.31 0.766 

new_energy 1.17 0.856 

 

Second, the Hausman test yields a p-value of 0.12, suggesting that the difference between the random effects and 

fixed effects estimators is not statistically significant. Nevertheless, given that the dataset used in this study is a short 

panel and the fixed effects model offers stronger control over unobserved heterogeneity and time-specific shocks 

across provinces, we adopt the fixed effects specification to ensure more robust estimation. 

Third, a sensitivity test is performed by replacing the core explanatory variable—―digital economy development 

level‖—with an alternative indicator, ―number of internet ports,‖ which serves as another proxy for digital 

infrastructure. As shown in column (1) of Table 11, the coefficient remains significantly negative, demonstrating that 

the core conclusion is not sensitive to indicator selection. 

Fourth, stepwise regression is conducted to assess the stability of the digital economy coefficient under varying 

model specifications. Columns (2) and (3) in Table 11 show that the coefficient of the digital economy remains 

significantly negative across all models, with minimal fluctuation in magnitude, reinforcing the robustness and 

interpretability of the main findings. 
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Table 11. Robustness tests 

 (1) (2) (3) (4) (5) 

Internet -0.003*** 

(0.001) 

    

              -0.509*** 

(0.085) 

-0.227* 

(0.057) 

-0.050*** 

(0.013) 

-0.056*** 

(0.013) 

 

         0.425 

(0.361) 

 -0.862*** 

(0.106) 

0.123 

(0.150) 

0.197 

(0.151) 

       
  

 -0.052*** 

(0.015) 

  -0.008 

(0.007) 

-0.010 

(0.007) 

Industry structure 0.640* 

(0.315) 

-0.608 

(0.279) 

0.351 

(0.206) 

0.030 

(0.037) 

0.003 

(0.036) 

Urbanization 0.030*** 

(0.005) 

0.009* 

(0.004) 

0.028 

(0.004) 

0.001 

(0.001) 

0.000 

(0.001) 

Technology -0.096*** 

(0.032) 

0.033 

(0.031) 

0.099 

(0.035) 

-0.019*** 

(0.006) 

-0.021*** 

(0.006) 

Energy structure -0.223*** 

(0.073) 

-0.385*** 

(0.060) 

-0.248*** 

(0.054) 

-0.004 

(0.011) 

-0.008 

(0.011) 

New energy -0.038* 

(0.019) 

-0.005 

(0.014) 

-0.025 

(0.019) 

-0.0182** 

(0.009) 

-0.015* 

(0.009) 

L.ln_carbon    1.017*** 

(0.006) 

1.016*** 

(0.006) 

W_ln_carbon    -0.039*** 

(0.014) 

0.000 

(0.000) 

Region FE YES YES YES YES YES 

Year FE YES YES YES YES YES 

N 510 510 510 510 510 

R-squared 0.682 0.596 0.577 0.812 0.844 

 

Fifth, the Driscoll–Kraay standard errors are employed in the estimation. This approach is particularly suitable for 

the long-panel fixed effects model used in this paper, as it simultaneously addresses cross-sectional dependence, 

serial correlation, and heteroskedasticity. 

Sixth, columns (4) and (5) of Table 11 present results from alternative spatial weight matrix specifications, replacing 

the geo-economic nested matrix with pure geographic and pure economic matrices. The estimation results remain 

consistent, further confirming the robustness of the conclusions. 

7. Conclusion 

Based on panel data from 30 Chinese provinces spanning 2007 to 2023, this study constructs an extended EKC 

framework and integrates traditional machine learning techniques with GNN models to systematically assess the 

impact pathways and spatial spillover effects of the digital economy on carbon intensity. The empirical findings 

reveal the following: first, the digital economy significantly reduces carbon intensity, and a clear inverted U-shaped 

relationship is observed between carbon emissions and economic growth, thereby confirming the validity of the EKC 

hypothesis in the Chinese context. Second, the mitigation effect of the digital economy exhibits notable 

heterogeneity across both economic development levels and regional contexts, with stronger impacts observed in 

more developed areas. Third, carbon emissions display pronounced temporal inertia and spatial negative spillovers, 
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and GNN-based models outperform traditional machine learning approaches in both predictive accuracy and the 

representation of spatial structures. 

Theoretically, this research advances the understanding of the mechanisms linking the digital economy and carbon 

emissions, extends the EKC analytical framework to incorporate digitalization, and introduces an innovative 

methodological synthesis of spatial econometric models with graph-based deep learning, offering a new approach for 

modeling the spatial dynamics of carbon emissions. 

Based on these findings, policy recommendations are proposed as followings: First, efforts to expand digital 

infrastructure should be intensified, particularly in central and western regions, by accelerating the deployment of 

foundational technologies. This would enable digital tools to drive the green transformation of traditional industries, 

promoting carbon reduction alongside economic growth and translating the EKC framework into practice. Second, 

differentiated digital governance strategies should be adopted to unlock the decarbonization potential of the digital 

economy across development stages. While more developed regions should focus on platform regulation and digital 

equity, less developed areas require enhanced foundational support to strengthen their digital responsiveness to green 

development. Third, interregional coordination mechanisms should be reinforced to facilitate shared carbon 

governance. The construction of cross-regional carbon information platforms and joint action frameworks should be 

prioritized, along with the application of GNN intelligent systems to improve the spatial precision and adaptability of 

emission reduction policies, thus fully leveraging the collaborative potential embedded in spatial spillover effects. 

8. Limitations 

This study has several theoretical and methodological limitations. While the provincial-level panel data analysis 

reveals the spillover effects of the digital economy on carbon emission reduction, the restricted data coverage limits 

the generalizability of findings, particularly due to the lack of urban-rural differentiation and micro-level entity 

analysis. Although graph neural networks effectively capture spatial correlations, their "black-box" nature impedes 

the mechanistic interpretation of how specific digital technologies differentially contribute to emission reduction.  

Future research can advance along three dimensions: First, constructing a multi-scale analytical framework 

incorporating city-level and microdata while conducting cross-national comparative studies. Second, integrating 

explainable AI techniques with spatial econometric methods to enhance model interpretability. Third, dynamically 

tracking the emission-reduction effects of emerging digital technologies and utilizing agent-based modeling to 

evaluate policy effectiveness.  
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